
Compound Hawkes Processes in Limit Order
Books

Anatoliy Swishchuk
University of Calgary, University Drive NW, Calgary, Canada T2N 1N4

Bruno Remillard
HEC, 3000, chemin de la Cote-Sainte-Catherine, Montréal, Québec, Canada

H3T 2A7

Robert Elliott
University of Calgary, University Drive NW, Calgary, Canada T2N 1N4 &
School of Commerce, University of South Australia, Adelaide, Australia

Jonathan Chavez-Casillas
University of Calgary, University Drive NW, Calgary, Canada T2N 1N4

Abstract: In this paper we introduce two new Hawkes processes, namely,
compound and regime-switching compound Hawkes processes, to model the
price processes in limit order books. We prove Law of Large Numbers and
Functional Central Limit Theorems (FCLT) for both processes. The two
FCLTs are applied to limit order books where we use these asymptotic meth-
ods to study the link between price volatility and order flow in our two models
by using the diffusion limits of these price processes. The volatilities of price
changes are expressed in terms of parameters describing the arrival rates and
price changes. We also present some numerical examples.
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1 Introduction
The Hawkes process (HP) is named after its creator Alan Hawkes [1971,
1974]. The HP is a so-called "self-exciting point process" which means that it
is a point process with a stochastic intensity which, through its dependence
on the history of the process, captures the temporal and cross sectional de-
pendence of the event arrival process as well as the ’self-exciting’ property
observed in empirical analysis. HPs have been used for many applications,
such as modelling neural activity, genetics [Carstensen, 2010], occurrence of
crime [Louie et al., 2010], bank defaults and earthquakes.

The most recent application of HPs is in financial analysis, in particu-
lar, to model limit order books, (e.g., high frequency data on price changes
or arrival times of trades). In this paper we study two new Hawkes pro-
cesses, namely, compound and regime-switching compound Hawkes processes
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to model the price processes in the limit order books. We prove a Law of
Large Numbers and Functional Central Limit Theorems (FCLT) for both
processes. The latter two FCLTs are applied to limit order books where
we use these asymptotic methods to study the link between price volatility
and order flow in our two models by using the diffusion limits of these price
processes. The volatilities of price changes are expressed in terms of param-
eters describing the arrival rates and price changes. The general compound
Hawkes process was first introduced in [Swishchuk, 2017] to model a risk
process in insurance.

[Bowsher, 2007] was the first who applied a HP to financial data mod-
elling. Cartea et al. [2011] applied an HP to model market order arrivals.
Filimonov and Sornette [2012] and Filimonov et al. [2013] apply a HP to es-
timate the percentage of price changes caused by endogenous self-generated
activity, rather than the exogenous impact of news or novel information.
Bauwens and Hautsch [2009] use a 5-D HP to estimate multivariate volatil-
ity, between five stocks, based on price intensities. We note, that Brémaud
et al. [1996] generalized the HP to its nonlinear form. Also, a functional
central limit theorem for the nonlinear Hawkes process was obtained in [Zhu,
2013]. The ’Hawkes diffusion model’ was introduced in [Ait-Sahalia et al. ,
2010] in an attempt to extend previous models of stock prices and include
financial contagion. Chavez-Demoulin et al. [2012] used Hawkes processes to
model high-frequency financial data. Some applications of Hawkes processes
to financial data are also given in [Embrechts et al., [2011].

Cohen et al. [2014] derived an explicit filter for Markov modulated
Hawkes process. Vinkovskaya [2014] considered a regime-switching Hawkes
process to model its dependency on the bid-ask spread in limit order books.
Regime-switching models for the pricing of European and American options
were considered in [Buffington and Elliott, 2000)] and [Buffington and Elliott,
2002], respectively. A semi-Markov process was applied to limit order books
in [Swishchuk and Vadori, 2017] to model the mid-price. We note, that a
level-1 limit order books with time dependent arrival rates λ(t) were studied
in [Chavez-Casillas et al., 2017], including the asymptotic distribution of the
price process. General semi-Markovian models for limit order books were
considered in [Swishchuk et al., 2017].

The paper by Bacry et al. [2015)] proposes an overview of the recent aca-
demic literature devoted to the applications of Hawkes processes in finance.
The book by Cartea et al. [2015] develops models for algorithmic trading
in contexts such as executing large orders, market making, trading pairs or
collecting of assets, and executing in dark pool. That book also contains link
to a website from which many datasets from several sources can be down-
loaded, and MATLAB code to assist in experimentation with the data. A
detailed description of the mathematical theory of Hawkes processes is given
in [Liniger, 2009]. The paper by Laub et al. [2015] provides a background,
introduces the field and historical developments, and touches upon all major
aspects of Hawkes processes.
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This paper is organized as follows. Section 2 gives the definitions of a
Hawkes process (HP), definitions of compound Hawkes process (CHP) and
regime-switching compound Hawkes process (RSCHP). These definitions are
new ones from the following point of view: summands associated in a Markov
chain but not are i.i.d.r.v. Section 3 contains Law of Large Numbers and
diffusion limits for CHP and RSCHP. Numerical examples are presented in
Section 4.

2 Definitions of a Hawkes Process (HP), Com-
pound Hawkes Process (CHP) and Regime-
switching Compound Hawkes Process
(RSCHP)

In this section we give definitions of one-dimensional, compound and regime-
switching compound Hawkes processes. Some properties of Hawkes process
can be found in the existing literature. (See, e.g., [Hawkes, 1971] and [Hawkes
and Oakes, 1974], [Embrechts et al., 2011], [Zheng et al., 2014], to name a
few). However, the notions of compound and regime-switching compound
Hawkes processes are new.

2.1 One-dimensional Hawkes Process
Definition 1 (Counting Process). A counting process is a stochastic
processN(t), t ≥ 0, taking positive integer values and satisfying: N(0) = 0. It
is almost surely finite, and is a right-continuous step function with increments
of size +1.

Denote by FN(t), t ≥ 0, the history of the arrivals up to time t, that is,
{FN(t), t ≥ 0}, is a filtration, (an increasing sequence of σ-algebras).

A counting process N(t) can be interpreted as a cumulative count of the
number of arrivals into a system up to the current time t. The counting
process can also be characterized by the sequence of random arrival times
(T1, T2, ...) at which the counting process N(t) has jumped. The process
defined by these arrival times is called a point process (see [Daley and Vere-
Jones, 1988]).

Definition 2 (Point Process). If a sequence of random variables
(T1, T2, ...), taking values in [0,+∞), has P (0 ≤ T1 ≤ T2 ≤ ...) = 1, and the
number of points in a bounded region is almost surely finite, then, (T1, T2, ...)
is called a point process.

Definition 3 (Conditional Intensity Function). Consider a counting
processN(t) with associated histories FN(t), t ≥ 0. If a non-negative function
λ(t) exists such that

λ(t) = lim
h→0

E[N(t+ h)−N(t)|FN(t)]
h

, (1)
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then it is called the conditional intensity function of N(t) (see [Laub et al.,
2015]). We note, that sometimes this function is called the hazard function
(see [Cox, 1955]).

Definition 4 (One-dimensional Hawkes Process). The
one-dimensional Hawkes process (see [Hawkes, 1971] and [Hawkes and Oakes,
1974]) is a point process N(t) which is characterized by its intensity λ(t) with
respect to its natural filtration:

λ(t) = λ+
∫ t

0
µ(t− s)dN(s), (2)

where λ > 0, and the response function µ(t) is a positive function and satisfies∫+∞
0 µ(s)ds < 1.

The constant λ is called the background intensity and the function µ(t)
is sometimes also called the excitation function. We suppose that µ(t) 6= 0
to avoid the trivial case, which is, a homogeneous Poisson process. Thus, the
Hawkes process is a non-Markovian extension of the Poisson process.

With respect to definitions of λ(t) in (1) and N(t) (2), it follows that

P (N(t+ h)−N(t) = m|FN(t)) =


λ(t)h+ o(h), m = 1

o(h), m > 1
1− λ(t)h+ o(h), m = 0.

The interpretation of equation (2) is that the events occur according to
an intensity with a background intensity λ which increases by µ(0) at each
new event then decays back to the background intensity value according to
the function µ(t). Choosing µ(0) > 0 leads to a jolt in the intensity at each
new event, and this feature is often called a self-exciting feature, in other
words, because an arrival causes the conditional intensity function λ(t) in
(1)-(2) to increase then the process is said to be self-exciting.

We should mention that the conditional intensity function λ(t) in (1)-(2)
can be associated with the compensator Λ(t) of the counting process N(t),
that is:

Λ(t) =
∫ t

0
λ(s)ds. (3)

Thus, Λ(t) is the unique FN(t), t ≥ 0, predictable function, with Λ(0) = 0,
and is non-decreasing, such that

N(t) = M(t) + Λ(t) a.s.,

where M(t) is an FN(t), t ≥ 0, local martingale (This is the Doob-Meyer
decomposition of N.)

A common choice for the function µ(t) in (2) is one of exponential decay
(see [?]):

µ(t) = αe−βt, (4)
with parameters α, β > 0. In this case the Hawkes process is called the
Hawkes process with exponentially decaying intensity.
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Thus, the equation (2) becomes

λ(t) = λ+
∫ t

0
αe−β(t−s)dN(s), (5)

We note, that in the case of (4), the process (N(t), λ(t)) is a continuous-time
Markov process, which is not the case for the choice (2).

With some initial condition λ(0) = λ0, the conditional density λ(t) in (5)
with the exponential decay in (4) satisfies the following stochastic differential
equation (SDE):

dλ(t) = β(λ− λ(t))dt+ αdN(t), t ≥ 0,

which can be solved (using stochastic calculus) as

λ(t) = e−βt(λ0 − λ) + λ+
∫ t

0
αe−β(t−s)dN(s),

which is an extension of (5).
Another choice for µ(t) is a power law function:

λ(t) = λ+
∫ t

0

k

(c+ (t− s))pdN(s) (6)

for some positive parameters c, k, p. This power law form for λ(t) in (6) was
applied in the geological model called Omori’s law, and used to predict the
rate of aftershocks caused by an earthquake.

Remark 1. Many generalizations of Hawkes processes have been pro-
posed. They include, in particular, multi-dimensional Hawkes processes [Em-
brechts et al., 2011], non-linear Hawkes processes [Zheng et al., 2014], mixed
diffusion-Hawkes models [Errais et al., 2010], Hawkes models with shot noise
exogenous events [Dassios and Zhao, 2011], Hawkes processes with generation
dependent kernels [Mehdad and Zhu, 2011].

2.2 Compound Hawkes Process (CHP)
In this section we give definitions of compound Hawkes process (CHP) and
regime-switching compound Hawkes process (RSCHP). These definitions are
new ones from the following point of view: summands are not i.i.d.r.v., as in
classical compound Poisson process, but associated in a Markov chain.

Definition 5 (Compound Hawkes Process (CHP)). Let N(t) be a
one-dimensional Hawkes process defined as above. Let also Xt be ergodic
continuous-time finite state Markov chain, independent of N(t), with space
state X. We write τk for jump times of N(t) and Xk := Xτk

. The compound
Hawkes process is defined as

St = S0 +
N(t)∑
k=1

Xk. (10)
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Remark 2. If we take Xk as i.i.d.r.v. and N(t) as a standard Poisson
process in (10) (µ(t) = 0), then St is a compound Poisson process. Thus, the
name of St in (10)-compound Hawkes process.

Remark 3. (Limit Order Books: Fixed Tick, Two-values Price
Change, Independent Orders). If Instead of Markov chain we take the
sequence of i.i.d.r.v. Xk, then (10) becomes

St = S0 +
N(t)∑
i=1

Xk. (11)

In the case of Poisson process N(t) (µ(t) = 0) this model was used in[Cont
and Larrard, 2013] to model the limit order books with Xk = {−δ,+δ},
where δ is the fixed tick size.

2.3 Regime-switching Compound Hawkes Process
(RSCHP)

Let Yt be an N -state Markov chain, with rate matrix At.We assume, without
loss of generality, that Yt takes values in the standard basis vectors in RN .
Then, Yt has the representation

Yt = Y0 +
∫ t

0
AsYsds+Mt, (12)

for Mt an RN -valued P -martingale (see [Buffington and Elliott, 2000] for
more details).

Definition 6 (One-dimensional Regime-switching Hawkes Pro-
cess). A one-dimensional regime-switching Hawkes Process Nt is a point
process characterized by its intensity λ(t) in the following way:

λt =< λ, Yt > +
∫ t

0
< µ(t− s), Ys > dNs, (13)

where < ·, · > is an inner product and Yt is defined in (12).
Definition 7 (Regime-switching Compound Hawkes Process (RSHP)).
Let Nt be any one-dimensional regime-switching Hawkes process as de-

fined in (13), Definition 6. Let also Xn be an ergodic continuous-time finite
state Markov chain, independent of Nt, with space state X. The regime-
switching compound Hawkes process is defined as

St = S0 +
Nt∑
i=1

Xk, (14)

where Nt is defined in (13).
Remark 3. In similar way, as in Definition 6, we can define regime-

switching Hawkes processes with exponential kernel, (see (4)), or power law
kernel (see (6)).
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Remark 4. Regime-switching Hawkes processes were considered in [Co-
hen and Elliott, 2014] (with exponential kernel) and in [Vinkovskaya, 2014],
(multi-dimensional Hawkes process). Paper [Cohen and Elliott, 2014] dis-
cussed a self-exciting counting process whose parameters depend on a hid-
den finite-state Markov chain, and the optimal filter and smoother based on
observations of the jump process are obtained. Thesis [Vinkovskaya, 2014]
considers a regime-switching multi-dimensional Hawkes process with an ex-
ponential kernel which reflects changes in the bid-ask spread. The statistical
properties, such as maximum likelihood estimations of its parameters, etc.,
of this model were studied.

3 Diffusion Limits and LLNs for CHP and
RSCHP in Limit Order Books

In this section, we consider LLNs and diffusion limits for the CHP and
RSCHP, defined above, as used in the limit order books. In the limit order
books, high-frequency and algorithmic trading, order arrivals and cancella-
tions are very frequent and occur at the millisecond time scale (see, e.g., [Cont
and Larrard, 2013], [Cartea et al., 2015]). Meanwhile, in many applications,
such as order execution, one is interested in the dynamics of order flow over
a large time scale, typically tens of seconds or minutes. It means that we
can use asymptotic methods to study the link between price volatility and
order flow in our model by studying the diffusion limit of the price process.
Here, we prove functional central limit theorems for the price processes and
express the volatilities of price changes in terms of parameters describing
the arrival rates and price changes. In this section, we consider diffusion
limits and LLNs for both CHP, sec. 3.1, and RSCHP, sec. 3.2, in the limit
order books. We note, that level-1 limit order books with time dependent
arrival rates λ(t) were studied in [Chavez-Casillas et al., 2016], including the
asymptotic distribution of the price process.

3.1 Diffusion Limits for CHP in Limit Order Books
We consider here the mid-price process St (CHP) which was defined in (10),
as,

St = S0 +
N(t)∑
k=1

Xk. (15)

Here, Xk ∈ {−δ,+δ} is continuous-time two-state Markov chain, δ is the
fixed tick size, and N(t) is the number of price changes up to moment t,
described by the one-dimensional Hawkes process defined in (2), Definition
4. It means that we have the case with a fixed tick, a two-valued price change
and dependent orders.
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Theorem 1 (Diffusion Limit for CHP). Let Xk be an ergodic Markov
chain with two states {−δ,+δ} and with ergodic probabilities (π∗, 1 − π∗).
Let also St be defined in (15). Then

Snt −N(nt)s∗√
n

→n→+∞ σ
√
λ/(1− µ̂)W (t), (16)

where W (t) is a standard Wiener process, µ̂ is given by

0 < µ̂ :=
∫ +∞

0
µ(s)ds < 1 and

∫ +∞

0
µ(s)sds < +∞, (17)

s∗ := δ(2π∗ − 1) and σ2 := 4δ2
(1− p′ + π∗(p′ − p)

(p+ p′ − 2)2 − π∗(1− π∗)
)
. (18)

Here, (p, p′) are the transition probabilities of the Markov chain Xk.We note
that λ and µ(t) are defined in (2).

Proof. From (15) it follows that

Snt = S0 +
N(nt)∑
k=1

Xk, (19)

and

Snt = S0 +
N(nt)∑
k=1

(Xk − s∗) +N(nt)s∗.

Therefore,
Snt −N(nt)s∗√

n
= S0 +∑N(nt)

k=1 (Xk − s∗)√
n

. (20)

Since S0√
n
→n→+∞ 0, we have to find the limit for

∑N(nt)
k=1 (Xk − s∗)√

n

when n→ +∞.
Consider the following sums

Rn :=
n∑
k=1

(Xk − s∗) (21)

and

Un(t) := n−1/2[(1− (nt− bntc))Rbntc + (nt− bntc))Rbntc)+1], (22)

where b·c is the floor function.
Following the martingale method from [Swishchuk and Vadori, 2015], we

have the following weak convergence in the Skorokhod topology (see [Sko-
rokhod, 1965]):

Un(t)→n→+∞ σWt, (23)
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where σ is defined in (18), and Wt is a standard Brownian motion.
We note that w.r.t LLN for Hawkes process N(t) (see, e.g., [Daley and

Vee-Jones, 2010]) we have:

N(t)
t
→t→+∞

λ

1− µ̂ := λ̄,

or
N(nt)
n
→n→+∞

tλ

1− µ̂ = λ̄t, (24)

where µ̂ is defined in (17).
Using a change of time in (23), t→ N(nt)/n, we can find from (23) and

(24):
Un(N(nt)/n)→n→+∞ σW

(
tλ/(1− µ̂)

)
,

or
Un(N(nt)/n)→n→+∞ σ

√
λ/(1− µ̂)W (t), (25)

where Wt = Wλ̄t/
√
λ̄. The Brownian motion W (t) in (25) is equivalent by

distribution to Brownian motion W in (23) by scaling property. The result
(16) now follows from (20)-(25).

Remark 5. In the case of exponential decay, µ(t) = αe−βt (see (4)), the
limit in (16) is [σ/

√
λ/(1− α/β)]W (t), because µ̂ =

∫+∞
0 αe−βsds = α/β.

3.2 LLN for CHP
Lemma 1 (LLN for CHP). The process Snt in (19) satisfies the following
weak convergence in the Skorokhod topology (see [Skorokhod, 1965]):

Snt
n
→n→+∞ s∗

λ

1− µ̂ t, (26)

where s∗ and µ̂ are defined in (18) and (17), respectively.
Proof. From (19) we have

Snt/n = S0/n+
N(nt)∑
k=1

Xk/n. (27)

The first term goes to zero when n → +∞. From the other side, using the
strong LLN for Markov chains (see, e.g., [Norris, 1997])

1
n

n∑
k=1

Xk →n→+∞ s∗, (28)

where s∗ is defined in (18).
Finally, taking into account (24) and (28), we obtain:

N(nt)∑
k=1

Xk/n = N(nt)
n

1
N(nt)

N(nt)∑
k=1

Xk →n→+∞ s∗
λ

1− µ̂ t,

9



and the result in (26) follows.
Remark 6. In the case of exponential decay, µ(t) = αe−βt (see (4)), the

limit in (26) is s∗t(λ/(1− α/β)), because µ̂ =
∫+∞

0 αe−βsds = α/β.

3.3 Corollary: Extension to a Point Process
The price process S is expressed as

St = S0 +
N(t)∑
i=1

Xi, t ≥ 0,

where N is a point process, and Markov chain Xi is defined in (10).
Assumption C1: As n→∞, N(nt)/n Pr−→ λ̄t, where λ̄ := λ/(1− µ̂).
Note that if N(t) = max{n : Vn ≤ t}, then N(nt)/n Pr−→ λ̄t = 1

v̄
iff

Vn/n
Pr−→ v̄. This representation is useful in particular for renewal processes

where Vn = ∑n
k=1 τk, with the τk i.i.d. with mean v̄.

Assumption C2: Un(t)  W , where W is a Brownian motion, and
Un(t) is defined in (22).

It then follows from Assumptions C1 and C2 that

n−1/2 {Snt − S0 − s∗N(nt)}} = σUn (N(nt)/n) = n−1/2
N(nt)∑
i=1
{Xi−s∗} σ

√
λ̄ Wt,

where W is a Brownian motion, and s∗ is denied in (18). In fact, for any
t ≥ 0, Wt =Wλ̄t/

√
λ̄.

The limiting variance σ2λ̄ can probably be approximated by summing
the square of the increments Snti − Snti−1 − s∗(N(nti) − N(nti−1)). In any
cases, λ̄ cab be easily estimated by N(T )/T , and σ can be estimated from
the distribution of the price increments.

Suppose now that there is also a CLT for the point process N . More
precisely,

Assumption C3: n1/2
(
N(nt)
n
− tλ

)
 σ̄W̄t, where W̄ is a Brownian

motion independent of W.
Then under Assumptions C1–C3,

n−/2
{
Snt − ntλ̄s∗

}
 σ̃Wt,

where W =
{
σ
√
λ̄W + s∗σ̄W̄

}
/σ̃ is a Brownian motion, and

σ̃ =
[
σ2λ̄+ {s∗}2σ̄2

]1/2
.

This follows from Assumptions and the fact that

n−1/2
{
Snt − S0 − ntλ̄s∗

}
= n−1/2

N(nt)∑
i=1
{Xi − s∗}+ s∗n1/2

(
N(nt)
n
− tλ

)
.

10



Remark 7. Assumption C3 is true in many interesting cases. For renewal
processes, if στ is the standard deviation of τk, then σ̄ = στ λ̄

3/2. This is also
true for Hawkes processes [Bacry et al., 2013] with λ(t) = λ0 +

∫ t
0 µ(t−s)dNs,

provided µ̂ =
∫∞

0 µ(s)ds < 1. Then λ̄ = λ
1−µ̂ and σ̄ =

√
λ̄/(1− µ̂).

3.4 Diffusion Limits for RSCHP in Limit Order Books
Consider now the mid-price process St (RSCHP) in the form

St = S0 +
Nt∑
k=1

Xk, (29)

where Xk ∈ {−δ,+δ} is continuous-time two-state Markov chain, δ is the
fixed tick size, and Nt is the number of price changes up to the moment t,
described by a one-dimensional regime-switching Hawkes process with inten-
sity given by:

λt =< λ, Yt > +
∫ t

0
µ(t− s)dNs, (30)

(compare with (11), Definition 6).
Here we would like to relax the model for one-dimensional regime-switching

Hawkes process, considering only the case of a switching the parameter λ,
background intensity, in (20), which is reasonable from a limit order book’s
point of view. For example, we can consider a three-state Markov chain
Yt ∈ {e1, e2, e3} and interpret < λ, Yt > as the imbalance, where λ1, λ2, λ3,
represent high, normal and low imbalance, respectively (see [Cartea et al.,
2015] for imbalance notion and discussion). Of course, a more general case
(13) can be considered as well, where the excitation function < µ(t), Yt >,,
can take three values, corresponding to high imbalance, normal imbalance,
and low imbalance, respectively.

Theorem 2 (Diffusion Limit for RSCHP). Let Xk be an ergodic
Markov chain with two states {−δ,+δ} and with ergodic probabilities (π∗, 1−
π∗). Let also St be defined in (29) with λt as in (30). We also consider Yt to
be an ergodic Markov chain with ergodic probabilities (p∗1, p∗2, ..., p∗N). Then

Snt −Nnts
∗

√
n

→n→+∞ σ
√
λ̂/(1− µ̂)W (t), (31)

where W (t) is a standard Wiener process with s∗ and σ defined in (18),

λ̂ :=
N∑
i=1

p∗iλi 6= 0, λi :=< λ, i >, (32)

and µ̂ is defined in (17).
Proof. From (29) it follows that

Snt = S0 +
Nnt∑
i=1

Xk, (33)

11



and
Snt = S0 +

Nnt∑
i=1

(Xk − s∗) +Nnts
∗,

where Nnt is an RGCHP with regime-switching intensity λt as in (30). Then,

Snt −Nnts
∗

√
n

= S0 +∑Nnt
i=1 (Xk − s∗)√
n

. (34)

As long as S0√
n
→n→+∞ 0, we wish to find the limit of∑Nnt

i=1 (Xk − s∗)√
n

when n→ +∞.
Consider the following sums, similar to (21) and (22):

Rn :=
n∑
k=1

(Xk − s∗) (35)

and

Un(t) := n−1/2[(1− (nt− bntc))Rbntc) + (nt− bntc))Rbntc)+1], (36)

where b·c is the floor function.
Following the martingale method from [Swishchuk and Vadori, 2015], we

have the following weak convergence in the Skorokhod topology (see [Sko-
rokhod, 1965]):

Un(t)→n→+∞ σW (t), (37)
where σ is defined in (18).

We note that with respect to the LLN for the Hawkes process Nt in (34)
with regime-switching intensity λt as in (30) we have (see [Korolyuk and
Swishchuk, 1995] for more details):

Nt

t
→t→+∞

λ̂

1− µ̂ ,

or
Nnt

n
→n→+∞

tλ̂

1− µ̂ , (38)

where µ̂ is defined in (17) and λ̂ in (32).
Using a change of time in (37), t → Nnt/n, we can find from (37) and

(38):
Un(Nnt/n)→n→+∞ σW

(
tλ̂/(1− µ̂)

)
,

or
Un(Nnt/n)→n→+∞ σ

√
λ̂/(1− µ̂)W (t), (39)

The result (31) now follows from (33)-(39).
Remark 8. In the case of exponential decay, µ(t) = αe−βt (see (4)), the

limit in (31) is [σ
√
λ̂/(1− α/β)]W (t), because µ̂ =

∫+∞
0 αe−βsds = α/β.
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3.5 LLN for RSCHP
Lemma 2 (LLN for RSCHP). The process Snt in (33) satisfies the follow-
ing weak convergence in the Skorokhod topology (see [Skorokhod, 1965]):

Snt
n
→n→+∞ s∗

λ̂

1− µ̂ t, (40)

where s∗, λ̂ and µ̂ are defined in (13), (27) and (12), respectively.
Proof. From (33) we have

Snt/n = S0/n+
Nnt∑
i=1

Xk/n, (41)

where Nnt is a Hawkes process with regime-switching intensity λt in (30).
The first term goes to zero when n→ +∞.
From the other side, with respect to the strong LLN for Markov chains

(see, e.g., [Norris, 1997])

1
n

n∑
k=1

Xk →n→+∞ s∗, (42)

where s∗ is defined in (18).
Finally, taking into account (38) and (42), we obtain:

Nnt∑
i=1

Xk/n = Nnt

n

1
Nnt

Nnt∑
i=1

Xk →n→+∞ s∗
λ̂

1− µ̂ t.

The result in (40) follows.
Remark 9. In the case of exponential decay, µ(t) = αe−βt (see (4)), the

limit in (40) is s∗t(λ̂/(1− α/β)), because µ̂ =
∫+∞

0 αe−βsds = α/β.

4 Numerical Examples and Parameters Esti-
mations

Formula (16) in Theorem 1 (Diffusion Limit for CHP) relates the volatility
of intraday returns at lower frequencies to the high-frequency arrival rates
of orders. The typical time scale for order book events are milliseconds.
Formula (16) states that, observed over a larger time scale, e.g., 5, 10 or 20
minutes, the price has a diffusive behaviour with a diffusion coefficient given
by the coefficient at W (t) in (16):

σ
√
λ/(1− µ̂), (43)

where all the parameters here are defined in (17)-(18). We mention, that this
formula (43) for volatility contains all the initial parameters of the Hawkes
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process, Markov chain transition and stationary probabilities and the tick
size. In this way, formula (43) links properties of the price to the properties
of the order flow.

Also, the left hand side of (16) represents the variance of price changes,
whereas the right hand side in (16) only involves the tick size and Hawkes
process and Markov chain quantities. From here it follows that an estimator
for price volatility may be computed without observing the price at all. As
we shall see below, the error of estimation of comparison of the standard
deviation of the LNS of (16) and the RHS of (16) multiplied by

√
n is ap-

proximately 0.08, indicating that approximation in (16) for diffusion limit
for CHP in Theorem 1, is pretty good.

Section 4.1 below presents parameters estimation for our model using
CISCO Data (5 Days, 3-7 Nov 2014 (see [Cartea et al., 2015])). Section 4.2
contains the errors of estimation of comparison of of the standard deviation
of the LNS of (16) and the RHS of (16) multiplied by

√
n. Section 4.3 depicts

some graphs based on parameters estimation from sec. 4.1. And Section 4.4
presents some ideas of how to implement the regime switching case from sec.
3.4.

4.1 Parameters Estimation for CISCO Data (5 Days,
3-7 Nov 2014 (see [Cartea et al., 2015]))

We have the following estimated parameters for 5 days, 3-7 November 2014,
from Formula (16):

s∗ = 0.0001040723; 0.0002371220; 0.0002965143; 0.0001263690; 0.0001554404;

σ = 1.066708e− 04; 1.005524e− 04; 1.165201e− 04; 1.134621e− 04;

9.954487e− 05;
λ = 0.03238898; 0.02643083; 0.02590728; 0.02530517; 0.02417804;

α = 438.2557; 401.0505; 559.1927; 418.7816; 449.8632;

β = 865.9344; 718.0325; 1132.0741; 834.2553; 878.9675;

λ̂ := λ/(1− α/β) = 0.06560129; 0.059801686; 0.051181133; 0.050801432; 0.04957073.

Volatility Coefficient σ
√
λ/(1− α/β) (volatility coefficient for the Brow-

nian Motion in the right hand-side (RHS) of (16)):

0.04033114; 0.04098132; 0.04770726; 0.04725449; 0.04483260.

Transition Probabilities p :
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Day1:
uu ud

0.5187097 0.4812903
du dd

0.4914135 0.5085865
Day2:

0.4790503 0.5209497
0.5462555 0.4537445

Day3:
0.6175041 0.3824959
0.4058722 0.5941278

Day4:
0.5806988 0.4193012
0.4300341 0.5699659

Day5:
0.4608844 0.5391156
0.5561404 0.4438596

We note, that stationary probabilities π∗i , i = 1, ..., 5, are, respectively:
0.5525; 0.6195; 0.6494; 0.5637; 0.5783. Here, we assume that the tick δ size is
δ = 0.01.

The following set of parameters are related to the the following expression

Snt −N(nt)s∗ = S0 +
N(nt)∑
k=1

(Xk − s∗),

-LHS of the expression in (16) multiplied by
√
n.

The first set of numbers are for the 10 minutes time horizon (nt = 10
minutes, for 5 days, the 7 sampled hours, total 35 numbers):

Table 1

[1]24.50981; [2]24.54490; [3]24.52375; [4]24.59209; [5]24.47209; [6]24.57042; [7]24.61063;

[8]24.76987; [9]24.68749; [10]24.81599; [11]24.77026; [12]24.79883; [13]24.80073; [14]24.90121;

[15]24.87772; [16]24.98492; [17]25.09788; [18]25.09441; [19]24.99085; [20]25.18195; [21]25.15721;

[22]25.04236; [23]25.18323; [24]25.15222; [25]25.20424; [26]25.14171; [27]25.18323; [28]25.25348;

[29]25.10225; [30]25.29003; [31]25.28282; [32]25.33267; [33]25.30313; [34]25.27407; [35]25.30438;

The standard deviation (SD) is: 0.2763377. The Standard Error (SE) for
SD for the 10 min is: 0.01133634 (for standard error calculations see [Casella
and Berger, 2002, page 257].

The second set of numbers are for the 5 minutes time horizon (nt = 5
minutes, for 5 days, the 7 sampled hours):
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Table 2

[1]24.49896; [2]24.52906; [3]24.50417; [4]24.53417; [5]24.53500; [6]24.51458; [7]24.55479;

[8]24.93026; [9]24.66931; [10]24.74263; [11]24.79358; [12]24.80310; [13]24.84500; [14]24.88405;

[15]24.85729; [16]24.98907; [17]25.08085; [18]25.07500; [19]24.99322; [20]25.13381; [21]25.15144;

[22]25.15197; [23]25.12475; [24]25.15449; [25]25.18475; [26]25.20348; [27]25.20500; [28]25.25348;

[29]25.21251; [30]25.35376; [31]25.30407; [32]25.30469; [33]25.30469; [34]25.27500; [35]25.30469;

The standard deviation for those numbers is: 0.2863928. The SE for SD
for the 5 min is: 0.01233352.

The third and last set of numbers are for the 20 minutes time horizon
(nt = 20 minutes, for 5 days, the 7 sampled hours):

Table 3

[1]24.48419; [2]24.53970; [3]24.56292; [4]24.57105; [5]24.48938; [6]24.52751; [7]24.50751;

[8]24.76465; [9]24.59753; [10]24.82935; [11]24.76552; [12]24.81741; [13]24.75409; [14]24.84077;

[15]24.92942; [16]24.99721; [17]25.05551; [18]25.04848; [19]25.08492; [20]25.09780; [21]25.09551;

[22]24.95124; [23]25.24222; [24]25.19096; [25]25.18273; [26]25.14070; [27]25.20171; [28]25.26785;

[29]25.23013; [30]25.38661; [31]25.32127; [32]25.34065; [33]25.30313; [34]25.25251; [35]25.24972;

The standard deviation is: 0.2912967. The SE for SD for the 20 min is:
0.01234808.

As we can see, the SE is approximately 0.01 for all three cases.

4.2 Error of Estimation
Here, we would like to calculate the error of estimation comparing the stan-
dard deviation for

Snt −N(nt)s∗ = S0 +
N(nt)∑
k=1

(Xk − s∗)

and standard deviation in the right-hand side of (16) multiplied by
√
n,

namely, √
nσ
√
λ/(1− α/β).

We calculate the error of estimation with respect to the following formula:

ERROR = (1/m)
m∑
k=1

(sd− ŝd)2,

where ŝd =
√
nCoef, where Coef is the volatility coefficient in the right-hand

side of equation (16). In this case n = 1000, and Coef = 0.3276.

16



We take observations of Snt − N(tn)s∗ every 10 min and we have 36
samples per day for 5 days.

Using the first approach with formula above we take m = 5 and for
computing the standard deviation "sd" we take 36 samples of the first day.
In that case, we have

ERROR = 0.07617229.
Using the second approach with formula above, we take m = 36 and for

computing "sd" we take samples of 5 elements (the same time across 5 days).
In that case we have

ERROR = 0.07980041.
As we can see, the error of estimation in both cases is approximately 0.08,

indicating that approximation in (16) for diffusion limit for CHP, Theorem
1, is pretty good.

4.3 Graphs based on Parameters Estimation for CISCO
Data (5 Days, 3-7 Nov 2014 ([Cartea et al., 2015]))
from Sec. 4.1

The following graphs contain the empirical intensity for the point process for
those 5 days vs a simulated path using the above-estimated parameters.
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Empirical Conditional Intensity (events per second) vs Simulated Intensity from Estimated Parameters

In the next graphs we estimate the left hand-side (LHS) of (16). The
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time horizon is nt = 10 min. We took the time from which the start time
measuring the 10 min. as the independent variable or x-axis. The dependent
variable or y-axis is

F (t0) = (St0 + Stn −N(tn)s∗)/
√
n.
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St0 + Snt − N(tn)s

n




  for different values of  t0 (in sec) and t = 1ms, n=600000

The following graphs are the same as above but just considering the
median of the 1000 simulations and zoomed in the range so that it is easy to
compare.

18



3.5e+07 4.0e+07 4.5e+07 5.0e+07 5.5e+07

20
25

30
35

40
45

Median of 1000 Simulations and Empirical Price Process, CSCO Day 1

Time in ms after midnight

P
ric

e

3.5e+07 4.0e+07 4.5e+07 5.0e+07 5.5e+07

24
.0

24
.4

24
.8

Zoomed Median of 1000 Simulations and Empirical Price Process, CSCO Day 1

Time in ms after midnight

P
ric

e

3.5e+07 4.0e+07 4.5e+07 5.0e+07 5.5e+07

24
.4

0
24

.4
5

24
.5

0
24

.5
5

24
.6

0

Zoomed Median of 1000 Simulations and Empirical Price Process, CSCO Day 1

Time in ms after midnight

P
ric

e

The next graphs contain information on the quantiles of simulations of
the price process according to equation (16). That is, for a fixed big n and
fixed t0 and t. We use 1000 simulations of the process (with the parameters
estimated for N(t)). The time horizon is a trading day.
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The following graph is the same as above but the time horizon is 5 minutes
(e.g., nt = 5 minutes now, n is the same).
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The last graph is the same as above but the time horizon is 60 minutes
(e.g., nt = 60 minutes now, n is the same).
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4.4 Remark on Regime-switching Case (sec. 3.4)
We present here some ideas of how to implement the regime-switching case
from section 3.4. We take a look at the case of two states for intensity
λ. The first state is constructed as the intensity that is above the intensities
average, and the second state is constructed as the intensity that is below the
intensities average. The transition probabilities matrix P are calculated using
the relative frequencies of the intensities, and the stationary probabilities ~p =
(p1, p2) are calculated from the equation ~pP = ~p. Then λ̂ can be calvculated
from formula (32). For example, for the case of 5 days CISCO data we have
λ1 = 0.03238898, λ2 = 0.02545533 and (p1, p2) = (0.2, 0.8). In this way, the
value for λ̂ in (32) is λ̂ = 0.02688. As we could see from the data for λ in
sec. 4.1 and the latter number, the error does not exceed 0.0055. It means
that the errors of estimation for our standard deviations in sec. 4.2 is almost
the same. This is the evidence that in the case of regime-switching CHP the
diffusion limit gives a very good approximation as well.
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