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Abstract
We propose a simple stochastic model for the dynamics of a limit order book, extending the
recent work of Cont and de Larrard (SIAM J Financial Math 4(1), 1–25 2013), where the
price dynamics are endogenous, resulting from market transactions. We also show that the
conditional diffusion limit of the price process is the so-called Brownian meander.
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1 Introduction

The limit order book gives the list of possible bid/ask prices together with the size (number
of shares available) at each price. It changes rapidly over time, many orders possibly arriving
within a millisecond. Either for testing high frequency trading strategies or deciding on an
optimal way to buy or sell a large number of shares, it is important to try to model the
behavior of limit order books. Several authors suggested interesting models for limit order
books. For example, in Smith et al. (2003), the authors assumed that the markets orders
(bid/ask) arrive independently at rate μ in chunks of m shares; since these orders reduce
the number of shares at the best bid or best ask price, they are usually combined with order
cancellations. In their model, the limit orders (bid/ask) also arrive independently at rate
λ in chunks of m shares; the associated price is said to be selected “uniformly” amongst
the possible bid prices or ask prices, whatever that means. Basically, they examined some
properties of the resulting limit order book, trying to use techniques used in physics to
characterize some macro quantities of their model.

More recently, Cont and de Larrard (2013) proposed a similar model for the time arrivals
of the limit orders, but they only considered the level-1 order book, meaning that the best
bid and best ask prices are taken into account. They also assumed that markets orders for the
best bid/ask prices arrive independently at rate μ, in chunks of m shares, and limit orders
for the best bid/ask prices arrive independently at rate λ, also in chunks of m shares. When
the size (number of shares) of the best bid price attains 0, the bid price decreases by δ and
so does the ask price; the sizes of the best bid/ask prices are then chosen at random from
a distribution f̃ . When the size of the best ask price attains 0, the ask price increases by
δ and so does the bid price; the sizes of the best bid/ask prices are then chosen at random
from a distribution f . With this simple but tractable model, they were able to determine
the asymptotic behavior of the price process, instead of assuming it. They also found the
asymptotic behavior of the price.

According to some participants in the high frequency trading world, the hypothesis of
constant arrivals of orders is not justified. Therefore, one should assume that the arrival rates
are time-dependent. This is the model proposed here. We extend the Cont and de Larrard
(2013) setting by assuming that the rates for market orders and limit orders depend on time
and that they are also different if they are bid or ask orders. As in Cont and de Larrard
(2013), under some simple assumptions, we are also able to find the limiting behavior of
the price process, and we show how to estimate the main parameters of the model. The
main ingredients are the random times at which the price changes, the associated counting
process, and the distribution of the price changes.

More precisely, in Section 2, we present the construction of the model we consider. Under
some simplifying assumptions, we derive in Section 3 the distribution of the random times
at which the price changes. The asymptotic distribution of the price process is examined in
Section 4, while the estimation of the parameters is discussed in Section 5, together with an
example of implementation. The proofs of the main results are given in Appendix B.

2 Description of theModel

We discuss a level-1 limit order Book model using as a framework the model proposed in
Cont and de Larrard (2013). However, the point processes describing the arrivals of Limit
orders have time-dependent periodic rates proportional to the rate describing the arrival of
market orders plus cancellations.
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Recalling the Cont-de Larrard model we will define the level-1 limit order book model
as follows:

• There is just one level on each side of the order book, i.e., one knows only the best bid
and the best ask prices, together with their sizes (number of available shares at these
prices).

• The spread is constant and always equals the tick size δ.
• Order volume is assumed to be constant (set as one unit).
• Limit orders at the bid and ask sides of the book arrive independently according to

inhomogeneous Poisson processes Lb
t and La

t , with intensities λb
t and λa

t respectively.
• Market orders plus cancellations at the bid and ask sides of the book arrive indepen-

dently according to inhomogeneous Poisson processesMb
t andM

a
t , with intensities μb

t

and μa
t respectively.

• The processes La
t ,L

b
t ,M

a
t andMb

t are all independent.
• Every time there is a depletion at the ask side of the book, both the bid and the ask prices

increase by one tick, and the size of both queues gets redrawn from some distribution
f ∈ N

2.
• Every time there is a depletion at the bid side of the book, both the bid and the ask prices

decrease by one tick, and the size of both queues gets redrawn from some distribution
f̃ ∈ N

2.

2.1 Construction of the Processes

First, consider the following infinitesimal generators of birth and death processes:

(
La

t

)
ij

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 0, j ≥ 0,
μa

t , 1 ≤ i, j = i − 1,
λa

t , 1 ≤ i, j = i + 1,
− (

μa
t + λa

t

)
, 1 ≤ i, j = i,

0, otherwise.

(1)

(
Lb

t

)

ij
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 0, j ≥ 0,
μb

t , 1 ≤ i, j = i − 1,
λb

t , 1 ≤ i, j = i + 1,
− (

μb
t + λb

t

)
, 1 ≤ i, j = i,

0, otherwise.

(2)

Note that 0 is an absorbing state for any Markov chain with generators La or Lb. When
a chain reaches the absorbing point 0, one calls it extinction.

To describe precisely the behavior of the price process St and the queues sizes process

qt = (
qb
t , qb

t

)�
, one needs to define the following sequence of random times. Let σ

(b,1)
x0

and σ
(a,1)
y0 be the extinction times of independent Markov chains X(b,1) and X(a,1) with

generators L(b,1) and L(a,1), starting from x0 and y0 respectively, where L
(a,1)
t = La

t and

L
(b,1)
t = Lb

t . Further set τ0 = 0 and τ1 = min
(
σ

(b,1)
x , σ

(a,1)
y

)
.

Having defined τ1, . . . , τn−1, set Vn−1 = ∑n−1
k=0 τk , and let σ

(b,n)
xn−1 and σ

(a,n)
yn−1 be the

extinction times of independent Markov chains X(b,n) and X(a,n) with generators L(b,n) and
L(a,n), starting respectively from xn−1 and yn−1, where L

(a,n)
t = La

Vn−1+t and L
(b,n)
t =

Lb
Vn−1+t , t ≥ 0; then set τn = min

(
σ

(n)
xn−1 , σ

(n)
yn−1

)
. Here the random variables (xk, yk) are

Fτk
-measurable, for any k ≥ 0. In fact, (x0, y0) is chosen at random from distribution f0,
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while (xn, yn) is chosen at random from distribution fn if σ
(a,n)
xn−1 < σ

(b,n)
yn−1 and chosen at

random from distribution f̃n if σ
(a,n)
xn−1 > σ

(b,n)
yn−1 . Now for t ∈ [Vn−1, Vn), qb

t = X
(b,n)
t−Vn−1

and qa
t = X

(a,n)
t−Vn−1

starting respectively from xn−1 and yn−1 at time Vn−1. Finally, the price
process S, representing either the price or the log-price, is defined the following way: for
t ∈ [Vn−1, Vn), St = SVn−1 and SVn−1 = SVn−2+δ if σ (a,n)

xn−1 < σ
(b,n)
yn−1 while SVn−1 = SVn−2−δ

if σ
(b,n)
xn−1 < σ

(a,n)
yn−1 .

In Cont and de Larrard (2013), the authors assumed that the arrivals were time homoge-
neous, meaning that La

t ≡ Qa and Lb
t ≡ Qb. In fact, most of their results were stated for

the case Qa = Qb = Q, where

Qa
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = 0, j ≥ 0,
μa if 1 ≤ i, j = i − 1,
λa if 1 ≤ i, j = i + 1,

−(λa + μa) if 1 ≤ i, j = i,

0 if |i − j | > 1.

(3)

Qb
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = 0, j ≥ 0,
μb if 1 ≤ i, j = i − 1,
λb if 1 ≤ i, j = i + 1,

−(λb + μb) if 1 ≤ i, j = i,

0 if |i − j | > 1.

(4)

and

Qij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = 0, j ≥ 0,
μ if 1 ≤ i, j = i − 1,
λ if 1 ≤ i, j = i + 1,

−(λ + μ) if 1 ≤ i, j = i,

0 if |i − j | > 1.

(5)

3 Distributional Properties

Because of the independence between the ask and the bid side of the book before the first
price change, to analyze the distribution of τ1, it is enough to study one side of the order
book, say the ask. In this case, an explicit formula for P[σ (a,1) > t] is given in the next
section.

3.1 Distribution of the Inter-Arrival Time Between Price Changes

Let Lt be the infinitesimal generator of a non homogeneous birth and death process X given
by

(Lt )ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if i = 0, j ≥ 0,
μt if 1 ≤ i, j = i − 1,
λt if 1 ≤ i, j = i + 1,

−(λt + μt) if 1 ≤ i, j = i,

0 if |i − j | > 1.

(6)

Notice that 0 is an absorbing state. Also, let σX be the first hitting times of 0 for this process,
i.e.,

σX := inf{t > 0|Xt = 0}. (7)

Then since 0 is an absorbing state, one has Px[σX ≤ t] = Px[Xt = 0].
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It is hopeless to expect solving the problem for general generators so as a first approach,
some assumptions on the infinitesimal generators La and Lb will be made.

Assumption 1 There exists a measurable function α : R+ → R+ such thatAt = ∫ t

0αsds <

∞ for any t ≥ 0, with La
t = αtQ

a and Lb
t = αtQ

b.

Remark 3.1 Under the assumption that Lt = αtQ, a process X with infinitesimal generator
Lt can be seen as a time change of a process Y with infinitesimal generator Q, viz. Xt =
YAt . In particular, if σX and σY are respectively the first hitting time of 0 for X and Y , then
for any t ≥ 0,

FL(t; x) := P[σX ≤ t | X0 = x] = P[σY ≤ At | Y0 = x] := FQ(At ; x). (8)

This result is essential in what follows since it implies that the distribution of the time
between price changes in the present model is comparable to the distribution of the inter-
arrival time between price changes for the model considered by Cont and de Larrard (2013).

The following lemma gives the distribution of the extinction time σY of a birth and death
process Y with generator Q.

Lemma 3.2 Let Y be a birth and death process with generator Q given by Eq. 5. If λ ≤ μ,
then 1 − FQ(t; x) = Px[σY > t] = uλ,μ(t, x), where

uλ,μ(t, x) = x
(μ

λ

)x/2
∫ ∞

t

1

s
Ix

(
2s
√

λμ
)

e−s(λ+μ)ds, (9)

and where Iν(·) is the modified Bessel function of the first kind.
If λ > μ, then

uλ,μ(t, x) = 1 −
(μ

λ

)x + x
(μ

λ

)x/2
∫ ∞

t

1

s
Ix

(
2s
√

λμ
)

e−s(λ+μ)ds. (10)

In particular, Px[σY = +∞] = 1 − (
μ
λ

)x
> 0.

Remark 3.3 The case λ ≤ μ is proven in Cont and de Larrard (2013). For the case λ > μ,

note that Ex

[
e−sσY

] =
(

λ+μ+s−
√

(λ+μ+s)2−4λμ

2λ

)x

, so letting s ↓ 0 yields Px(σY < ∞) =
(

μ
λ

)x . It then follows that Px [σY > t |σY < ∞] = uμ,λ(t, x). Then Px [σY > t] = 1 −(
μ
λ

)x + (
μ
λ

)x
uμ,λ(t, x). Hence the result.

It is important to analyze the tail behavior of the survival distribution for σY . The follow-
ing lemma, whose proof is deferred to Appendix B, establishes such behavior. Recall that
�(s, x) = ∫∞

x
us−1e−udu is the incomplete gamma function.

Lemma 3.4 Let Y be a birth and death process with generator Q given by Eq. 5, and
assume that λ ≤ μ. Set C = (

√
μ − √

λ)2. Then, for a sufficiently large T ,

P[σY > T | Y0 = x] ∼
⎧
⎨

⎩

(
μ
λ

)x/2 x√
π

√
λμ

[
e−TC√

T
− √

C�
(
1
2 , T C

)]
if λ < μ;

x
λ
√

π
1√
T

if λ = μ.

Consequently, as expected, if λ = μ, Ex[σY ] = ∞, whereas if λ < μ, Ex

[
eθσY

]
< ∞ for

θ < C. In particular, E
[
σk

Y

]
< ∞ for every k ∈ N.
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Remark 3.5 Note that if λ = μ, the results in Lemma 3.4 agree with the results obtained in
Eq. 6 in Cont and de Larrard (2013). However, if λ < μ, Eq. 5 in Cont and de Larrard (2013)
says that P[σY > T | Y0 = x] ∼ x(λ+μ)

2λ(μ−λ)
1
T
, which is incorrect, since for a birth and death

process with death rate larger than its birth rate , the extinction time σY has moments of all
orders. An easy way to see this is to use the moment generating function (mgf) computed
in Proposition 1 of Cont and de Larrard (2013) and observe that if λ < μ, then the mgf is
defined on an open interval around 0; see, e.g., (Billingsley 1995, Section 21).

Lemma 3.2 allows a closed formula to be obtained for the distribution of σX, when the
rates are proportional to each other, as in Assumption 1. Such a formula is described in the
following proposition, whose proof is deferred to Appendix B.

Proposition 3.6 Let X be a birth and death process with generator L satisfying Lt = αtQ.
If λ ≤ μ, then the distribution of σX is given by

Px[σX > T ] = Px[σY > AT ] = x
(μ

λ

)x/2
∫ ∞

AT

1

s
Ix

(
2s
√

λμ
)

e−s(λ+μ)ds.

Corollary 3.7 Under Assumption 1, for At = ∫ t

0αsds, the distribution of τ1 is given by

PL[τ1 > T | q0 = (x, y)] = PLb [σ (b,1)
x > T ]PLa [σ (a,1)

y > T ]
= PQb [σ (b,1)

x > AT ]PQb [σ (a,1)
y > AT ]

= PQ[τ1 > AT | q0 = (x, y)].

Proof The result follows from the fact that τ1 = σ
(a,1)
y ∧ σ

(b,1)
x , Proposition 3.6 and the

independence between σ
(a,1)
y and σ

(b,1)
x .

Now, we present the asymptotic behavior of the survival distribution function of τ1 under
L. It follows directly from Lemma 3.4 and Corollary 3.7 .

Lemma 3.8 Let Ca = (
√

μa − √
λa)2, Cb = (

√
μb − √

λb)2, and set FL(t : x, y) =
PL

[
τ1 ≤ t

∣
∣∣ qb

0 = x, qa
0 = y

]
, t ≥ 0. Assume that λa ≤ μa and λb ≤ μb. Then, as T →

∞, 1 − FL(T : x, y) is asymptotic to
(

μb

λb

)x/2 (
μa

λa

)y/2
xy

π(λaλbμaμb)1/4

[
exp(−AT Ca)√

AT

−
√
Ca�

(
1

2
, AT Ca

)]

×
[
exp(−AT Cb)√

AT

−
√
Cb�

(
1

2
, AT Cb

)]
.

In particular, if λa = μa and λb = μb, then

AT PL[(τ1 > T |q0 = (x, y)] T →∞→ xy

π
√

λaλb
.

Remark 3.9 It might happen that either λa > μa or λb > μb. If both these conditions
hold, there is a positive probability that the queues will never deplete, so this case must be
excluded. There are basically two cases left. The following result follows directly from the
proof of Lemma 3.8.
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(C1) Suppose that λb > μb and λa ≤ μa . Then, as T → ∞, 1 − FL(T : x, y) is
asymptotic to
[

1 −
(

μb

λb

)x
](

μa

λa

)y/2
y

π(λaμa)1/4

[
exp(−AT Ca)√

AT

−
√
Ca�

(
1

2
, AT Ca

)]
.

(C2) Suppose that λa > μa and λb ≤ μb. Then, as T → ∞, 1 − FL(T : x, y) is
asymptotic to
[
1 −

(
μa

λa

)y](
μb

λb

)x/2
x

π(λbμb)1/4

[
exp(−AT Cb)√

AT

−
√
Cb�

(
1

2
, AT Cb

)]
.

In particular, if λa > μa and λb = μb, then

√
AT PL[(τ1 > T |q0 = (x, y)] T →∞→ x

π
√

λb

[
1 −

(
μa

λa

)y]
.

3.2 Probability of a Price Increase

In Cont and de Larrard (2013, Proposition 3), the authors considered an asymmetric order
flow as given here by the processes Ya and Yb for computing the probability of a price
increase. This was not used elsewhere in their paper. They obtained the following result,
which we cite without much changes. However there are some typos that are corrected here.
The proof of the result is given in Van Leeuwaarden et al. (2013).

Proposition 3.10 Suppose that λa ≤ μa and λb ≤ μb. Given (qb, qa) = (x, y), the
probability pup(x, y) that the next price change is an increase is

pup(x, y) = 1 − 1

π

(
μa

λa

)y (2
√

λaμa

μa + λa

)∫ π

0
Hx

t sin(yt) sin(t)

×
⎧
⎨

⎩
2λbHt − Gt

2
√

λaμa

μa+λa cos(t) − 1

⎫
⎬

⎭

⎧
⎪⎨

⎪⎩

1
√

G2
t − 4λbμb

⎫
⎪⎬

⎪⎭
dt,

where � = μa + μb + λa + λb, Gt = � − 2
√

λaμa cos(t), and Ht = Gt−
√

G2
t −4λbμb

2λb .

Under Assumption 1, the same result applies for our model since Xa
t = Ya

At
and Xb

t =
Yb

At
.

Remark 3.11 One can also use Lemma 3.2 and Proposition 3.6 to obtain the previous result
by integration.

4 Diffusion Limit of the Price Process

Let Vn be the time of the n-th jump in the price, as defined in Section 2.1. We are interested
in analyzing the asymptotic behavior of the number of price changes up to time t , that is, in
describing the counting process

Nt := max{n ≥ 0 | Vn ≤ t}, t ≥ 0. (11)
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4.1 Asymptotic Behavior of the Counting Process N

The next proposition, whose proof is deferred to Appendix B, provides an expression which
relates the distribution of the partial sums for the waiting times between price changes for
the models with the generators L and Q. This result is based on a new assumption, stated
below.

Assumption 2
∑

(x,y)∈N2 f̃ (x, y)PQ[τ1 ≤ t |qb
0 = x, qa

0 = y] =
∑

(x,y)∈N2 f (x, y)PQ[τ1 ≤ t |qb
0 = x, qa

0 = y] = F1,Q(t). This is true for example, when

(i) f̃ (x, y) = f (y, x) and Qa = Qb, or (ii) f̃ = f . Properties (i) and (ii) are used for
example in Cont and de Larrard (2013).

Proposition 4.1 Recall that At = ∫ t

0αsds. Then, under Assumptions 1–2,

PL[Vn ≤ t | qb
0 = x, qa

0 = y] = PQ[Vn ≤ At | qb
0 = x, qa

0 = y].

Remark 4.2 Under generatorQ, τ1, τ2, . . . , τn are independent and τ2, . . . , τn are i.i.d.

In order to deal with the counting process N , we need another assumption.

Assumption 3 There exists a positive constant υ such that At

t
→ υ as t → ∞.

Remark 4.3 Assumption 3 is true for example if α is periodic. Such an assumption makes
sense. One can easily imagine that α repeats itself everyday. Of course, it must be validated
empirically. One can also suppose that α is random but independent of the other processes.
In this case, α would act as a random environment and if we assume that α is stationary and
ergodic, then Assumption 3 holds almost surely. However, in this case, all computations are
conditional on the environment.

In order to obtain the asymptotic behavior of the prices, there are two cases to be taken
into account: Ca + Cb > 0 and Ca + Cb = 0.

4.1.1 Case Ca + Cb > 0

First, assume that

γ1 =
∑

(x,y)∈N2

xy

(
μb

λb

)x/2 (
μa

λa

)y/2

f (x, y) < ∞. (12)

Now, from Abramowitz and Stegun (1972, p. 376), In(z) = 1
π

∫ π

0 ez cos θ cos(nθ)dθ , so for
any x ∈ N, In(z) ≤ ez. In this case, it follows from Lemma 3.2 and Lemma 3.4 that

EQ(τ1) =
∑

(x,y)∈N2

xy

(
μb

λb

)x/2 (
μa

λa

)y/2

f (x, y)

∫ ∞

0

∫ ∞

0
t ∧ sgx,b(t)gy,a(s)dtds

≤ γ1

max(Ca, Cb)
< ∞,

where gy,a(s) = 1
s
Iy

(
2s

√
λaμa

)
e−s(λa+μa) and gx,b(s) = 1

s
Ix

(
2s
√

λbμb
)

e−s(λb+μb).

Then, under Assumptions 1–2 and under model Q, Vn/n → EQ(τ1) < ∞ a.s. Using
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Assumption 3 and Lemma 3.8, one then finds that under modelL, Vn/n converges in proba-
bility to c1 = EQ(τ1)/υ. Finally, using Propositions A.1–A.2, one finds that under L, Nt/t

converges in probability to 1
c1

= υ/EQ(τ1). In addition, Nnt�−nt/c1√
n

� 1
c
3/2
1

W(t), where W

is a Brownian motion. This follows from the convergence of Vn, under Q, to a Brownian
motion. It also holds under L, using Assumption 3.

4.1.2 Case Ca + Cb = 0

Assume that

γ0 =
∑

(x,y)∈N2

xyf (x, y) < ∞. (13)

Then it follows from Lemma 3.8 and Proposition A.4 that

T PL[τ1 > T ] T →∞→ c0 = γ0

υπ
√

λaλb
.

As a result, using Propositions A.1–A.2 with f (n) = n log n, one finds that under L,
Nt/(t/ log t) converges in probability to 1

c0
= υπ

√
λaλb

γ0
. In particular, if an = n log n,

then Nant /n converges in probability to t
c0
. Also, Vnt�

n
− c0t log n � 1

υ
Vt , where V is a

stable process of index 1. It then follows that
Nn log nt�−nt/c0

n/ log n
� − 1

c0υ
Vt . Note that V1 is

the weak limit of Vn

n
− c0υ log n under Q, and V1 = Ṽ1 + d0, where d0 is the limit of

nbn − c0υ log n, where bn = EQ{sin(τ1/n)}. Next, it follows from Feller (1971) that the
characteristic function of Ṽ1 is eψ(ζ ), where

ψ(ζ ) = −|ζ |c0υ
{π

2
+ isgn(ζ ) log |ζ |

}
.

4.2 Asymptotic Behavior of the Price Process

Under no other additional hypothesis on f and f̃ than Assumption 2, the sequence (ξi)

of price changes is an ergodic Markov chain with transition matrix �; the sequence is
also independent from Nt . Note that P(ξ2 = δ|ξ1 = δ) = ∑

(i,j)∈N2 f (i, j)P up(i, j) and

P(ξ2 = δ|ξ1 = −δ) = ∑
i,j f̃ (i, j)P up(i, j), so the associated transition matrix � is

given by

� =
[

P(ξ2 = −δ|ξ1 = −δ) P (ξ2 = δ|ξ1 = −δ)

P (ξ2 = −δ|ξ1 = δ) P (ξ2 = δ|ξ1 = δ)

]
,

with stationary distribution (ν, 1 − ν) satisfying

ν = P(ξ1 = −δ) = P(ξ2 = −δ|ξ1 = δ)

P (ξ2 = −δ|ξ1 = δ) + P(ξ2 = δ|ξ1 = −δ)
.

If c� stands for the largest integer smaller or equal to c, then the sequence Wn(t) =
1√
n

∑nt�
i=1 {ξi − E(ξi)} converges in law to σW(t), whereW is a Brownian motion, and the

variance σ 2 is given by

σ 2 = 4δ2
[

ν(1 − ν) + ν

∞∑

k=1

{
(�k)11 − ν

}
− (1 − ν)

∞∑

k=1

{
(�k)21 − ν

}]

, (14)

with (�k)ij being the element (i, j) of �k .
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Remark 4.4 If f̃ = f , then the variables ξj , j ≥ 1, are i.i.d., which is the case considered
by Cont and de Larrard (2013). This is why our formula (14) is different. In fact,

P(ξ2 = δ|ξ1 = δ) =
∑

(i,j)∈N2

f (i, j)P up(i, j)

and

P(ξ2 = δ|ξ1 = −δ) =
∑

i,j

f̃ (i, j)P up(i, j) =
∑

i,j

f (i, j)P up(i, j)

= P(ξ2 = δ|ξ1 = δ).

Note also that the variables ξj , j ≥ 1, are independent from τ1, . . . , τn. However, unless
Qa = Qb and f is symmetric, one cannot conclude that P(ξi = δ) = 1/2.

Finally, the price process S can be expressed as

St = S0 +
Nt∑

i=1

ξi, t ≥ 0.

To state the final results, set an = n log n or n, according as Ca +Cb = 0 or not. Then, using
the results of Section 4.1, Nant /n converges in probability to t/c, where c = c0 or c = c1

according as Ca + Cb = 0 or not. It is then easy to show that n−1/2∑Nant

i=1 {ξi − E(ξ1)} �
σ√
c
W̃ , where W̃ is a Brownian motion. In fact, for any t ≥ 0, W̃t = √

c Wt/c. Next,

Sant − ntE(ξ1)/c =
Nant∑

i=1

{ξi − E(ξ1)} + E(ξ1)(Nant − nt/c). (15)

This expression shows that there are really two sources of randomness involved in the
asymptotic behavior of Sant−ntE(ξ1)/c. As before, one must consider the cases Ca+Cb > 0
and Ca + Cb = 0.

4.2.1 Ca + Cb > 0

In this case, setting Wn(t) = {Snt − nt/c1E(ξ1)} /
√

n, then Wn � σ̃W , where W is a
Brownian motion and

σ̃ =
[

σ 2

c1
+ {E(ξ1)}2

c31

]1/2
. (16)

In fact, σ̃Wt = σ√
c1
W̃t + E(ξ1)

c
3/2
1

Wt , where W̃ and W are the two independent Brownian

motions appearing respectively in the asymptotic behaviour of the Markov chain and the
counting process. Note that the volatility σ̃ could be estimated by taking the standard devi-
ation of the price increments every 10 minutes, as proposed in Cont and de Larrard (2013);
see also Swishchuk et al. (2016). More generally, if � is the time in seconds between suc-
cessive prices and s� is the corresponding standard deviation of the price increments over
interval of size �, then ˆ̃σ = s�/

√
�.

4.2.2 Ca + Cb = 0

In this case, if E(ξ1) = 0, then using Eq. 15, one obtains that Sn log nt /
√

n � 1√
c0
Wt , where

W is the Brownian motion resulting from the convergence of the Markov chain.
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Table 1 Spread distribution in
cents for Facebook, from
November 3rd, 2014 to
November 7th, 2014

Day

Spread 1 2 3 4 5 Ave.

1 91.6% 91.8% 89.7% 88.4% 93.6% 91.0%

2 7.6 % 8.0 % 10.1% 11.1% 5.9% 8.5%

> 2 0.8 % 0.2 % 0.2% 0.5% 0.5% 0.5%

However, if E(ξ1) �= 0, then (Snt − nt/c0E(ξ1))/(n/ log n) � −E(ξ1)
c0υ

Vt , where V is the
stable process defined in Section 4.1.2.

Remark 4.5 Note that in Cont and de Larrard (2013), E(ξ1) = 0, so the limiting process is
a Brownian motion whether Ca + Cb = 0 or Ca + Cb > 0.

4.3 Conditioned Limit of the Price Process

In general, what one wants to achieve in rescaling the price process S is to replace a discon-
tinuous process by a more amenable process if possible, over a given time interval. However,
on this time interval, the price is known to be positive, so the limiting distribution should be
positive as well.

Fig. 1 Graphs of Ma
it /t and Mb

it /t for each of the five days



710 Methodology and Computing in Applied Probability (2019) 21:699–719

If the unconditioned limit is a Brownian motion, then the conditioned limit, i.e., con-
ditioning on the fact that the Brownian motion is positive, is called a Brownian meander
(Durrett et al. 1977; Revuz and Yor 1999). If the unconditioned limit is a stable process, then
the conditioned limit could be called a stable meander. See, e.g., Caravenna and Chaumont
(2008) for more details. Note that according to Durrett et al. (1977), a Brownian meander
W+

t over (0, 1) has conditional density

P(W+
t ∈ dy|W+

s = x) = {φt−s(y − x) − φt−s(y + x)}
{

�1−t (y) − 1/2

�1−s(x) − 1/2

}
,

0 < s < t < 1, x, y > 0, where �t is the distribution function of a centered Gaussian
variable with variance t and associated density φt . It then follows that the infinitesimal
generatorHt of W+

t is given by

Ht f (x) = f ′(x){1 + φ1−t (x)} + f ′′(x)

2
, x > 0.

5 Estimation of Parameters

In order to have identifiable parameters, one has to answer the following question about α:
What happens if α is multiplied by a positive factor h? Then, the value v in Assumption 3
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t /t for five days
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is multiplied by h. Thus the parameters λa , λb, μa , and μb are all divided by h, since for
example, λa

t = λaαt . As a result, EQ(τ1) is then multiplied by h and so is γ0. It then follows
that c0 and c1 are invariant by any scaling. So, one could normalize α so that v = 1. This is
what we will assume from now on. The estimation of the parameters will then be easier.

Next, one of the assumptions of the model is that the size of the orders are constant,
which is not the case in practice. So in view of applications, and depending on the statistics
of sizes for level-1 orders, if the chosen size is 100 say, then an order of size 324 would
count for 3.24 orders.

Assume that data are collected over a period of n days. Recall that time 0 corresponds
to the opening of the market at 9:30:00 ET. Let �b

it and �a
it be the number of limit orders

for bid and ask respectively up to time t (measured in seconds) for day i. Further let td be
the number of seconds considered in a day. Typically, td = 23400. Finally, let Mb

it and Ma
it

be the number of market orders and cancellations for bid and ask respectively up to time
t (measured in seconds) for day i. For any i ≥ 1, set vi = {

Aitd − A(i−1)td

}
/td , and set

v̂ = v̄ = 1
n

∑n
i=1 vi . Then for any i ≥ 1, one should have approximately

μ̂avi = Ma
itd

/td , μ̂bvi = Mb
itd

/td ,

λ̂avi = �a
itd

/td , λ̂bvi = �b
itd

/td .
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Having assumed that v = 1, one can set

μ̂a = 1

ntd

n∑

i=1

Ma
itd

, μ̂b = 1

ntd

n∑

i=1

Mb
itd

,

λ̂a = 1

ntd

n∑

i=1

�a
itd

, λ̂b = 1

ntd

n∑

i=1

�b
itd
.

Finally, note that the transition matrix � can be estimated directly from the data, as is 1/c1
from Nt/t .

5.1 Example of Implementation

For this example, we use the Facebook data provided in Cartea et al. (2015), from November
3rd, 2014 to November 7th, 2014. At the moment, since there is no test of independence
available in the literature, we can only assume that the buyers and sellers act independently
of each others.

First, the results for the spread are given in Table 1, from which we can see that most of
the time, the spread δ is .01$.

One can see from Figs. 1, 2, 3 and 4 that at time increases, the ratios become more and
more stable, enabling us to estimate the parameters λa, μa, λb, μb according to the formulas
given in the beginning of Section 5. These estimations are reported in Table 2. It then follows
that λ̂a < μ̂a and λ̂b < μ̂b, see also Fig. 5. So with these data, we are in the case where
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Fig. 4 Graphs of �a
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t /t for five days
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Table 2 Values of Mb
itd

/td ,

Ma
itd

/td , �b
itd

/td , and �a
itd

/td
Day �b

itd
/td �a

itd
/td Mb

itd
/td Ma

itd
/td

1 494.1500 563.2474 570.6227 553.9348

2 610.9476 578.6165 628.9185 613.8630

3 661.5511 658.3967 719.7569 672.8735

4 398.4293 401.4344 404.4485 415.3457

5 427.9106 440.4546 447.9598 458.7763

ave. 518.5977 528.4299 554.3413 542.9587

λ̂b λ̂a μ̂b μ̂a

Ca + Cb > 0, meaning that the unconditioned limiting price process is a Brownian motion
with volatility satisfying (16).

Remark 5.1 According to Fig. 6, on November 3rd, the ratio �a
1td

/Ma
1td

is bigger than one,

while the ratio �b
1td

/Mb
1td

is smaller than one, meaning that most of the time, the bid queue
will be depleted before the ask queue, so the price has a negative trend throughout that day.
This is well illustrated in Fig. 7, where it is seen that the price indeed goes down on that day.
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5.1.1 Estimations of σ̃

There are basically two ways of estimating σ̃ . One can use the standard deviation of high-
frequency data, as exemplified in Table 3, or we could use the analytic expression given by
Eq. 16, as proposed in Swishchuk and Vadori (2017); Swishchuk et al. (2016).
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Fig. 7 Graphs of the midprice for November 3rd, 2014
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Table 3 Estimation of
σ̃ = s�/

√
� using

high-frequency standard
deviations

�

Day 10-minute 5-minute 1-minute

1 0.0040 0.0052 0.0057

2 0.0079 0.0073 0.0075

3 0.0069 0.0070 0.0082

4 0.0071 0.0062 0.0059

5 0.0038 0.0040 0.0051

pooled 0.0062 0.0060 0.0066

First, the estimations of σ̃ are presented in Table 3 for each of the five days and for three
frequencies: 1-minute, 5-minute and 10-minute. One can see from Table 3 that although the
daily estimations differ for the three frequencies considered, pooling the data over five days
reduces a lot the differences between the three frequencies. In fact, they are quite similar.

Next, to estimate σ̃ analytically, one needs the estimation of the transition matrix�. With

the data set, we get �̂ =
[
0.4731177 0.5268512
0.5241391 0.475891

]
. It then follows that ν̂ = 0.4987, so

E(ξ1) = 0.0026, and using formula (14), one obtains σ = 0.0066. Next, 1/ĉ1 = 0.6194786,
so the analytical estimation of σ̃ is 0.0053, which is quite close to the pooled values in
Table 3.

Appendix A: Auxiliary Results

Proposition A.1 Suppose that Vn = X1 + · · · + Xn, where the variables Xi are i.i.d. with

xP (Xi > x)
x→∞→ c ∈ (0, ∞). Then Vn

n log n

P r→ c, as n → ∞.

Proof First, for any s > 0 and T > 0,

s

∫ ∞

T

e−sx

x
dx = s

∫ ∞

sT

e−y

y
dy = −s log(T s)e−T s + s

∫ ∞

T s

log(y)e−ydy,

so as s → 0, s
∫∞
T

e−sx

x
dx ∼ −s log s. Next, for any non negative random variable X and

any s ≥ 0,

E

[
e−sX

]
= 1 − s

∫ ∞

0
P(X > x)e−sxdx.

As a result, if P(X > x) ∼ c/x, as x → ∞, then, as s → 0,

E

[
e−sX

]
= 1 + cs log s + o(s log s).

Therefore, setting an = n log n, one obtains, for a fixed s > 0,

E

[
e−sVn/an

]
=

[
E

[
e−sX1/an

]]n

=
{
1 − sc

an

log(san) + o (log(an)/an)

}n

n→∞→ e−cs ,

since ns
an

log(san) → s as n → ∞. Hence, Vn/an
Pr→ c, as n → ∞.
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Proposition A.2 Suppose that Vn/f (n)
P r→ c, as n → ∞, where f (n) → ∞ is regularly

varying of order α. Define Nt = max{n ≥ 0; Vn ≤ t} and suppose that for some function

g on (0, ∞), f ◦ g(t) ∼ g ◦ f (t) ∼ t , as t → ∞. Then Nt/g(t)
P r→ c−1/α .

Proof The proof is similar to the proof of the renewal theorem in Durrett (1996)[Theorem
7.3]. By definition, VNt ≤ t < VNt+1. As a result,

VNt

f (Nt )
≤ t

f (Nt )
<

VNt

f (Nt + 1)

f (Nt + 1)

f (Nt )
.

By hypothesis, Vn/f (n) converges in probability to c ∈ (0,∞), as n → ∞. Also, since
Vn is finite for any n ∈ N, it follows that Nt converges in probability to +∞ as t → ∞.
Next, since f (n + 1)/f (n) → 1 as n → ∞, it follows that as t → ∞, f (Nt )/t converges
in probability to 1

c
. Also, g is regularly varying of order 1/α, so one may conclude that

Nt/g(t)
P r→ c−1/α .

Remark A.3 If f (t) = t log t , then α = 1 and one can take g(t) = t/ log t .

Proposition A.4 Set ψλ(t, x) = ∫∞
t

1
u
Ix(2uλ)e−2uλdu, for any t, x, λ > 0. Then there

exists a constant C so that for any x, λ > 0, and any t ≥ 1
2λ , ψλ(t, x) ≤ C√

2λt
.

Proof First, note that ψλ(t, x) = ψ1/2(2λt, x). It is well-known that

Ix(z) = 1

π

∫ π

0
ez cos θ cos(xθ)dθ ≤ 1

π

∫ π

0
ez cos θ dθ

≤ 1

2
+ 1

π

∫ 1

0

ezs

√
1 − s2

ds.

Next, set E1(u) := ∫∞
u

e−w

w
dw, u > 0. Then

ψ1/2(t, x) ≤
∫ ∞

t

e−u

u

{
1

2
+ 1

π

∫ 1

0

eus

√
1 − s2

ds

}

du

= 1

2
E1(t) + 1

π

∫ ∞

t

∫ 1

0

e−su

u
√

s(2 − s)
dsdu

= 1

2
E1(t) + 1

π

∫ 1

0

E1(st)√
s(2 − s)

ds.

= 1

2
E1(t) + 1

π

∫ t

0

E1(s)√
s(2t − s)

ds.

According to Olver et al. (2010, Section 6.8.1), E1(u) ≤ e−u ln (1 + 1/u) for any u > 0.
Furthermore, ln(1 + x) ≤ x and ln(1 + x) ≤ x2/5 for any x ≥ 0. As a result,

ψ1/2(t, x) ≤ e−t

2t
+ t−1/2

π

∫ t

0
s−9/10e−sds ≤ e−t

2t
+

�
(

1
10

)

πt1/2
≤ Ct−1/2

for any t ≥ 1, where C = e−1

2 + �
(

1
10

)

π
.
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Appendix B: Proofs

Proof of Lemma 3.4 From Olver et al. (2010)[Formula 10.30.4], for fixed ν, Iν(z) ∼
ez√
2πz

as z → ∞. Also, from Abramowitz and Stegun (1972, p. 376), In(z) =
1
π

∫ π

0 ez cos θ cos(nθ)dθ , so for any x ∈ N, In(z) ≤ ez. Thus, as T → ∞,

Px[σY > T ] =
(μ

λ

)x/2
∫ ∞

T

x

s
Ix

(
2s
√

λμ
)

e−s(λ+μ)ds

∼
(μ

λ

)x/2
∫ ∞

T

x

s

e2s
√

λμ

√
4sπ

√
λμ

e−s(λ+μ)ds

∼
(μ

λ

)x/2 x

2
√

π
√

λμ

∫ ∞

T

s−3/2e−sCds.

Also, for any x ∈ N,

Px[σY > T ] ≤ x
(μ

λ

)x/2
∫ ∞

T

s−1e−sCds. (17)

Consequently, if λ = μ, C = 0 and

Px[σY > T ] ∼ x

2λ
√

π

∫ ∞

T

s−3/2ds ∼ x

2λ
√

π

2√
T

∼ x

λ
√

πT
.

This agrees with the result proved in Cont and de Larrard (2013). However, if λ < μ, using
the change of variable u = sC, one gets

Px[σY > T ] ∼ C1/2
(μ

λ

)x/2 x

2
√

π
√

λμ

∫ ∞

T C
u−3/2e−udu

∼
(μ

λ

)x/2 x
√

π
√

λμ

[
e−T C
√

T
− √

C�

(
1

2
, T C

)]
.

To compute the expectation in the case where λ = μ, note that for large enough T ,
Ex [σY ] = ∫∞

0 Px[σY > t]dt ≥ x
2λ

√
π

∫∞
T

1√
t
dt = ∞, whereas if λ < μ, for a sufficiently

large T , there are finite constants C1 and C2 such that for any 0 ≤ θ < C,

Ex

[
eθσY

] = 1 + θ

∫ ∞

0
eθt

Px[σY > t]dt ≤ C1 + θC2

∫ ∞

T

e−t (C−θ)dt

= C1 + C2
e−T (C−θ)

(C − θ)
< ∞.

Proof of Proposition 4.1 Let Fn,Q(t; x, y) and Fn,L(t; x, y) denote the cdf of Sn
Q and Sn

L,
respectively, starting from z0 = (x, y), with densities fn,Q(t; z0) and fn,L(t; z0), where
Fn,Q(·; z0) is the convolution of F1,Q (n − 1) times with F1,Q(·; z − 0). The result will be
proven by induction. The base case n = 1 is given in Corollary 3.7. Assume the result is
true for any m ≤ n ∈ N. Then by Corollary 3.7 and the induction hypothesis,

FL(t; x, y) = FQ(At ; x, y) and fn,L(t; x, y) = fn,Q(At ; x, y)αt . (18)
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Also, by the definition of τn and Vn, under Assumption 2, if z0 = (x, y), then

Fn,L(t; z0) = PL[Vn+1 ≤ t | q0 = z0] = PL[Vn ≤ t, τn+1 ≤ t − Vn| q0 = z0]
=
∑

z

f (z)

∫ t

0
PL[τn+1 ≤ t − u|qu = z]fn,L(u; z0)du

=
∑

z

f (z)

∫ t

0
PQ

[
τn+1 ≤ A

(n+1)
t−u |qu = z

]
fn,Q(Au; z0)αudu

=
∫ t

0
F1,Q(At − Au)fn,Q(Au; z0)αudu =

∫ At

0
F1,Q(At − u)fn,Q(u; z0)du

=
∫ At

0
F1,Q(At − u)dFn,Q(u; z0) =

∫ At

0
Fn,Q(At − u)dF1,Q(u; z0)

= PQ
[
Vn+1 ≤ At | q0 = z0

]
,

where we used the fact that for any s ≥ 0, α(n+1)(s) = α(s + u) given Vn = u, so
A(n+1)(t) = ∫ t

0α(s + u)ds = At+u − Au. Furthermore, in the last equality we used the fact
that for X and Y , non-negative independent random variables,

FX+Y (t) = P[X + Y ≤ t] = FX ∗ FY (t) =
∫ t

0
FX(t − x)dFY (x),

with FX and FY denoting the cdfs of X and Y . Furthermore, starting q0 from distribution
f , one obtains that PL[Vn ≤ t] = PQ[Vn ≤ At ].
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