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a b s t r a c t

In this study, a stochastic discrete-time model is developed to study the spread of an infectious disease in

an n-patch environment. The model includes an arbitrary distribution of the (random) infectious period T ,

and the results are used to investigate how the distribution of T may influence the model outcomes. General

results are applied to specific distributions including Geometric, Negative Binomial, Poisson and Uniform.

The model outcomes are contrasted both numerically and analytically by comparing the corresponding basic

reproduction numbers R0 and probability of a minor epidemic (or probability of disease extinction) P0. It

is shown analytically that for n = 2 the reproduction numbers corresponding to different distributions of T

can be ordered based on the probability generating function φT of T. In addition, numerical simulations are

carried out to examine the final epidemic size F and duration of the epidemic D of a two-patch model.

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Deterministic and stochastic epidemic models have commonly as-

sumed that the disease stages, particularly the infectious period (IP),

follow an exponential distribution (continuous-time) or a Geometric

distribution (discrete-time). The very property of these distributions

that makes these models tractable, the memoryless property, is bio-

logically unrealistic for most infectious diseases. It has been shown

that models with these simplifying assumptions may generate mis-

leading assessments on disease control strategies [1,2].

One of the more realistic alternatives to the exponential (Geomet-

ric) distribution for the IP that has been considered is the Gamma

(Negative Binomial) distribution, which is a natural generalization

due to its relationship with the exponential (Geometric) distribution.

When a Gamma distribution is considered, the so called “linear chain

trick” can be used to reduce the system of integro-differential equa-

tions to a system of ordinary differential equations (see, for example,

[1,3–5]). The key idea in this approach is to introduce multiple sub-

stages for the IP, each of which follows an exponential distribution. A

similar idea is applied in stochastic models to allow the use of Gamma

distribution for the IP, while still preserving the Markov property of

the process. Such models were first developed and studied in [6,7]

and more recently in [8,9].
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Stochastic models with an arbitrary distribution for the IP were

rst considered in [10–12], but Sellke’s construction [13] helped de-

ive stronger results such as those in [14,15]. Some recent studies have

ocused on understanding the effect of disease stage distributions on

he model outcomes (see, for instance, [16–19]).

In [20], a patch model is used to study the spread of an epidemic

hrough a population divided into n sub-populations (patches), in

hich individuals move between the patches according to the law

f a continuous Markov chain (dynamic population epidemic model).

n this framework, infected individuals make contacts with members

urrently in the same patch. In a more recent study on a continuous-

ime patch model [21], an expression for the basic reproduction num-

er R0 and the extinction probability of the epidemic are derived in

erms of the IP distribution. It was shown that for a two patch model

0 is maximized by an IP with constant length. For three or more

atches, however, it is very difficult to draw general conclusions about

he effects of IP distribution on R0 or the extinction probability. In the

urrent study, we extend some of the results in [21] to an analogous

iscrete-time model.

Most epidemic models are in the continuous-time setting, studies

n discrete models have been very limited. Mathematical formula-

ions of continuous-time models are in general complicated when an

rbitrarily distributed IP is included, particularly when the models

lso include control measures such as quarantine and isolation (e.g.,

1]). This may make it challenging for modelers to communicate with

iologists and public health policymakers. Analogous discrete-time

odels can be formulated in a way that is much easier to understand

or non-mathematicians (see, for example, [2,22,23]). Another major
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dvantage of discrete-time models is their capability of incorporating

istributions directly from empirical data, whereas for continuous-

ime models one usually needs to estimate the parameters for a stan-

ard distribution via data fitting.

In Section 2, the general model with n patches and Markov dis-

lacement (with transition matrix D) is described. For an infected

ndividual, the infectious period (T) is assumed to be a discrete

andom variable with an arbitrary distribution. We derive a formula

or the basic reproduction number R0, which is given by the spec-

ral radius of the mean offspring matrix, a matrix that depends on

and the probability generating function (pgf) of T. An equation for

he probability of minor epidemic (extinction probability) P0 is also

erived for this n-patch model.

In Section 3, these general results are then applied to the case

= 2 patches. For the two-patch model, in addition to an exact for-

ula, lower and upper bounds for R0 are also identified. To examine

he effect that the distribution of T has on R0, we consider three spe-

ific distributions: shifted Geometric, shifted Negative Binomial, and

hifted Poisson. The reproduction numbers corresponding to these

istributions have a specific order relation. Numerical simulations for

he two-patch model are carried out to explore the influence of the T

istribution on the final epidemic size (F), duration of epidemic (D),

s well as the probability of disease extinction (P0).

. General model

We adopt the approaches used in [20,21] for continuous models

o develop a discrete stochastic SIR metapopulation model, in a closed

opulation, for an epidemic outbreak with an arbitrarily distribution

or the infectious period (IP). The main objective of this study is to

nvestigate how the distribution of IP may affect the model outcomes,

articularly the basic reproduction number R0 and the probability of

ajor epidemic (1 − P0).

Consider a metapopulation with n sub-populations (patches). Let

i(t)denote the size of population i at time t for i = 1, 2, . . . , n. Assume

hat the total population size N =∑n
i=1 Ni(t) remains constant for all

ime. Individuals can move between any two patches, this movement

s determined by a discrete time Markov chain U, which is described

y the transition matrix D = (σij). The entry σij represents the proba-

ility of moving from population i to population j at each time step.

Effective contacts by individual in population i, per unit of time,

s modeled by a Poisson random variable with parameter βi. In the

arly stages of the epidemic most effective contacts will produce an

nfection because most individuals are susceptible. The disease trans-

ission dynamics within each sub-population is governed by an SIR

odel. It is assumed that individuals become immune after recovery.

et T denote the random variable for the IP (the time until recovery),

hich is assumed to be the same for all sub-populations. Here, we

lace no restriction on the T distribution, other than T is discrete,

on negative and has a finite mean. All variables and parameters are

isted in Table 2. Fig. 1 provides a graphical representation of the

odel described above.
1
2

3

4

n

12

21

43

(a) (

ig. 1. (a) Individuals move from patch to patch at time t ∈ N according to the Markov chain

ther patches. Contacts by an infected individual, per unit of time in patch i, is described by P
New infections are produced between time steps in the interval

t, t + 1), while recovery and geographical displacement (governed

y the discrete random variables T and U) occur at integer time points.

his simplification assumption accompanies discrete models and not

heir continuous counterpart. However, the assumption is biologically

easonable for different situations, including (i) commuters traveling

t peak hours from city to city or (ii) domestic animals who are trans-

orted from farm to farm at night.

Assume that, at time t = 0, Ni(0) ≈ Nπi (i = 1, 2, . . . , n), where

= (πi)
n
i=1

is the stationary probability (i.e. πD = π ). Thus, although

andom, the subpopulation Ni(t) will remain close to its initial value

hroughout time. Some of the properties of the model are described

n the following sections.

.1. Computation of R0

In this section, we follow the approach of [21]. The early stages

f an epidemic is approximated by a properly defined multi-type

ranching process. The “convergence” of the epidemic model to its

ssociated branching process has been established previously (see

12,24,25]). A less formal but more practical exposition can be found

n [9,23,26,27]. To compute the basic reproduction number R0, we

ntroduce the notation:

ζij = random time spent in patch j (before recovery) by an infectious

individual from patch i;

mij = average number of “offspring” (i.e., secondary infections) that

an individual, from patch i, can produce in patch j during the

entire “life span” (i.e. the random infectious period modeled by

T);

M = (mij), the mean offspring matrix.

R0 is given by the spectral radius of the matrix M, which entries

ij can be written as

ij = βjE(ζij). (1)

y conditional expectation E(ζij) =∑∞
t=0 E(ζij|T = t)P(T = t) and

(ζij|T = t) = E

(
t−1∑
k=0

IUi(k)=j

)
=

t−1∑
k=0

P(Ui(k) = j) =
t−1∑
k=0

σ (k)
ij

,

here σ (k)
ij

denotes the ijth entry of the matrix Dk, Ui(k)the state of the

arkov chain at time k given that Ui(0) = i, and IUi(k)=j the indicator

unction of the event Ui(k) = j. Notice that new infections at time t

re generated by infective individuals at time t − 1, which is why the

um above has been taken from 0 to t − 1. Combining the last two

quations we obtain the matrix of expectations of ζij

E(ζ11) · · · E(ζ1n)
...

. . .
...

E(ζn1) · · · E(ζnn)

⎤
⎥⎥⎦ =

∞∑
t=1

P(T = t)
t−1∑
k=0

Dk = E

(
T−1∑
k=0

Dk

)
. (2)

Let λ1, . . . , λn be the eigenvalues of the stochastic matrix D = (σij).
ince D is a Markov matrix, λi = 1 for some i and |λi| ≤ 1 ∀i. If D is
1
2

3

4

n

1
2

3

4
n

b)

U. (b) Once the infection process has started in one patch, the disease can spread to

oisson(βi).
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e

diagonalizable, then there exists a nonsingular matrix � such that

Dk = � diag(1, λk
2, . . . , λk

n)�−1, so that

t−1∑
k=0

Dk = � diag

(
t,

t−1∑
k=0

λk
2, . . . ,

t−1∑
k=0

λk
n

)
�−1. (3)

Substitution of (3) into (2) yields⎡
⎢⎢⎣

E(ζ11) · · · E(ζ1n)

...
. . .

...

E(ζn1) · · · E(ζnn)

⎤
⎥⎥⎦

= �

[ ∞∑
t=1

P(T = t) diag

(
t,

t−1∑
k=0

λk
2, . . . ,

t−1∑
k=0

λk
n

)]
�−1

= � diag
(
ϕ(1), ϕ(λ2), . . . , ϕ(λn)

)
�−1, (4)

where ϕ is the function defined by

ϕ(s) =
∞∑

t=1

P(T = t)
t−1∑
k=0

sk =
⎧⎨
⎩

E(T) if s = 1,

E

(
1−sT

1−s

)
if s �= 1.

(5)

The following lemma, a discrete equivalent of a result presented in

[21], is obtained using equalities (1) and (4).

Lemma 1. R0 is given by the spectral radius of M, 
(M), where

M = E(1 + D + · · · + DT−1)diag(β1, . . . , βn).

Moreover, if the Markov matrix D is diagonalizable then

M = � diag(ϕ(1), ϕ(λ2), . . . , ϕ(λn))
−1 diag(β1, . . . , βn).

Remark. Notice that the trivial case T = 0 yields M = 0 and R0 = 0.

For this reason T �= 0 is assumed from now on.

This result can also be expressed using the probability generating

function (pgf) of T , which we denote by φ(s), i.e.,

φ(s) = E(sT). (6)

For s �= 1 (see (5)),

ϕ(s) = 1 − φ(s)

1 − s
. (7)

The series φ(s) =∑∞
t=1 st

P(T = t) is absolutely convergent in |s| ≤ 1,

and so is ϕ(s). An explicit formula for the pgf is usually available for

most commonly used discrete distributions. In addition, it is easily

verified that 0 ≤ ϕ(s) ≤ E(T)∀s ∈ [−1, 1].

Applications of Lemma 1 are illustrated later when specific distri-

butions for T are considered in the model with n = 2 patches (see

Section 3.1). This result also allows us to compare the reproduc-

tion numbers R0 corresponding to different distributions of T (see

Section 3.2).

2.2. Probability of minor and major epidemics

As presented in [21] for continuous models, in addition to R0, one

can analyze the probability of extinction of the branching process,

which is also known as the probability of a minor epidemic [9,12,

14,26]. In this section, we derive an analogous result for our discrete

model.

The probability of extinction of a branching process can be de-

termined using the probability generating function (pgf) of the off-

spring distribution, denoted by G. To obtain an expression for G,

let ηij be the number of offsprings (secondary infections) gener-

ated in population j by an individual from population i. Since the

sum of independent Poisson random variable is still Poisson we
ave that ηij|ζij = Poisson(βjζij). Let 	s = (s1, . . . , sn). Then the func-

ion G : [0, 1]n → [0, 1]n can be expressed as

i(	s) = E

⎛
⎝ n∏

j=1

s
ηij

j

⎞
⎠ = E

⎛
⎝E

⎛
⎝ n∏

j=1

s
ηij

j

∣∣∣∣ ζi1, . . . , ζin

⎞
⎠
⎞
⎠

= E

⎛
⎝ n∏

j=1

E
(
s
ηij

j | ζi1, . . . , ζin

)⎞⎠ = E
(
e−∑n

j=1 βjζij(1−sj)
)
. (8)

efine ζij(t) to be the time spent in group j by an individual from

roup i up to time t, and

i(t) =
n∑

j=1

βjζij(t)(1 − sj).

sing the conditional expectation formula, Eq. (8) becomes

i(	s) = E

(
e−∑n

j=1 βjζij(1−sj)
)

=
∞∑

t=1

E

(
e−∑n

j=1 βjζij(1−sj)
∣∣∣T = t

)
P(T = t)

=
∞∑

t=1

E(e−Xi(t))P(T = t) (9)

recursive formula for e−Xi(t) is provided in the Appendix A. Using

his expression in Eq. (9), an explicit formula for G can be found.

emma 2. Let A(	s)be the n × n matrix given by A(	s)ij = e−θiσij. Let E(	s)
e the n × 1 matrix given by E(	s)i = e−θi , where θj = βj(1 − sj). Then

: [0, 1]n → [0, 1]n is given by

(	s)tr = (G1(	s), . . . , Gn(	s)
)tr =

∞∑
t=1

A(	s)t−1E(	s)P(T = t)

The proof of Lemma 2 is included in the Appendix A.

The extinction probability (or probability of minor epidemic) is de-

ermined by the equation G(	s) = 	s. This is a well known fact from the

heory of branching process [28]. IfR0 < 1, the only fixed point of G(	s)
s (1, 1, . . . , 1). IfR0 > 1, the equation G(	s) = 	s has a nontrivial solution
	 = (z1, . . . , zn) ∈ (0, 1)n. Each value zi represents the extinction prob-

bility given the initial condition Ii(0) = 1 and Ij(0) = 0 ∀j �= i. Thus, if

here are mi initial infective individuals in population i at t = 0, then

he extinction probability P0 (probability of minor epidemic) is

0 =
n∏

i=1

z
mi

i
. (10)

aturally, the probability that a major epidemic occurs is 1 − P0.

Lemma 2 is valid for any distribution of T and any number n of

ubpopulations. When a specific distribution of T is used, the formula

ay simplify and (10) can be determined numerically. Examples with

= 2 patches are presented in Section 3.3.

. Two-patch model

When n is large, an explicit expression for the spectral radius of

he matrix M can be difficult to obtain. However, for n = 2 patches,

ost formulas can be dramatically simplified, especially when spe-

ific distributions of T are used. In Section 3.1, explicit formulas forR0

see Lemma 1) and the pgf of offspring distribution G(	s) (see (9)) are

erived for n = 2 subpopulations. In Section 3.2, we analyze the effect

f the distribution of T on R0. Section 3.3 includes some simulation

esults and Section 3.4 presents a more detailed formula for G, which

s used to compute the probabilities of major and minor epidemics.

.1. Computation of R0

Without loss of generality, assume that the transmission param-

ters β satisfy β1 ≥ β2. To simplify the notation, let a = σ11 and
i
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φ

= σ22. Then, the transition matrix of the Markov chain becomes

=
[

a 1 − a

1 − b b

]
. (11)

o avoid extreme cases, let a, b ∈ (0, 1). The eigenvalues of D are 1 and

= a + b − 1. (12)

et π denote the stationary probability distribution of the Markov

hain described by D (i.e. πD = π ). It is easy to verify that π = [π1, π2]

ith

1 = 1 − b

2 − a − b
∈ (0, 1), π2 = 1 − a

2 − a − b
∈ (0, 1).

he matrix D can be diagonalized and rewritten as

= �

[
1 0
0 λ

]
�−1, where � =

[
1 1 − a

1 −(1 − b)

]
. (13)

rom Lemma 1, the mean offspring matrix is given by

= �

[
E(T) 0

0 ϕ(λ)

]
�−1

[
β1 0

0 β2

]

=
[
β1[π1E(T)+ π2ϕ(λ)] β2π2[E(T)− ϕ(λ)]

β1π1[E(T)− ϕ(λ)] β2[π2E(T)+ π1ϕ(λ)]

]
.

Recall from (5) that ϕ(1) = E(T) is the mean infectious period and

(λ) = E(1−λT

1−λ
). For ease of notation, let

0i = βiE(T), R0 = π1R01 + π2R02. (14)

0 can be interpreted as the weighted average of R01 and R02, the

ntuitive patch reproduction numbers. Finally, by analyzing M we can

nd not only the exact value ofR0 but also other important properties

hat are listed in the next lemma.

emma 3. Let z = ϕ(λ)and φ(λ), ϕ(λ), λ, R0, R01 be defined as in (6),

7), (12), (14). For n = 2 patches,

(i) An explicit expression for R0 is

R0 =
R0 + z(β1π2 + β2π1)+

√
[R0 + z(β1π2 + β2π1)]2 − 4β1β2E(T)z

2
;

(15)

(ii) R0 has the following upper and lower bounds:

R0 ≤ R0 ≤ R01;

(iii) R0 is decreasing with respect to φ(λ)and increasing with respect

to z.

The proof of Lemma 3 can be found in the Appendix A.

Distribution Parameter P(T

A. T ∼ sGeom(γ ) 0 < γ < 1 γ (1

E(T) = 1
γ

B. T ∼ sNegBinom(k, η) k ∈ N

E(T) = (1 − η)k/η + 1 η = k
E(T)+k−1

(t+k
t−

If k = 1, T ∼ sGeom(γ )

C. T ∼ sPoisson(κ) κ > 0 e−κ

E(T) = κ + 1

D. T ∼ discrete with

support on {1, 2, . . . , m} pi = 1, . . . , m P(T
E(T) =∑m

k=1 kpk
emark. If β = β1 = β2 (i.e., identical transmission in both sub-

opulations), formula (15) reduces toR0 = R0i = R0 = βE(T), which

s consistent with the standard simple SIR model with a single popu-

ation. In the following sections we assume that β1 > β2 to avoid this

rivial case.

.2. Effect of the distribution of T on R0

To investigate how the choice of the IP distribution may affect R0,

e examine our model under several distributions for T and compare

he corresponding R0 values. We consider two models to be compa-

able if they have the same values for β1, β2, π , and mean infectious

eriod E(T).
The following four distributions will be considered: A. shifted

eometric (sGeom); B. shifted Negative Binomial (sNegBinom); C.

hifted Poisson (sPoisson); and D. discrete with finitely many points

for example the empirical distribution obtained from data). In all

ases the support of T lies in N.

φg(λ)

t−1
E(λT) = γ λ

1−λ(1−γ )

= λ
E(T)−λ[E(T)−1]

E(λT) = λ
(

η
1−λ(1−η)

)k

(1 − η)t−1 = λ
(

k
E(T)−λ[E(T)−1]−1+k

)k

E(λT) = λe−κ(1−λ)

= λe−[E(T)−1](1−λ)

= pi E(λT) =∑m
k=1 pkλ

k

Plots of the pgf φ(λ) for the distributions A–C are shown in Fig. 2.

e observed that the order of the pgfs can be very different depending

n the sign ofλ, the smallest eigenvalue of the transition matrix D (12).

y Lemma 3, φ(λ) can be used to compare the R0 values associated

ith these specific distributions. Denote the reproduction numbers

orresponding to distributions A–C by Rg
0, Rnb

0 , and Rp
0, respectively.

ig. 2 suggests that these numbers follow a certain order based on the

orresponding distributions. This finding is described in the following

esult.

emma 4. Let λ = a + b − 1 be the smaller eigenvalue of the Markov

atrix D. Let T �= 0. The reproduction numbers corresponding to the

istributions A–C can be ordered as follows:

g
0 ≤ Rnbk

0 ≤ Rnbk+1

0 ≤ Rp
0 if λ ∈ [0, 1),

p
0 ≤ Rnbk+1

0 ≤ Rnbk

0 ≤ Rg
0 if λ ∈ (−1, 0].

(16)

oreover,

nbk

0 → Rp
0 as k → ∞.

quality is attained only if λ = 0 or k = 1.

The proof of Lemma 4 can be found in the Appendix A.

emark. Lemma 4 clearly shows that the effect of the IP distribution

n R0 depends on the sign of λ. This phenomenon is not observed in

he continuous-time models, for which the value of R0 is (i) smaller

or Exponential than for Gamma distribution (with shape parameter

arger 1); and (ii) maximized with fixed duration for the IP [21]. The

imilarity between continuous and discrete models exists for λ > 0

ecause the pgf can be expressed in terms of the mgf

(λ) = E(λT) = E(eT log λ). (17)
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distribution for T.
On the other hand, the above equality is no longer valid for λ < 0. A

possible biological reason for this discrepancy between continuous

and discrete models has not been identified. In practice, most mod-

els would assume that individuals are more likely to stay in their

patch than to migrate to the other patch. This implies a, b ≥ 0.5, and

therefore λ = a + b − 1 ≥ 0.

If λ > 0, sharper bounds than those given in Lemma 3 can be

obtained for R0, regardless of the distribution of T.

Lemma 5. Let λ > 0.

(i) An upper bound for R0 is given by

1

2

{
R0 + 1 − λE(T)

1 − λ
(β1π2 + β2π1)

+
√[

R0 + 1 − λE(T)

1 − λ
(β1π2 + β2π1)

]2

− 4β1β2E(T)
1 − λE(T)

1 − λ

⎫⎬
⎭

This value is attained when T has a constant distribution with

fixed duration E(T).
(ii) If Var(T) ≤ σ 2, a lower bound for R0 is given by

1

2
[R0 + z(β1π2 + β2π1)

+
√

[R0 + z(β1π2 + β2π1)]2 − 4β1β2E(T)z],

where

z = E(T)2
(
1 − λ

E(T)2+σ2

E(T)
)

[E(T)2 + σ 2](1 − λ)
.

This value is attained if T is the two point distribution

T =

⎧⎪⎪⎨
⎪⎪⎩

0 with probability
σ 2

E(T)2 + σ 2
,

E(T)2 + σ 2

E(T)
with probability

E(T)2

E(T)2 + σ 2
.

The proof of Lemma 5 is included in the Appendix A.

Remark. Since our model is discrete, we consider random variable

with support on the set {0, 1, . . . }, thus if E(T) or E(T)2+σ 2

E(T) /∈ N0 are

not integers, then the upper and lower bound might not be attained.

3.3. Numerical results

Numerical simulations of the model with n = 2 subpopulations

have been conducted. Let Si(t), Ii(t), Ri(t) denote the numbers of sus-

ceptible, infective, and recovered individuals, respectively, of the pop-

ulation i at time t (i = 1, 2, t ∈ N). Initial populations N1(0) and N2(0)
re chosen near the Markov equilibrium, i.e., N1(0) ≈ π1N, N2(0) ≈
2N. Recall that the total population size N = N1(t)+ N2(t) remains

onstant for all time. Assume Ii(0) > 0 for at least one sub-population

. To determine the number of individuals in each epidemiological

lasses at time t, we first run the epidemic process (updating the

umber of susceptible, infected, recovered), and then shuffle the pop-

lation from one patch to the other according to the Markov matrix

(13). The epidemiological process is simulated using a similar ap-

roach as in [23]. Since the number of effective contacts per person

n population i is Poisson(βi), the number of secondary infections is

etermined by x(t) ∼ Poiss(βiIi(t − 1) Si(t−1)
Ni(t−1)).

If T ∼ sGeom(γ ) (see distribution A in Section 3.2), then the prob-

bility that an infected individual recovers at time t is equal to γ .

et xi(t) and yi(t) denote the newly infected and newly recovered

ndividuals at time t, respectively, in population i. Note that yi(t) is

istributed as Binomial
(
Ii(t − 1), γ

)
. Then

i(t−) = S(t − 1)− x(t), Ii(t−) = Ii(t − 1)+ x(t)− y(t),

i(t−) = Ri(t − 1)+ y(t)

he notation t− is used because of the following consideration. To ob-

ain Si(t), Ii(t), and Ri(t) we must simulate the movement from patch

to patch j. Let si→i denote the number of susceptible individuals

taying in patch i (i = 1, 2). Then, the number of susceptible indi-

iduals staying in patch 1, s1→1, is distributed as Binomial
(
S1(t−), a

)
.

imilarly s2→2 ∼ Binomial
(
S2(t−), b

)
. Define s1→2 = S1(t−)− s1→1 and

2→1 = S2(t−)− s2→2. Note that

1(t) = s1→1 + s2→1 and S2(t) = s2→2 + s1→2.

n the same fashion ii→j and ri→j are defined. Then,

I1(t) = i1→1 + i2→1, I2(t) = i2→2 + i1→2,

1(t) = r1→1 + r2→1, R2(t) = r2→2 + r1→2.

Based on these rules, numerical simulations have been conducted.

sample path of the simulated epidemic with sGeometric distribu-

ion is illustrated in Fig. 3. The set of parameter values used in this

gure are N1(0) = 340, N2(0) = 660, I1(0) = I2(0) = 1, a = 0.8, b = 0.9

1 = 0.27, β2 = 0.15 and E(T) = 10, which produce Rgeom
0 ≈ 1.96. In

his realization, the epidemic ended at around t = 250.

Taking advantage of the fact that a Negative Binomial random

ariable with parameters (k, η) (see B in Section 3.2) can be written

s the sum of k Geometric random variable with parameter η, the

nfectious class Ii has been artificially subdivide into k = 5 subclasses.

he above ideas were then used to generate an epidemic with this
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Rgeom
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To complement the numeric results, the case T ∼ Unif({5,

, . . . , 15}) was considered (i.e. P(T = i) = 1
11 for i ∈ {5, 6, . . . , 15}).

his distribution was chosen to emphasize the fact that any distribu-

ion for T is allowed by our model. T ∼ Unif represents the absolutely

ack of a priori information, other than recovery takes place 5–10

ays after acquiring the disease. Fig. 4 shows the three comparable

istributions for which simulations were performed.

The influence of the distribution of T on the final size F and the

uration of an epidemic D can also be examined by comparing results

rom multiple paths. Figs. 5 and 6 show simulations of 50,000 observa-

ions for the models with T ∼ sGeom (i.e., the Geometric Distribution

odel or GDM); T ∼ sNegBinom with shape parameter k = 5 (i.e.,

he Negative Binomial Distribution Model or NBDM); and T ∼Unif

5, . . . , 15} (i.e., the Uniform Distribution Model or UDM). Parameter

alues for these figures are the same as in Fig. 3. The corresponding

asic reproduction numbers can be computed using (15) and the pgf
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ormulas provided in Section 3.2:

Geom
0 = 1.964408 < RNegBin

0 = 1.977059 < RUnif
0 = 1.98091.

(18)

n Fig. 5, the histograms show the overall distribution of F . The large

in near zero (representing lower F values) collect observations that

an be cataloged as minor epidemics, whereas all other bins collect

ajor epidemics. The average of F , from smaller to larger is given

y Geometric, NegBinomial and Uniform distribution. This confirms

18), which indicates that the Geom distribution is likely to predict a

ess severe epidemic than the predicted by NegBinom and Uniform.

n particular, a much lower level of final epidemic size was predicted.

Fig. 6 shows the result of 50,000 simulations for the duration of

he epidemic D. The Geometric (left), Negative Binomial (middle) and

niform (right) models are compared. Our observations confirm the

act that RGeom
0 < Rnb

0 < Runif
0 , indicating that epidemics with T ∼

eom tend to be milder but longer than those with T ∼ NegBinom

nd T ∼ Unif.

.4. Probability of minor and major epidemics

Recall that the Markov matrix D for n = 2 patches is given in (11).

rom Lemma 2

A(s1, s2) =
[

e−θ1 a e−θ1(1 − a)

e−θ2(1 − b) e−θ2 b

]
,

E(s1, s2) =
[

e−θ1

e−θ2

]
,

θ1 = β1(1 − s1)

θ2 = β2(1 − s2)

(s1, s2)
tr = G1(s1, s2)

G1(s1, s2)
=

∞∑
t=1

A(s1, s2)
t−1E(s1, s2)P(T = t)
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Table 1

Comparison of the probabilities of minor epidemic (extinction probability P0) and

simulation results for different initial values I1(0) and I2(0). A sample path for which

the final size is less than 10 was considered to be a minor epidemic.

Initial value P0 Proportion from Error(
I1(0), I2(0)

)
simulations

(1,0) 0.4426690 0.43962 0.003048985

Geometric (0,1) 0.5324051 0.52236 0.010045121

(1,1) 0.2356792 0.22546 0.010219235

(1,0) 0.2815446 0.28798 −0.006435354

NegBinom (0,1) 0.3728444 0.37072 0.002124375

(1,1) 0.1049723 0.10308 0.001892338

(1,0) 0.18068085 0.2353 −0.05461915

Uniform (0,1) 0.25198173 0.31478 −0.06279827

(1,1) 0.04552827 0.07218 −0.02665173
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Although it is difficult to find an analytic expression for the so-

lution of G(s1, s2) = (s1, s2), numerical solutions can be obtained for

a given distribution of T by substituting appropriate expressions for

P(T = t) in the above equations. For example, for the three models

GDM, NBDM and UDM (see Figs. 5 and 6), the extinction probabili-

ties P0 (or probability of a minor epidemic) are obtained numerically

using the fixed point approach. Results are listed in Table 1. These

probabilities are given by P0 = z
I1(0)
1 z

I2(0)
2 , as defined in Eqs. (9) and

(10). For each model, three pairs of initial conditions (I1(0), I2(0)) are

considered.

To examine how good these approximations are, listed in Table 1

are the “empirical” probabilities of minor epidemic. These quantities

have been determined by the proportion of observations that have

total infections ≤ 10 (see Fig. 5). The last (Error) column shows the

difference between the analytic value P0 and the value from model

simulations. Our simulations suggest that P0 provides a very good

approximation.

4. Discussion

In this paper, discrete-time stochastic epidemic models in a

metapopulation setting were studied. Although some of the ideas

and methods are adopted from [21], which deals with an analogous

continuous-time model, we obtained new findings and results that

are not present in continuous models. A particular new behavior that

is absent in continuous models is that, in the two patch model, the

effect of distributions of T on R0 depends critically on the sign of

λ (the smaller eigenvalue of the Markov matrix D, which describes

the movement between patches). The consideration of arbitrarily dis-

tributed infectious period T (random) in the discrete model is also a

new feature that has not been studied previously. The results ob-

tained for the general distribution also make it easier to compare

model outcomes under different assumptions on the distribution of

infectious period, and to study the effect of the distribution of T on
odel predictions regarding the final epidemic size, duration of an

pidemic, and probability of major or minor epidemic (probability of

isease extinction).

For the model with n populations and an arbitrary infectious pe-

iod T , we derived the expression for R0 (Lemma 1) and the equation

or the probability of disease extinction P0 (see (9) and (10)). These

eneral results are applied to the case of n = 2 populations, from

hich an explicit formula for R0 was derived in terms of the pgf φ
f T. More importantly, it was proved that R0 is a decreasing func-

ion of φ, which allows us to obtain an order relation among the R0

hat is dependent on the distributions of T (including sGeometric;

Negative Binomial; sPoisson; and a discrete distribution with finite

upport, representing the case of empirical data). It was shown that,

hen λ > 0 the Geometric distribution gives the smallest reproduc-

ion number (Rg
0) while the Poisson distribution gives the largest

Rp
0). However, when λ < 0, the order is reversed (see Lemma 3). In

ddition, upper and lower bounds for R0 were provided for the case

> 0. Notice that, if individuals in population i are more likely to stay

han to move to the other population, i.e., a, b > 0.5, then λ > 0 will

e a more likely scenario.

Because our model includes several random factors, e.g., the in-

ectious period T and the number of effective contacts βi, some of the

esults are obtained by carrying out a large number of numerical sim-

lations for the model with n = 2 populations. From these simulation

esults we can obtain insights into the effect of distributions of T on

he final epidemic size F , duration of an epidemic D and probability

f minor epidemic P0 (e.g., see Figs. 5 and 6). Traditionally, models

ith Geometric infectious period are preferred due to its tractability.

owever, our findings suggest that when the model with T ∼ Geom

s compared with the model with T ∼NegBinom and T ∼Uniform, the

DM predicts a milder epidemic (when λ > 0). This is supported by

ur analytical (see (16) and (18)) and numerical results (see Figs. 5

nd 6). From the numerical simulations we also observe that the GDM

s likely to generate a longer duration when compared to the NBDM

nd UDM.

We have also derived a formula for the probability of disease ex-

inction P0 based on the approximations by a branching process. Com-

arisons of the P0 value with the proportion of minor epidemics from

imulations of the three models (GDM, NBDM and UDM) suggest that

he formula for P0 provides very good approximations (see Table 1).

rom the results shown in Table 1 we also observe that the Geomet-

ic model predicts a higher (smaller) probability of minor (major)

pidemic.
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ppendix A

This appendix includes the proofs of Lemmas 2–5.

roof of Lemma 2. To simplify notation, let θj = βj(1 − sj). Then

i(t) = θ1ζi1(t)+ θ2ζi2(t)+ · · · + θnζin(t).

lternatively, Xi(t) = θi + θUi(1) + · · · + θUi(t−1). Thus, by conditional

xpectation

(e−Xi(t+1)) = E[E(e−Xi(t+1)|Ui(1))]

=
n∑

j=1

E(e−Xi(t+1)|Ui(1) = k)P(Ui(1) = k)

=
n∑

j=1

E(eθi+θk+···+θUi(t)|Ui(1) = k)σik

=
n∑

j=1

eθi E(e−Xk(t))σik

he last equality makes use of the stationary property of the Markov

hain Ui.

For ease of notation, let A and E represent the matrices A(	s) and

(	s) in Lemma 2, this is

=

⎡
⎢⎢⎢⎢⎣

e−θ1σ11 e−θ1σ12 · · · e−θ1σ1n

e−θ2σ21 e−θ2σ22 · · · e−θ2σ2n

...
...

. . .
...

e−θnσn1 e−θnσn2 · · · e−θnσnn

⎤
⎥⎥⎥⎥⎦ , E =

⎡
⎢⎢⎢⎢⎣

e−θ1

e−θ2

...

e−θn

⎤
⎥⎥⎥⎥⎦

It is easy to prove by induction that
(
E(e−X1(t)), . . . , E(e−Xn(t))

)tr =
t−1E. Clearly, for t = 1, E(e−Xi(1)) = e−θi and A0E = E. Now, assume

he statement is true for t and prove for t + 1 :

tE = A(At−1E) = A

⎡
⎢⎢⎢⎢⎢⎢⎣

E(e−X1(t))

E(e−X2(t))

...

E(e−Xn(t))

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
k=1

e−θ1σ1kE(e−Xk(t))

n∑
k=1

e−θ2σ2kE(e−Xk(t))

...
n∑

k=1

e−θnσnkE(e−Xk(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

E(e−X1(t+1))

E(e−X2(t+1))

...

E(e−Xn(t+1))

⎤
⎥⎥⎥⎥⎥⎦

From Eq. (9), the ith component of G is given by

i(	s) =
∞∑

t=1

E(e−Xi(t))P(T = t).

hus, using the above equality, we obtain

(	s) = (G1(	s), . . . , Gn(	s)) =
∞∑

t=1

At−1E P(T = t)

his completes the proof of Lemma 2.
roof of Lemma 3. The proof follows a similar approach presented in

21]. Let z = ϕ(λ), and denote by

z(x) = [R01π1 + zβ1π2 − x][R02π2 + zβ2π1 − x]

− (E(T)− z)2β1β2π1π2

he characteristic polynomial of M. Straightforward calculations yield

z(0) > 0, fz(R02) ≤ 0, fz(R0) ≤ 0, and fz(R01) ≥ 0.

herefore, fz(x) has two real roots and R0, the dominant eigenvalue

f M, is in the interval [R0,R01], as illustrated in Fig. 7. To analyze

he connection between the distribution of T and R0, consider two

andom variables with different distributions but the same mean, i.e.,

(T1) = E(T2) (so that the two distributions are “comparable”). Let

i = ϕ(λ, Ti) = 1−E(λTi )
1−λ

. Through zi, the two distributions may yield

ifferent reproduction numbers, which we denote by RT1
0 and RT2

0 .

otice that R01,R02 and R0 do not depend on zi (see (14)). Assume

hat z1 ≤ z2, then it can be verified that

z1
(RT2

0 ) = z2 − z1

E(T1)
[
(
R01 − RT2

0

)(
RT2

0 − R02

)+ RT2

0

(
RT2

0 − R0

)
]

≥ 0.

Thus, fz1
(RT2

0 ) ≥ fz1
(RT1

0 ) = 0. Since R0 ≤ RTi
0 ≤ R01 (i = 1, 2) and

is an increasing function on (R0,R01), it follows that RT1
0 ≤ RT2

0 . A

raphical representation of this argument is provided in Fig. 7. Finally,

ince z1 ≤ z2 if and only if E(λT2) ≤ E(λT1), we conclude that R0 is a

ecreasing (increasing) function of φ(λ) (ϕ(λ)). This completes the

roof of Lemma 3.

roof of Lemma 4. Let −1 < λ < 1. From the Binomial Theorem

1 + E(T)− λ[E(T)− 1] − 1

k

)k

≥ E(T)− λ[E(T)− 1].

his, combined with the fact that E(T)− λ[E(T)− 1] ≥ 1 yield

1

E(T)− λ[E(T)− 1]
≥
(

k

k + E(T)− λ[E(T)− 1] − 1

)k

.

ince

k

k + E(T)− λ[E(T)− 1] − 1

)k

=
(

1 + (1 − λ)[E(T)− 1]

k

)−k

↘ e−(1−λ)[E(T)−1]

s k → ∞, we can conclude that φg(λ) ≥ φnbk
(λ) ≥ φnbk+1

(λ) ≥ φp(λ)
f λ ∈ [0, 1), and φg(λ) ≤ φnbk

(λ) ≤ φnbk+1
(λ) ≤ φp(λ) if λ ∈ (−1, 0].

roof of Lemma 5. For the upper bound, by Jensen’s inequality

(eT log λ) ≥ eE(T) log λ. Therefore, for all comparable T , φ(λ) > λE(T).

ubstitution of this value in (15) leads to the upper bound expression.

http://dx.doi.org/10.13039/100000001


82 N. Hernandez-Ceron et al. / Mathematical Biosciences 261 (2015) 74–82

Table 2

Definition of symbols frequently used in the model analysis and simulations.

Symbol Definition

t = 1, 2, . . ., discrete time

n Number of sub-populations or patches

Ni, N Sizes of population i, N =∑n
i=1 Ni

T Random variable for the infectious period

βi Number of effective contacts per unit of time in population i (Poisson)

σij Probability of moving from population i to population j per unit of

time

D = (σij), Markov matrix of transitions between sub-populations

πi Stationary probability that an individual is in population i, πiN = Ni

mij Average number of offsprings (secondary infections) generated in

population j by an individual originally from population i during

the lifetime (entire IP)

M = (mij), mean offspring matrix

R0 = 
(M), the basic reproduction number (spectral radius of M)

ηij Random number of offsprings (secondary infections) generated in

population j by an individual originally from population i

G(	s) = E(�n
j=1

s
ηij

j
), 	s = (s1, . . . , sn), pgf of the offspring distribution

φ(s) = E(sT), pgf of the IP distribution T

ϕ(s) = (1 − φ(s))/(1 − s)

GDM Geometric Distribution Model, the model with T ∼ Geom(γ )

PDM Poisson Distribution Model, the model with T ∼ Poisson(κ)

NBDM Negative Binomial Distribution Model, the model with T ∼
NegBinom(k, η)

F Final epidemic size

D Duration of an epidemic

P0 Extinction probability of an epidemic or probability of a minor

epidemic

For the model with n = 2 populations

a = σ11, probability of staying in population 1 per time unit

b = σ22, probability of staying in population 2 per time unit

π1, π2 Stationary probability of being in population 1, 2,

π2 = (1 − a)/(2 − a − b)

λ = a + b − 1, the smaller eigenvalue of D

R0i = βiE(T), the basic reproduction number for population i = 1, 2

R0 = π1R01 + π2R02, weighted average of R01 and R02

g

i

g

g

p

f

w

z

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

For the lower bound, let φ(λ) = E(λT) then it is easy to check that

Var(T) = E(T)2σ 2

E(T)2 + σ 2
+
[

E(T)2 + σ 2

E(T)
− E(T)

]2
E(T)2

E(T)2 + σ 2
= σ 2,

φ(λ) = E

(
λT
)

= σ 2

E(T)2 + σ 2
+ E(T)2

E(T)2 + σ 2
λ

E(T)2+σ2

E(T) .

It is known that the mgf of a non-negative random variable with vari-

ance σ 2 is maximized by T (see Theorem 1 in [29]). From (17) T also

maximizes the pgf of all comparable infectious periods T. Moreover,

g(σ ) = σ 2

E(T)2 + σ 2
+ E(T)2

E(T)2 + σ 2
λ

E(T)2+σ2

E(T)

is an increasing function of σ . Consider g as a function of z = σ 2. Then

g(z) = z + E(T)2λ
E(T)2+z
E(T)

E(T)2 + z
and g′(z) = E(T)g1(t)

(E(T)2 + z)2
,

where g1(z) = E(T)+ [log(λ)E(T)2 + log(λ)z − E(T)]λ
E(T)2+z
E(T) . Clearly,

the sign of g′(z) is determined by g1(z). Since e−E(T) log(λ) ≥
−E(T) log(λ)+ 1, then

1 ≥ [−E(T) log(λ)+ 1]λE(T) ⇒ 1 + [E(T) log(λ)− 1]λE(T) ≥ 0.

Therefore g1(0) = E(T)[1 + [log(λ)E(T)− 1]λE(T)] ≥ 0. Since
′
1(z) = [log(λ)E(T)2 + log(λ)z − E(T)]

× log(λ)

E(T)
λ

E(T)2+z
E(T) + log(λ)λ

E(T)2+z
E(T)

=
[

log(λ)2
E(T)+ z log(λ)2

E(T)

]
λ

E(T)2+z
E(T) ≥ 0,

t follows that g1(z) is an increasing function of z. Thus, g1(z) ≥
1(0) ≥ 0 ∀z ≥ 0; and, g′(z) ≥ 0 ∀z ≥ 0. Therefore, conclude g(σ1) ≤
(σ2) ∀σ1 ≤ σ2. This implies that, if T satisfies Var(T) ≤ σ 2, then its

gf is no greater than φ for any λ ∈ [0, 1]. Since R0 is a decreasing

unction with respect to the pgf φ, we conclude that R0 is minimized

hen T = T. Finally, substituting the expression z = ϕ(λ) = 1−φ(λ)

1−λ
for

in (15) we obtain the expression for the lower bound.
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