IRBL: AN IMPLICITLY RESTARTED BLOCK LANCZOS METHOD
FOR LARGE-SCALE HERMITIAN EIGENPROBLEMS

J. BAGLAMA*, D. CALVETTI', AND L. REICHEL?

Abstract. The irbleigs code is an implementation of an implicitly restarted block-Lanczos
method for computing a few selected nearby eigenvalues and associated eigenvectors of a large,
possibly sparse, Hermitian matrix A. The code only requires the evaluation of matrix-vector products
with Aj; in particular, factorization of A is not demanded, nor is the solution of linear systems of
equations with the matrix A. This, together with a fairly small storage requirement, makes the
irbleigs code well suited for large-scale problems. Applications of the irbleigs code to certain
generalized eigenvalue problems and to the computation of a few singular values and associated
singular vectors are also discussed. Numerous computed examples illustrate the performance of the
method and provide comparisons with other available codes.
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1. Introduction. This paper discusses the performance and some implementa-
tion issues of a new MATLAB code for the computation of a few eigenvalues and
associated eigenvectors of a large sparse Hermitian n x n matrix A with real- or
complex-valued elements. The code can be applied to compute a few of the largest
eigenvalues, a few of the smallest eigenvalues or a few eigenvalues in the vicinity of
a specified point on the real axis. In addition, the code can be used to compute a
few eigenvalue-eigenvector pairs of certain large generalized eigenvalue problems, or
to determine a few singular values and associated singular vectors of a general matrix.
The order n of the matrix A is assumed to be so large, that its factorization is not fea-
sible. A user only has to provide computer code for the evaluation of matrix-vector
products with the matrix A; in particular, the matrix does not have to be stored.
Functions or subroutines for the evaluation of matrix-vector products can be written
in MATLAB, FORTRAN or C. The eigenvalue code typically only requires the stor-
age of a few n-vectors, in addition to storage of the computed eigenvectors. The fairly
small storage requirement makes it possible to compute eigenvalue-eigenvector pairs
of large matrices on personal computers.

The MATLAB code, denoted by irbleigs, implements an Implicitly Restarted
Block Lanczos (IRBL) method. This method generalizes the implicitly restarted Lanc-
zos method, which was first described in [9, 41]. The irbleigs code is available from
the authors’ web sites. Advantages of this code, compared with implementations of
the (standard) Lanczos or block-Lanczos algorithms, include smaller storage require-
ment and the possibility of computing eigenvalues in the interior of the spectrum
without factoring the matrix A.

The irbleigs code has been developed in several steps. An implicitly restarted
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Lanczos method that can be used to compute extreme eigenvalues or a few eigenvalues
in the vicinity of a user-specified point on the real axis was presented in [2]. However,
we found that when there are multiple or very close eigenvalues a block-version of the
code performs better. Therefore, an implicitly restarted block-Lanczos method was
developed and described in [4], where also an application to liquid crystal modeling
was discussed. This application gives rise to large-scale path-following problems.
Eigenvalues and associated eigenvectors of large Jacobian matrices are determined in
order to detect turning points and bifurcation points. The null space of a Jacobian
matrix at a bifurcation point yields information relevant for deciding how to follow the
paths across the bifurcation point. Our wish to carry out path-following interactively
made it desirable to perform the computations on a workstation. The limited amount
of fast computer memory available on a workstation and the large sizes of the Jacobian
matrices that arise in this application made it necessary to develop a code that does
not demand the factorization of the Jacobian matrices, and only requires the storage
of very few n-vectors, in addition to the computed eigenvectors. Further discussion
on numerical methods for large-scale bifurcation problems based on the implicitly
restarted block-Lanczos method can be found in [4, 7, 8].

The implicitly restarted block-Lanczos algorithm discussed in [4] is designed for
the computation of a few extreme eigenvalues and associated eigenvectors, but can
not be applied to determine eigenvalues in the vicinity of an arbitrary point on the
real axis. The code discussed in the present paper removes this restriction by applying
a judiciously chosen acceleration polynomial.

The implicitly restarted Lanczos method is analogous to the implicitly restarted
Arnoldi method, which was proposed by Sorensen [41] and has been further developed
by Lehoucq, Sorensen and Yang [21, 23, 25, 42]; ARPACK, a set of FORTRAN
subroutines that implements the implicitly restarted Arnoldi method, is described in
[25]. MATLAB, version 6.0, makes this code available through the function eigs. An
implicitly restarted block-Arnoldi method has recently been described in [22].

ARPACK is designed for the computation of a few eigenvalues and eigenvectors
of a large nonsymmetric matrix, but can be applied to symmetric matrices as well. By
focusing on symmetric eigenvalue problems, we have been able to develop a code that
is more reliable than ARPACK and typically requires less computer storage. This is
illustrated by computed examples reported in the present paper. Related examples
can be found in [2, 9].

We remark that when the block-size is chosen to be one in the irbleigs code,
the method simplifies to an implicitly restarted Lanczos method. We have found
that choosing the block-size larger than one gives faster convergence if the desired
eigenvalues are of multiplicity larger than one or are very close. This is illustrated in
Section 5.

When a suitable preconditioner for A is known, the Davidson method and ex-
tensions thereof can be competitive for the computation of a few eigenvalues and
associated eigenvectors; see Murray et al. [31] and Sleijpen and van der Vorst [40] for
descriptions of such methods. Experiments comparing our MATLAB code irbleigs
with the Jacobi-Davidson method by Sleijpen and van der Vorst [40] are presented in
Section 5.

This paper is organized as follows. Section 2 reviews the block-Lanczos method,
develops the recursion formulas for the IRBL method and discusses our strategy for
handling singular blocks. Section 3 is concerned with the choice and computation
of the acceleration polynomial. Section 4 outlines variants of the IRBL method for
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the solution of certain generalized eigenvalue problem and for the computation of
a few singular values and associated singular vectors of a large general matrix, and
Section 5 presents numerous computed examples that illustrate the performance of the
irbleigs code and compare the code to several other available methods. Concluding
remarks can be found in Section 6.

2. The IRBL method. Let {v;};_, be a given set of orthonormal n-vectors,
and introduce the matrix V;. = [v1,vs,...,v,]. Define the Krylov subspace

(2.1) K (A, V,) == span{V,, AV,., A%V, ... A"V}

Application of m steps of the block-Lanczos method with initial matrix V,, € C**"
yields the block-Lanczos decomposition

(2.2) AViy = Voo Tonr + FLE¥,

where Vi, € CV™ Vo Drxr = Vi, Vi Ve = Iy and F. € C**7 satisfies
Vo Fr = 0. Here I,, € R"*™" denotes the identity matrix, the matrix I, x, €
R™TXT consists of the first » columns of I,,, and the matrix E, € R™"*" consists
of the last r columns of I,,,.. The superscript * denotes transposition and, when
applicable, complex conjugation. Finally,

(2.3) Tm’r = Vyerer

is an mr x mr Hermitian block-tridiagonal matrix of the form

Dy B 0
B, D, B
B, Ds; B}
(24) Tmrz ’
B
L O Bm—l Dm |

with Hermitian diagonal blocks D; € C"*" and nonsingular upper triangular subdi-
agonal blocks B; € C"*". It follows from (2.2) that the range of Vy,,, is the Krylov
subspace (2.1). We refer to the columns of the matrix V,,, as Lanczos vectors.

We have tacitly assumed that the initial matrix V. and the matrix A allow the
block-Lanczos decomposition (2.2) with the stated properties to be computed. At the
end of this section, we will discuss how to handle the situation when this is not the
case. Until then, we assume that the block-Lanczos decomposition (2.2) exists.

Let {0,y} be an eigenvalue-eigenvector pair of the matrix 7T,,, and define the
vector £ := Vp,,y. Then § and z are commonly referred to as a Ritz value and a
Ritz vector of A, respectively. It follows from (2.2) that the residual error Az — z6
associated with the Ritz pair {6, z} satisfies

(2.5) Az — 28| = |(AVinr — Vine Trnr)yll = ”FTE:?/”

Throughout this paper ||-|| denotes the Euclidean vector norm as well as the associated
induced matrix norm. Thus, the norm of the residual error can be computed without
explicitly computing the Ritz vector x by evaluating the right-hand side of (2.5).
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When the norm (2.5) is small, the Ritz value 6 is an accurate approximation of an
eigenvalue of A.

In block-Lanczos methods that do not employ restarts, see, e.g., Chatelin [10,
Section 6.4], Parlett [34, Chapter 13] or Ruhe [36] as well as [5] for discussions of
such methods, the number of Lanczos steps m is increased until the right-hand side
of (2.5) is sufficiently small. Then the Ritz pair {#,z} of A is computed and used
as an approximate eigenpair of A. However, this approach may require the use of
secondary computer storage when the matrix A is very large, because of the storage
requirement of the matrix V,,,.. The use of secondary computer storage typically
increases the computational time significantly. To avoid using secondary storage,
the block-Lanczos algorithm can be restarted periodically. The IRBL method is an
implementation of a restarted block-Lanczos method, which allows the application of
a judiciously chosen acceleration polynomial.

Another approach to reducing the computer storage required, and thereby avoid-
ing the use of secondary computer storage, is to discard all but the most recently
computed Lanczos vectors. The discarded Lanczos vectors have to be recomputed
when determining the eigenvectors. Since Lanczos vectors are discarded, it is diffi-
cult to maintain orthogonality of all the Lanczos vectors computed in the presence of
round-off errors. Loss of orthogonality of the Lanczos vectors may lead to the compu-
tation of spurious eigenvalues. Lanczos method of this kind are discussed by Cullum
and Willoughby [11].

Assume that the block-Lanczos decomposition (2.2) has been computed by m
steps of the block-Lanczos algorithm, and let m be the largest number of block-
Lanczos steps that we wish to carry out between restarts. Let the residual error (2.5)
be larger than a specified tolerance for the Ritz values of interest. We then apply
recursion formulas derived in [4] to compute the matrix

(2.6) Up := pm(A)V,,

where p,, is a polynomial of degree m, to be specified below. We refer to p,, as an
acceleration polynomial. Given the block-Lanczos decomposition (2.2), the matrix U,
can be computed without the evaluation of matrix-vector products with A; see [4] for
details. Orthogonalization of the columns of U, yields the matrix V,*; thus,

(2.7) U, =VIRF, ViecC™r, RrecC,

where (V,7)*VF = I, and R} is upper triangular.

The computations that determined the matrix VTJr from V, are now repeated
with the matrix V,* replacing V.. Thus, application of m steps of the block-Lanczos
method to A with initial block V,t yields the block-Lanczos decomposition
(2.8) AV =V TY + FYTE;.

mr—mr

If the desired Ritz values have not been determined with sufficient accuracy by this
decomposition, then a new acceleration polynomial p;, of degree m is chosen and the
matrix

(2.9) U = pr(A)VF

is evaluated by using recursion formulas described in [4], without evaluation of matrix-
vector products with the matrix A. Combining (2.6) and (2.9) yields

(2.10) Ut =ph(A)pm(AV, (RF) 1.
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Orthogonalization of the columns of U} now gives the matrix V,;**. New block-
Lanczos decompositions are evaluated in this manner until approximations of all de-
sired eigenvalues, as well as associated eigenvectors, have been computed with suffi-
cient accuracy.

The performance of the IRBL method crucially depends on the choice of the

sequence of acceleration polynomials p,,, p;,... . These polynomials are determined
by specifying their zeros. Let the polynomial 9,,; be the product of the k first
acceleration polynomials, each one of degree m, and let z1,29,..., 2, denote the

zeros of Y,g. After k evaluations of block-Lanczos decompositions of the forms (2.2)
and (2.8), we have, analogously to (2.10),

(2.11) V! = Yme(AV, R,

where V! € C"*" has orthogonal columns, R, € C™" is upper triangular and
mk

(212) V() = [[ (2 = 2).
j=1

We also refer to the polynomial v, as an acceleration polynomial. Sorensen [41]
refers to the zeros z; as shifts, because they are shifts in a truncated QR-algorithm
used to evaluate the matrices U, and U} in (2.6) and (2.9).

The choice of acceleration polynomial ¥,,;, or equivalently the choice of zeros
Zj, in the irbleigs code depends on whether we would like to compute a few of
the smallest or largest eigenvalues of A, or a few eigenvalues in a neighborhood of a
specified point on the real axis. The zeros should be chosen so that the acceleration
polynomial .5, is of large magnitude in the vicinity of the eigenvalues that we wish
to compute and of small magnitude at the other eigenvalues of A. We discuss the
choice of zeros in Section 3.

Recently, Gupta [19] proposed a related approach for computing eigenpairs of a
symmetric matrix. Gupta [19] first applies an acceleration polynomial of fairly high
degree to one or several initial vectors by using the recursion formulas of nonstationary
Richardson iteration, and then uses the Lanczos or block-Lanczos method to deter-
mine approximations of desired eigenpairs. The degree of the acceleration polynomial
and the number of steps of the Lanczos or block-Lanczos methods are chosen so as to
minimize the computational work required under certain assumptions on the distri-
bution of the eigenvalues. The method typically requires more computer storage than
the irbleigs code because, generally, more consecutive Lanczos or block-Lanczos
steps are carried out.

Assume for the moment that the subdiagonal blocks of the block-tridiagonal ma-
trix Ty in (2.2) with 7 x r blocks are nonsingular. Then the eigenvalues of the
matrix 7}, are of multiplicity at most r; see, e.g., the proof of Proposition 3.1 below.
If some of the desired eigenvalues of A are of multiplicity £ > r, then special care
has to be taken so that the irbleigs code will detect all eigenvalues of multiplicity
£. The implicitly restarted block-Lanczos algorithm described in [4] introduced ran-
dom vectors, orthogonalized against converged eigenvectors and the other vectors of
V-, as columns of the initial block V.. The algorithm was restarted with this initial
block V;.. Convergence of a Ritz value towards an already determined eigenvalue then
showed that the proper invariant subspace of that eigenvalue had not yet been deter-
mined. The algorithm was restarted with new random columns in the initial block
until no Ritz value converged to one of the desired eigenvalues. We found this ap-
proach to reliably approximate eigenvalues of multiplicity, say j > 1, by sets of j close
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or identical eigenvalues in many numerical experiments. However, this approach is
quite expensive; often many matrix-vector product evaluations are required to make
the random vector converge to an eigenvector. Therefore, the irbleigs code also
gives the user the possibility to continue the computations with a smaller tolerance
in the convergence criterion, after the original convergence criterion is satisfied. This
approach has often determined the correct multiplicity of multiple eigenvalues for a
large number of test problems. It can be motivated heuristically as follows. Assume
that we wish to compute the smallest r + 1 eigenvalues Ay, A2, ..., Arq1 of A, where
A1 = A2 = ... = A41- When the tolerance in the stopping criterion is small, i.e.,
when the value of the parameter € in (2.13) below is small, then generally only a few
Ritz vectors associated with these eigenvalues are determined at a time. This allows
the initial blocks V, in subsequently generated Krylov subspaces to become rich in
basis vectors of the invariant subspace associated with the desired eigenvalues that
have not been determined yet.

The criteria for accepting Ritz values and Ritz vectors differ in general. The Ritz
value 6 is accepted as an approximate eigenvalue of A when the residual error (2.5)
is smaller than a prescribed tolerance, i.e., when

(2.13) IFEryll < ellAll, &= Viry,

for a user-specified value of e. The value of ||A|| in the bound (2.13) is approximated
by the eigenvalue of largest magnitude of all symmetric tridiagonal matrices Ty,
computed so far. The acceptance criterion for Ritz vectors generally is more stringent
in order to avoid that subsequently generated Krylov spaces are orthogonalized against
poor eigenvector approximations. In order to accept a Ritz vector as an approximate
eigenvector against which subsequent Krylov subspaces will be orthogonalized, the
bound (2.13) has to be satisfied by the Ritz pair with € equal to the minimum of the
square-root of machine epsilon and the user supplied value of e. When such a Ritz
pair has been found, and an approximation of the eigenvalue already is available, we
keep the most accurate of the available eigenvalue approximations.

All computations in our implementation of the block-Lanczos method are per-
formed block-wise in order to take full advantage of Level 3 BLAS for matrix-matrix
multiplication; see [13] for a discussion of these subroutines. To secure that the
columns of the matrix V,,,, in (2.2) are numerically orthonormal, as well as numer-
ically orthogonal against already computed eigenvectors, they are reorthogonalized.
The orthonormality of the columns of V,,, and their orthogonality against already
computed eigenvectors prevents convergence of different Ritz vectors towards the same
vector and convergence of Ritz vectors towards already computed eigenvectors. Since
the number of columns of V,,, typically is fairly small, the computational cost of
reorthogonalization is not large. However, it may be advantageous to implement par-
tial or selective reorthogonalization when the number of vectors to reorthogonalize
is larger; see Parlett [33, 34] for discussions of these techniques. Recently, Larsen
posted a MATLAB code for computing a Lanczos decomposition (2.2) with block-size
r = 1 using partial reorthogonalization [20]. This code does not employ restarts and
is therefore not suited for very large problems. For instance, when we applied Larsen’s
code to the eigenvalue problem in Example 1 of Section 5, an out-of-memory error
caused the computations to be terminated before any eigenvalues had been found. We
therefore do not include this code in the comparison of restarted Lanczos methods
reported in Section 5.

So far, we have assumed that the triangular subdiagonal blocks of the matrix T,
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are nonsingular. However, the block-Lanczos method may generate a singular subdi-
agonal block in, say, step £ < m. This indicates that the Krylov subspace K.(4, V)
is of dimension strictly smaller than ¢r. When the block-size r is one, a singular
subdiagonal block signals that an invariant subspace has been found. However, this
may not be the case when the block-size r is strictly larger than one. In the latter
case, we replace each linearly dependent vector in the Krylov subspace by a random
vector. Specifically, assume that a diagonal entry in the fth subdiagonal r x r block,
with » > 1, is smaller than a prescribed tolerance. Then this entry is set to zero
and the corresponding column of the matrix V4, is chosen to be a random unit vector
that is orthogonal against all other columns of V4, and all computed eigenvectors.
Now m — £ steps of the block-Lanczos method are carried out until a decomposition
of the form (2.2) has been determined. If this decomposition yields an acceptable
approximate eigenpair, then this pair is stored and an acceleration polynomial of de-
gree m is applied in the same fashion as described above. If on the other hand the
block-Lanczos decomposition does not determine an approximate eigenpair with suf-
ficient accuracy, then straightforward application of an acceleration polynomial and
application of m block-Lanczos steps yields a new singular subdiagonal block, at least
in exact arithmetic. In the presence of round-off errors, we may obtain a singular or
nearly singular subdiagonal block. In order to avoid computations with such blocks,
we identify the vector in the initial block V,. that gives rise to the singular or nearly
singular subdiagonal block, and replace this vector by a unit random vector, which is
orthogonal to the other columns of V, as well as to already converged eigenvectors;
see [1] for further details.

Assume that we already have computed ¢ of k desired eigenpairs, and that we
are to apply the block-Lanczos method to the matrix V,, € C*"*" with orthonormal
columns to determine the remaining k& — £ wanted eigenvalues. The eigenvectors
already found have to be stored, and in order not to increase the demand of computer
storage significantly, we apply only m — j steps of the block-Lanczos algorithm, where
Jj is the unique positive integer, such that (j — 1)r < £ < jr, unless this bound yields
m—j = 1 in which case we set j = m—2. Then the computed matrix V,,,_;), and the
eigenvectors already found, together, require about the same storage as the matrix
Vmr would have required. Having determined the matrix V{,,_;),, an acceleration
polynomial of degree m — j is applied. This reduction in the number of block-Lanczos
steps is appropriate when the number of consecutive block-Lanczos steps m is limited
by the size of the available fast computer storage. The irbleigs code implements
this reduction in the number of consecutive block-Lanczos steps as eigenpairs are
determined when extreme eigenvalues of A are sought. The selection of acceleration
polynomial when a few nonextreme eigenvalues are desired is more complicated when
the number of block-Lanczos steps is varied, and for the latter kind of problems, the
number of block-Lanczos steps taken after each restart is kept fixed.

3. Computation of the acceleration polynomial. The acceleration polyno-
mial 9k, defined by (2.12), determines which eigenpairs of A will be computed as
well as the rate of convergence. The polynomial is defined by specifying its zeros z;
and it is applied by using the recurrence relations of the IRBL method, as described
in Section 2. Ideally, we would like 9,1 to be of magnitude one in the vicinity of the
desired eigenvalues and to vanish at the other eigenvalues of A. When this is the case,
the columns of the matrix V,' defined by (2.11) are linear combinations of the desired
eigenvectors, and an application of the block-Lanczos method with initial block V!
yields the desired eigenpairs. In actual computations, we seek to determine an accel-
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eration polynomial v,,,; that is of large magnitude at the desired eigenvalues of A and
of small magnitude at the other eigenvalues. This section discusses the construction
of such a polynomial.

The zeros z; of the acceleration polynomial ¥, are allocated on a set K that
contains some of the undesired eigenvalues of A and none of the desired ones. For
instance, if we wish to compute a few of the largest eigenvalues of A, then K is an
interval on the real axis to the left of the desired eigenvalues. If, instead, a few of
the smallest eigenvalues of A are desired, then K is a real interval to the right of the
desired eigenvalues. When we wish to determine a few nonextreme eigenvalues, the
set K generally consists of two real intervals, one on each side of the set of desired
eigenvalues. First we discuss how to allocate the zeros z; on a given set K and then
we consider the choice of sets K.

Assume that the zeros 21, 29, .., 2z already have been allocated. We then let the
ZETOS 2¢41, 2042, - - -, 20+m D€ approximate solutions of a sequence of m maximization
problems. Specifically, for j = 1,2,...,m, we let the zero z,;; be an approximate
solution of

f+j—1 f4+j—1
(3.1) w(z¢44) H |2 — 2i| = max w(z) H |z —zil, 245 €K
i=1 i=1

where w is a nonnegative weight function on the real axis to be defined below. The
points zp41,2e+2,- - -, 2e+m determined by (3.1) might not be unique. We call any
sequence of points z¢41, 2¢+2,- - -, Ze+m determined in this manner Leja points for K,
because of their close relation to points investigated by Leja [26]. When K consists
of one interval on which the points z1,2s,...,2; already have been allocated, the
new points zsy1, 2¢+2, - - -, 2e+m are distributed so that all the points 21, 22, ..., 2¢+m
are distributed roughly like zeros of Chebyshev polynomials for the interval K. The
asymptotic distribution can be expressed in terms of the normal derivate of a certain
Green’s function for the complement in the complex plane of K, and this characteri-
zation carries over to sets K that consist of two intervals; see [2, 26] for details.

The exact solution of the sequence of maximization problems (3.1) can be cum-
bersome when £ or m are large. Easily computable approximations of the Leja points
are furnished by the fast Leja points introduced in [3]. The computation of s fast Leja
points requires only O(s?) arithmetic operations.

We turn to the choice of sets K in the irbleigs code, and consider the case when
the k smallest eigenvalues and associated eigenvectors of the matrix A are desired,
where k < n. The sets K are chosen analogously when we wish to determine the &
largest eigenvalues and associated eigenvectors of A.

Enumerate the eigenvalues A; or A and 0; of T, in increasing order,

(3.2) AM<A<...< A\,
and
(3.3) 01 <05 <...< 0.

Then the following relation between the A; and 8; holds.

PROPOSITION 3.1. Assume that the subdiagonal blocks of the block-tridiagonal
matriz Ty, with block-size r, defined by (2.2), are nonsingular, and let the eigenvalues
0; of Trr and Xj of A be ordered according to (3.3) and (3.2), respectively. Then

(3.4) N <0,  1<j<mr
(3.5) An > O
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Moreover,

(3.6) Aj<Ojpry,  1<j<(m=1)r.

Proof. The inequalities (3.4) and (3.5) follow from the minimax properties of the
eigenvalues of A and Ty, and from (2.3). The fact that the subdiagonal blocks are
nonsingular implies that rank(Ty,, — 61 ,,) > rm —r for all eigenvalues 8 of T,,,, and
therefore each eigenvalue of T, has multiplicity at most r. This observation and
(3.4) show (3.6). O

Throughout this section we assume that the conditions of Proposition 3.1 hold.
The parameter sizint of the irbleigs code determines the size of the interval K. Let
the number & of desired smallest eigenvalues of A and the integer sizint satisfy

(3.7 k< (m-1)r, 1< sizint < (m—1D)r — k.

Then, by (3.6), the interval K = [0y —sizint, Omr] does not contain any of the k small-
est eigenvalues of the matrix A. We may therefore allocate zeros of the acceleration
polynomial on K. The smallest interval is obtained for sizint=1, which is the default
value. Experience from numerous computed examples suggests that this value often
yields the desired eigenpairs with least computational effort. However, for matrices
A with a large condition number a value of sizint larger than unity sometimes gave
faster convergence.

The set K is updated whenever a new block-tridiagonal matrix 77, with nonsin-
gular subdiagonal blocks is available. When the first such matrix has been computed,
we define the endpoints of K = [a, b] by

(38) a = em’r—sz’zint; b:=0n,.

We let the m first zeros 21, 22,...,2m,m be fast Leja points for K and determine a
new matrix V* according to (2.7). Application of m block-Lanczos steps yields the
block-Lanczos decomposition (2.8) with block-tridiagonal matrix 7}}.. Denote the
eigenvalues of the latter matrix also by #; and order them according to (3.3). The
endpoints of the set K = [a, b] are then updated according to

(3.9) a = min{a, Opmr_sizint } b := max{b, 0, }
or
(310) a = Hmr_sizmt, b:= max{b, emr}-

The irbleigs code allows a user to choose which pair of updating formulas, (3.9)
or (3.10), to be applied. The formulas (3.9) yield a nested sequence of increasing
intervals K and is used if the parameter endpt of the irbleigs code is set to MON.
The updating formulas (3.10) allows the endpoint a closest to the desired eigenvalues
to“float,” i.e., to vary in a nonmonotonic fashion. These formulas are used when the
parameter endpt is set to FLT.

The computations of approximations of Leja points in the irbleigs code is car-
ried out as described above if the parameter zertyp is set to WL (for Weighted Leja
points). The weight function w in (3.1) is

(3.11) w(z) := |z — al.
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We have found in numerous computed examples that the IRBL method yields faster
convergence with this weight function than with w(z) := 1 when approximate Leja
points are determined as outlined above.

The code also provides another, simpler, way of generating zeros of the accel-
eration polynomial. This alternate approach is used when the parameter zertyp in
the irbleigs code is set to ML, which stands for Mapped Leja points. Fast Leja
points are generated for the interval [—2, 2] with weight function w(z) := 1, and then
mapped to intervals K by a linear transformation. When the sets K form nested
intervals, these intervals typically converge to an interval, which we denote by K. As
the number of mapped Leja points increases, their distribution will approximate that
of zeros of Chebyshev polynomials for the set K. We have found that letting the
zeros be mapped Leja points often gives faster convergence than if we let the zeros
be zeros of the mth degree Chebyshev polynomial of the first kind for each set K
generated. A numerical example where zeros of the acceleration polynomial v,,,;, are
zeros of Chebyshev polynomials of degree m for each set K is reported in [4]. We have
observed that mapped Leja points generated with parameter endpt=MON often give
better performance of the irbleigs code than mapped Leja points with parameter
endpt=FLT. We choose the interval [—2, 2] when computing mapped Leja points, be-
cause this interval has capacity one (in the sense of potential theory) and therefore
allows the generation of a large number of Leja points without overflow or underflow;
see [3] for details. 5

We turn to the case when the sets K consist of two real intervals, [a, b] and [b, @],
one on each side of the k desired eigenvalues. For definiteness, we assume that the k
desired eigenvalues are in a vicinity of the origin and that b < @ < 0 < a < b. The
method of generating fast Leja points generalizes in a straightforward manner from
sets that consist of one interval to sets that are made up of two intervals. Only the
option zertyp=WL applies and the weight function in (3.1) is given by

[ lz—a|], z>a,
w(z) '_{ |z —a|, z<a.

The endpoint b is updated according to (3.9) and the endpoint b is updated
analogously,

(3.12) b := min{b, 6 },

where 6; is the smallest Ritz value of the computed block-tridiagonal matrix 7,,,; cf.
(3.3).

We now consider the updating formulas for the endpoints @ and a of K closest to
the wanted eigenvalues. These endpoints have to be chosen so that the interval [d, a]
does not contain any one of the k desired eigenvalues. An approach for achieving this
when the block-size is one, based on the use of harmonic Ritz values of A, is described
in [2]. Here we generalize this approach to block-size r larger than one.

In the Rayleigh-Ritz method for computing approximations of eigenvalues of A~1,
a matrix P € R"*¢ is chosen and the eigenvalues of the generalized eigenvalue problem

P*A7'Py=0P*Py, ye C'\{0},

are considered approximations of eigenvalues of A=1. The particular choice P :=
AV, yields

(3.13) Vs AVinry = 0V AVopy,  y € C™\{0},
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and obviates the need to apply the matrix A~!, or equivalently, to solve linear systems
of equations with the matrix A. Using (2.2) and (2.3), we obtain
Vi AV = (T2 VE + EFY) Ve Ty + FrEF)

(3.14) — T2 {EF*FE'=T2 +FE,B"BnE",
where B,,, is the upper triangular matrix in the QR~factorization of F,.. Substituting
(2.3) and (3.14) into (3.13) yields the generalized eigenvalue problem

(3.15) Tonry = (T}, + ErB}, B E})y.

Throughout this section we assume that the matrix 7}, is nonsingular. How this
condition can be enforced is discussed below.

PROPOSITION 3.2. Assume that the matriz Ty in the block-Lanczos decomposi-
tion (2.2) is nonsingular. Then the eigenvalues 6 of the generalized eigenvalue problem
(3.15) are real and satisfy 0 < |0] < oo.

Proof. Since Tp,, is nonsingular and Hermitian, the matrix T2, + E, B, By E}
is Hermitian positive definite. Let L denote its lower triangular Cholesky factor.
The eigenvalues 6 of the generalized eigenvalue problem (3.15) are eigenvalues of the
Hermitian nonsingular matrix L~'T,,L~* and therefore are real, nonvanishing and
bounded.

An alternative proof, that does not use the Cholesky factor L, can be based on
Theorem 8.7.1 and Corollary 8.7.2 in [17]. O

Substitute § := 1/6 into (3.15) to obtain the generalized eigenvalue problem

(3.16) (T2, + BBy, BmE})y = 0T,y

The eigenvalues 6 of (3.16) are referred to as harmonic Ritz values, because their
reciprocal values are weighted averages of the reciprocal values of eigenvalues of A.
Equation (3.16) is discussed by Morgan [30], Paige et al. [32] and in [2] when the
block-size r is one.

Our interest in the harmonic Ritz values stems from that their distribution around
the origin reveals how the eigenvalues of A are distributed in a vicinity of the origin. A
nice recent survey of properties of harmonic Ritz values and their relation to Lehmann
intervals is provided by Beattie [6].

THEOREM 3.3. Assume that the matrix T,,, is nonsingular, and enumerate the
harmonic Ritz values according to

(3.17) 51S§2S...Ség<0<é¢+1Ség+2§...§émT,

where £ is an integer, such that 0 < £ < mr. If£ > 0, then the matriz A has at least j
eigenvalues in the interval [5g,j+1,0) for j =1,2,..., 0. Conversely, if £ < mr, then
A has at least j eigenvalues in the interval (0,0, ;] for j = 1,2,...,mr — L.

Proof. Tt follows from Proposition 3.2 that the harmonic Ritz values §; are non-
vanishing. Therefore an index £, such that (3.17) holds can be found. A proof of the
relations between harmonic Ritz values and the eigenvalues of A, based on results by
Lehmann, has recently been presented by Beattie [6, Section 3]. O

Before discussing the application of harmonic Ritz values to the determination
of the endpoints @ and a of K, we consider their computation. It is not necessary to
solve the generalized eigenvalue problem (3.16) to compute the harmonic Ritz values.
The following, simpler, approach to the computation of the harmonic Ritz values has
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previously been discussed by Paige et al. [32] for the case when the block-size r is
one.
Introduce the (mr + r) x (mr + r) Hermitian block-tridiagonal matrix

D, Bf O
B, D, Bj
By, D3 B3
(3.18) Trnrgr = ,
B
B,.1 D, B
L O Bm Dm—i—l |

whose leading principal mr X mr submatrix is given by (2.4), where By, is the upper
triangular matrix in the QR-factorization of F,., and

(3.19) Dpi1 = BpE (Tpny) “E,.B,.

Assume for the moment that T, is nonsingular. Then the matrix Tmr+T easily can
be determined from the block-Lanczos decomposition (2.2).

THEOREM 3.4. Let the matrix Ty, be nonsingular. Then the nonvanishing eigen-
values of Tmr+r are harmonic Ritz values of A.

Proof. The proof generalizes a proof by Paige et al. [32] for block-size one to
block-size r larger than one. Writing the generalized eigenvalue problem (3.16) in the
form

(Tonr (Tony — 01ny) + Ex B2, B EX)y = 0

shows that the zeros of the polynomial

(3.20) p(0) = det(Tyr(Trnr — 0Inr) + E. B, B, EY)
are the harmonic Ritz values. We now demonstrate that the characteristic polynomial
Of Tmr-i—r;

(321) q(é) = det(Tmr+r — 0~Im7‘+7‘)7
is divisible by p(8).
Consider the partitioning of a square matrix M into submatrices

(3.22) M= [ My M ]

My Ms»
with square diagonal blocks. Then

det(My;)det(May — Moy M7  Mys), if det(Myq) # 0,
(3.23) det(M) =
det(May) det(Myy — Mo My Myy), if det(Mas) # 0.

Partitioning the matrix Tmr_,_r according to (3.22) with M;; = T}, we obtain from
(3.21) and (3.23) that, when 6 is not an eigenvalue of Ty,

(3.24)q(8) = det(Tyy — 01 ,,) det(Dpyy — 01, — By Ef (Trnr — 61,,,,) L E,B).
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Substituting (3.19) into (3.24) and using the identity
Tt — (Tor — 010) ™t = —0(Tony — 01,,,) 1T 1
gives
(3.25)q(0) = (=6)" det(Tpny — 01,n,) det(Bp EX (Tyy — 01,,) ‘T E.BY, + I,).
Applying the determinant formulas (3.23) to the matrix
Iy ~T,r Er By,

B EX Ty — 01,) 7t I,
shows that

det(I, + BpE! (Trr — 01my) T 71E,.BY)
= det(In, + T, E, B* B EX (Tyr — 010,) 1),

and substituting this identity into (3.25) yields
q(6) = (=0)" det(Tpny — 0In,) det(T,1) det(Thny + Ep B, BmEX (Tyny — 01r) 1)

= (—6)" det( mr)det( Tonr (T — 0Inr) + E,BY, B, E¥).
It now follows from (3.20) that
q(8) = (=8)" det(T,})p(9).

This identity is valid for all values of 6 and completes the proof of the theorem. O
We are in a position to discuss the choice of sets K. Thus, assume that we would
like to determine k eigenvalues of A in the vicinity of the origin, as well as associated
eigenvectors. For notational simplicity, we assume in the remainder of this section
that k£ is even. The formulas presented have to be modified slightly when £ is odd.
Let the integer ¢, determined by (3.17), satisfy k/2 < £ < mr — k/2. Then it follows
from Theorem 3.3 that the interval [f,_, /2415 Opsr /2] contains at least k eigenvalues
of A. Hence, the set K = [b,d] U [a, b] with

(3.26) a:=0p 2, a =0 1/241, b<a, a <b,

does not contain any of the desired eigenvalues and the zeros of the acceleration
polynomial ¥, could be allocated in K. However, extensive numerical experience
with the implicitly restarted block-Lanczos method indicates that faster convergence
often can be achieved by choosing the endpoints & and a as far away from the origin
as possible. The description of the choices of the endpoints @ and a in the irbleigs
code is somewhat technical and we only provide an outline. These choices depend on
the values of the parameters sizint and endpt. The former parameter specifies how
large the intervals that make up the sets K should be, the latter whether successive
sets K should be nested.

We first consider the case when endpt=MON, which gives monotonically varying
endpoints @ and a, and therefore a nested sequence of sets K. Let the integer £ be
defined by (3.17) and assume that k/2 < £ < mr — k/2. This condition secures that
we may determine k/2 positive and k/2 negative eigenvalues. A similar requirement
on £ is imposed when k is odd. If sizint = 1, 8; < 0 and 0,,,_1 < Oy, then we let

(3.27) a := max{a, 6>}, a := min{a,Opr_1}
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and the endpoints b and b are updated according to (3.9) and (3.12). If, instead,
sizint = 2 and 6, < 03 and 0,,,,—2 < Oy, then the formulas (3.27) are replaced by

(3.28) a:=max{a,03},  a:=min{a,Bm,_2}.

The updating formulas (3.27) and (3.28) are modified if the relations between Ritz
and harmonic Ritz values are violated. For instance, if sizint = 1 and 6, < 6; < 63,
then @ is updated according to (3.28) instead of by (3.27).

If endpt=FLT, the endpoints @ and a are allowed to float, i.e., to vary in a
nonmonotonic manner, and the sets K determined are not guaranteed to be nested.
The assignments (3.27) are replaced by

(3.29) =0  a:=0nh_.

Other assignments, such as (3.28), are modified analogously.

The computation of k eigenvalues of the matrix A in the vicinity of an arbitrary
point u on the real axis can be carried out by replacing the matrix A by A — ul,, and
proceed as described above. Since the Lanczos decomposition (2.2) yields

(3.30) (A = pI)Vir = Vi (Tony — pIomy) + FrE,

it follows that the matrix A does not have to be modified. Instead, we compute
the Lanczos decomposition (2.2) and then subtract u from the diagonal entries of
the block-tridiagonal matrix 7},,,. The new block-tridiagonal matrix, which we also
denote by T, is used in the formulas for computing Ritz and harmonic Ritz values
of A— pul,.

In our discussion on the computation of k eigenvalues of A around the origin, we
assumed that the matrix 7}, is nonsingular. The nonsingularity can be enforced as
follows. If we detect that T),, is numerically singular when computing the matrix
1~)m+1, cf. (3.19), then we replace Ty by T — plpnr for some p € R of small
magnitude, such that T, — ul,, is nonsingular. It follows from our discussion
above, that this has the effect that the algorithm seeks to determine k eigenvalues in
a vicinity of pu.

4. Extensions. The irbleigs code can be used to solve certain generalized
eigenvalue problem as well as to compute a few singular values and associated singular
vectors of a general n x £ matrix. For a recent discussion on the application of the
Lanczos and Arnoldi methods to the generalized eigenvalue problem, we refer to Ruhe
[37].

Consider the generalized eigenvalue problem

(4.1) Hz =AMz,

where the matrices H, M € C"*™ are Hermitian and M is positive definite. Assume
that M has a structure, such as small bandwidth, that makes it feasible to compute
its upper triangular Cholesky factor R; thus, M = R*R. The generalized eigen-
value problem (4.1) can be a transformed into a standard eigenvalue problem for the
Hermitian matrix

(4.2) A:=R*HR™,

and it follows that the eigenvalues A are real and the eigenvectors of (4.1) can be
chosen to be pairwise M-orthonormal. The irbleigs code computes block-Lanczos
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decompositions of the matrix (4.2) without explicitly forming the matrix; only matrix-
vector product evaluations with A are required. Each such evaluation requires the
computation of one matrix-vector product with the matrix H and the solution of
two linear systems of equations with the triangular matrices R and R*. A user can
provide either the Cholesky factor R or the matrix M. In the latter case, R is
computed using the MATLAB command chol. We remark that codes based on a
shift-and-invert approach, which requires factorization of a linear combination of H
and M, have been written by Grimes et al. [18], Marques [27] and Meerbergen and
Scott [29]. The irbleigs code is designed for the computation of a few eigenpairs of
generalized eigenproblems that are so large that factorization of H is not feasible.

We turn to the computation of a few singular values and associated right and
left singular vectors of a large matrix C € C**¢. The irbleigs code can be applied
in two ways. We may use the code to compute the eigenpairs associated with the
corresponding eigenvalues of the Hermitian matrix

|0 C (n+6) X (n+0)
(4.3) A._[C* O]EC .
Let
(44) 012022 ...2 Omin{n,t}

denote the singular values of C. Then the matrix A has the eigenvalues
to1,%09,..., iamin{n,f}

as well as [m—n| zero eigenvalues. The eigenvector of A associated with the eigenvalue
o; yields both the right and left singular vectors of C associated with this singular
value. This approach is often appropriate when a few of the smallest singular values
and associated singular vectors are desired. If instead we would like to determine
a few of the largest singular values of C, then it may be attractive to apply the
irbleigs code to one of the matrices C*C or CC*. The largest singular values of
these matrices are better separated than the largest singular values of the matrix
(4.3), and this generally speeds up the convergence of Lanczos-type methods. The
eigenvectors of C*C and C'C* are the singular vectors of C.

5. Numerical examples. This section presents computed examples that illus-
trate the performance of the irbleigs code and compare it with other available codes
for the computation of a few selected nearby eigenvalues and associated eigenvectors of
large Hermitian matrices. Specifically, we compare the irbleigs code with Sleijpen’s
MATLAB implementation jdqr of the Jacobi-Davidson QR method by Fokkema et
al. [16] and with two implementations of the implicitly restarted Arnoldi/Lanczos
method.

The jdgr code is available at Sleijpen’s home page'. It computes partial Schur
decompositions of A and can determine extreme and nonextreme eigenvalues. The
Jacobi-Davidson method is a powerful scheme when a good preconditioner for the
linear system of equations that has to be solved is available. In our computed exam-
ples, we assume that no good preconditioner is known, and apply the Jacobi-Davidson
method either with no preconditioner or with a diagonal preconditioner made up by
the diagonal entries of A. The linear system of equations is solved by an iterative

Thttp://www.math.uu.nl/people/sleijpen/JD_software/JDQR.html
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TABLE 5.1
Parameters for jdqr.

Name Description Default Value
tol Tolerance 108

jmin Minimum dimension of search subspace kE+5

jmax Maximum dimension of search subspace jmin +5

k Number of desired eigenvalues 5

MazxlIt Maximum number of iterations 100

v0 Starting vector ones+0.1-rand
Schur Schur decomposition no

sigma Location of the desired eigenvalues LM
TestSpace | For using harmonic Ritz values Standard
Disp Display eigenvalues 0

LSolver Linear solver GMRES

LS ¢ ¢ for BiCGstab(¥) 5

LS MaxIt | Max. # of iterations for the linear system solver | 4

LS Tol Residual reduction by linear solver 1,0.7,0.7%, ...
Precond Preconditioner M=[]

method. The BICGSTAB, CG, GMRES, MINRES and SYMMLQ) iterative methods
are available, with GMRES being the default method. We used the iterative method
that required the fewest number of matrix-vector product evaluations for each exam-
ple. Several parameters can be specified by a user of the code; see Table 5.1. For
all examples, we used the default values for the parameters jmin, Schur, TestSpace,
Disp, LS Tol, and set LS_MaxIt to the value that gave the best results. For further
details on the code, we refer to Sleijpen’s home page.

The two implementations of the implicitly restarted Arnoldi/Lanczos method
used in our examples are furnished by the functions eigs in MATLAB versions 5.3
and 6.0, and are denoted by eigs5.3 and eigs6.0, respectively. We used patches
from The MathWorks to remedy the memory leakage in MATLAB version 6.0 and to
correct the call routines in eigs6.0.

TABLE 5.2
Parameters for eigs5.3 LM stands for largest magnitude.

Name Description Default Value
cheb Polynomial acceleration indicator 0

disp # of eigenvalues displayed in each iteration | 20

issym | Positive if the matrix is symmetric 0

k Number of desired eigenvalues 6

mazit | Maximum number of iterations 300

p Number of Arnoldi vectors 2k

sigma | Location of the desired eigenvalues LM

stagtol | Stagnation tolerance 10—

tol Tolerance 10710

v0 Starting vector rand(n,1) — 0.5

The function eigs5. 3 is discussed in Radke’s Master’s thesis [35] and implements
the Implicitly Restarted Arnoldi and Lanczos methods. It uses a shift-and-invert
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approach to accelerate convergence to the desired eigenvalues when the matrix A is
stored explicitly. To avoid factorization of matrices of the form A — sI,,, s € R,
we supplied a MATLAB function for the evaluation of matrix-vector products with
A. The eigsb.3 function then does not factor matrices of the form A — sI,,, and
instead applies an acceleration polynomial to determine a few desired eigenvalues and
associated eigenvectors of the matrix A; see [35, 42] for details. A user may choose the
values of several parameters that affect the performance of the eigs5.3 code. Table
5.2 lists these parameters and their default values. In all examples, we set stagtol to
machine precision, disp = 0, and issym = 1; see MATLAB version 5.3 for further
details on the parameter values.

TABLE 5.3
Parameters for eigs6.0. eps stands for machine epsilon and is about 2.2 - 10716, LM stands
for largest magnitude.

Name Description Default Value
cholM | Cholesky factorization of the matrix M 0

disp Display eigenvalues 1

isreal Positive if the matrix is real 1
18sym Positive if the matrix is symmetric 0

k Number of desired eigenvalues 6
mazxit Maximum number of iterations 300

p Number of Arnoldi vectors 2k
permM | Permutation of the Cholesky factorization | [1: n]
stgma Location of the desired eigenvalues LM

tol Tolerance eps

v0 Starting vector random

The function eigs6.0 uses a C-mex file called ARPACKC that processes the in-
put and calls compiled FORTRAN subroutines of ARPACK; see [25] for a detailed
description of the ARPACK code. MATLAB version 6.0 contains the following com-
piled FORTRAN subroutines of ARPACK: dsaupd, dseupd, dnaupd, dneupd, znaupd
and zneupd. An important difference between the functions eigs5.3 and eigs6.0 is
that only the former has the polynomial acceleration option cheb, which is used to
determine nonextreme eigenvalues; see Sorensen and Yang [42]. When using eigs6.0
to determine nonextreme eigenvalues and associated eigenvectors, a user must sup-
ply a linear system solver. This approach is attractive when it is feasible to factor
matrices of the form A — sI,, for s € R”. Since we assume that these matrices can-
not be factored, we do not compare the irbleigs code with eigs6.0 for computing
nonextreme eigenvalues and associated eigenvectors. Table 5.3 describes the param-
eters of the eigs6.0 code and their default values. In all computed examples with
the eigs6.0 code, we used the default values for isreal, chol M and permM, and we
set disp = 0 and issym = 1; see MATLAB version 6.0 for further details on these
parameters.

Table 5.4 describes parameters, whose values can be chosen by a user of the
irbleigs code. The parameter blsz defines the block-size of the block-tridiagonal
matrix T, in (2.2) and corresponds to the parameter r in the previous sections. The
parameter nbls in the irbleigs code determines the maximum number of consecutive
block-Lanczos steps and corresponds to the parameter m in the previous sections.
When the parameter chol M is positive, the upper triangular Cholesky factor R of the
matrix M in the generalized eigenvalue problem (4.1) is provided instead of the matrix
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TABLE 5.4
Parameters for irbleigs. Default values marked by superscript x are for the cases when extreme
eigenvalues of A are desired, i.e., when the value of sigma is LE (largest eigenvalue) or SE (smallest
eigenvalue). When sigma has a numerical value, and in particular when noneztreme eigenvalues of
A are desired, the default values endpt =FLT, maxdpol = n and zertyp = WL are used.

Name Description Default Value
blsz Block size 3

chol M Cholesky factorization of the matrix M 0
dispr Display Ritz values and residuals 0
eiguec Matrix of converged eigenvectors []
endpt Endpoints of damping intervals MON*
funpar | Parameters for matrix-vector product function | []

k Number of desired eigenvalues 3

nbls Number of blocks 3
mazxit Maximum number of iterations 100
mazdpol | Maximum degree of the dampening polynomial | 200*
permM | Permutation of the Cholesky factorization [1:n]
zertyp Type of zeros ML*
stgma Location of the desired eigenvalues LE
sizint Size of the dampening interval 1

tol Tolerance used for convergence 106
v0 A matrix of orthonormal starting vectors randn

M. We note that a very sparse symmetric positive definite matrix M might not have
a very sparse Cholesky factor R. A suitable permutation of the rows and columns of
M may make the Cholesky factor sparser. Such a permutation can be supplied with
the vector permM, i.e., we compute the Cholesky factor of M (permM, permM). For
instance, the MATLAB function symamd can be used to determine such a permutation.
If the matrix eigvec is nonempty, then the irbleigs code determines a sequence of
Krylov subspaces that are orthogonal to the columns of the matrix eigvec. When the
columns of the matrix eigvec are made up of available orthonormal eigenvectors, the
irbleigs code is forced to determine eigenvectors that are orthogonal to the available
ones. The parameter maxdpol is the maximum number of Leja points computed before
the computations of Leja points is restarted by setting £ in (3.1) to zero. For difficult
problems, when the largest eigenvalue is much larger than the smallest eigenvalue,
a large value of maxdpol may enhance convergence; see Example 5. The parameter
zertyp determines how the zeros of the acceleration polynomial are defined. The
value WL gives weighted fast Leja points and the value ML gives mapped Leja points
described in Section 3. The value of the parameter sizint determines the length of
the interval or intervals that make up the sets K, see Section 3, and greatly affects
the rate of convergence. The value 1 gives the smallest intervals. A larger value of
sizint gives larger intervals. The value of the parameter endpt is either MON or FLT.
The former value gives monotonically increasing or decreasing endpoints of the sets
K and produces a nested sequence of sets. The value FLT allows the endpoint(s) of K
closest to the desired eigenvalues to vary in a nonmonotonic fashion. The parameter
sigma determines which eigenvalues will be computed. The value LE of sigma yields
approximations of the k largest eigenvalues of A and the value SE gives approximations
of the k smallest eigenvalues. A numerical value of sigma yields approximations of
k eigenvalues in a vicinity of the value of sigma. The parameter tol corresponds
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to € in (2.13) and determines how accurately the computed Ritz pairs approximate
eigenpairs of the matrix A. The value of ||A|| in (2.13) is approximated by the absolute
value of the Ritz value of largest magnitude determined during the computations. The
parameter funpar allows the user to pass additional parameters to the function for the
evaluation of matrix-vector products with A. Finally, the parameter dispr determines
the display of Ritz values during the computations. When dispr > 0, the sequence of
computed approximations of the desired eigenvalues is displayed. This allows a user
to follow the progress of the computations. The default value dispr = 0 only gives the
output of the accepted eigenvalue approximations. In all examples we used default
values for the parameters chol M, dispr, eigvec, funpar, permM, and endpt.

There are numerous choices and combinations of parameter values for each one
of the methods. Some choices and combinations yield faster convergence than others.
The performances reported in this section are typical for the methods.

In all computed examples we determined the initial Lanczos block V, for the
irbleigs code by generating an n x blsz matrix with entries sampled from the stan-
dard normal distribution, and then orthonormalizing the columns. The initial vector
v0 for the jdqr, eigsb5.3 and eigs6.0 codes was chosen to be the first column of V.

In numerous computed examples we found that if the value of the parameter tol in
jdar, eigsb.3 and eigs6.0 is not chosen sufficiently small, these codes may be unable
to detect some eigenvalues of multiplicity larger than one. Since the irbleigs code
implements a block-Lanczos method, it generally determines the correct multiplicity
even for non-tiny values of tol when the block-size is larger than or equal to the
multiplicity. In the computed examples with multiple eigenvalues, we let, for each
one of the codes jdqr, eigsb.3, and eigs6.0, the parameter tol be equal to the
smallest power of 1/10 for which the code computes the desired eigenpairs to about
the same accuracy as irbleigs with proper multiplicity.

In all examples the matrix A was accessed only by calls to a function with input
z € R" and output Az. This approach is “matrix-free” in the sense that the matrix A
does not have to be stored. For several of the examples the function for matrix-vector
product evaluation was written in C and interfaced with MATLAB using MEX files;
see [28]. The matrix-free approach allowed us to work with matrices of very large size
and prevented the codes eigs5.3 and eigs6.0 from factoring A. The CPU times (in
seconds) recorded were determined using the tic-toc commands in MATLAB.

All numerical experiments for the present paper, except for Example 4, were
carried out using MATLAB version 6.0 on a Gateway E-5200 workstation with two
450 MHz (512k cache) Pentium III processors and 128 MB (100 MHz) of memory.
In particular, we moved the code eigs5.3 to MATLAB version 6.0 to make a fair
comparison of the performance of all codes possible. Machine epsilon was 2.2 - 10716,

A comparison of a preliminary version of the IRBL method with the 1996 FOR-
TRAN code for ARPACK by Lehoucq at al. [24] and the FORTRAN code LASO2 by
Scott [39] is reported in [4]. This comparison showed the IRBL method to perform
significantly better than the other codes when Krylov subspaces with only few vectors
can be stored. This is consistent with our experience with the irbleigs code.

Example 1 (Smallest eigenvalues). Let A be the 40000 x 40000 matrix obtained
by discretizing the 2-dimensional negative Laplace operator on the unit square by the
standard 5-point stencil with Dirichlet boundary conditions. We wish to determine
the eigenpairs associated with the 3 smallest eigenvalues of A. The eigenvalues of the
matrix A are known and the second and third smallest eigenvalues of A coincide, i.e.,

)\1<)\2=/\3<...;
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TABLE 5.5
Ezample 1: Parameter values. Default values are marked by superscript x. Preconditioning
option D denotes the diagonal preconditioner diag(A) that consists of the (main) diagonal of the
matriz A. SR stands for smallest real part and SA for smallest algebraic.

irbleigs jdar eigsb.3 eigs6.0
blsz = 2,3* jmazx = 20 cheb = 0*,1 k=3
k=3 k=3 k=3 mazit = 1000
nbls = 5,3* MazIt = 9000 mazit = 1000 p=20
maxit = 1000 Precond=[]*,D | p=20 sigma =SA
mazxdpol = 200* | sigma =SR sigma =SR tol = 1078*,107190
zertyp =ML*,WL | tol = 107210~ | tol = 10719*, 10712
sigma =SE LSolver =CG
sizint = 1* LS MaxIt = 20
tol = 1076~

TABLE 5.6
FEzample 1. 40000 x 40000 discretized negative Laplace operator. Superscript = indicates that
multiple eigenvalues were missed.

irbleigs
# matrix-vector | CPU | magnitude of
zertyp | blsz/nbls products time | largest error
ML 3/3 1791 301s 2.99-107%
WL 3/3 1422 244s 1.43-10°8
ML 2/5 2860 515s | 1.56-108
WL 2/5 3890 713s 1.05-107°
jdqr
# matrix-vector | CPU | magnitude of
tol Precond products time | largest error
1010 None 1425* 1875s | 2.78-1071¢
10710 | diag(A) 1425* 1926s | 2.56-10"1'6
1012 None 2307 3302s | 2.59-10716
10712 | diag(A) 2349 3501s | 2.80-101¢
eigsb.3
# matrix-vector | CPU | magnitude of
tol cheb products time | largest error
10-10 0 1926* 2093s | 8.63-10~1'7
10710 1 2647* 3767s | 2.66- 10716
10712 0 10378 9975s | 1.08-1071°
10712 1 3057* 4338s | 2.59-10716
eigs6.0
matrix-vector magnitude o
# i CPU itude of
tol products time | largest error
107% 3135* 384s | 7.84-10717
10-10 5191 650s 1.63-10716
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see, e.g., [43, Section 8.4]. We would like the computed Ritz values to satisfy (2.13)
with e = 1079,

The parameter values used for the different methods are given by Table 5.5. It is
clear from Table 5.6 that the irbleigs code requires the smallest number of matrix-
vector product evaluations with the matrix A and the smallest amount of computer
memory. Throughout this paper, the number of matrix-vector product evaluations
shows the number of evaluations of matrix-vector products Aw of the n X n matrix A
with a single n-vector w.

Table 5.6 shows that the eigs5.3, eigs6.0, and jdqr codes did not always detect
both multiple eigenvalues. Furthermore, the use of the polynomial acceleration option
cheb =1 in the eigs5.3 code caused the multiple eigenvalue to be missed regardless
of how small the value of the parameter tol was selected. The column labeled “largest
magnitude of error” in Table 5.6 displays the magnitude of the largest error in the
computed approximations of the three desired eigenvalues. We remark that the small
values of the parameter tol required by the jdqr, eigs5.3 and eigs6.0 codes in
order to determine the proper number of eigenvalues in the vicinity of the double
eigenvalue yields computed eigenvalues with high accuracy. The table shows that
using the diagonal preconditioner diag(A) did not reduce the number of matrix-vector
product evaluations required by the jdqr code.

This example illustrates that the irbleigs code is able to determine accurate
approximations of the desired eigenvalues and requires fewer matrix-vector product
evaluations than the other methods. The irbleigs code requires the storage of at
most 10 Lanczos vectors, while the other codes were allowed storage of 20 basis vectors.
Decreasing the number of basis vectors for the other codes to 10 increased the number
of matrix-vector product evaluations required significantly.

Note that eigs6.0 requires less computational time than eigs5.3 even when
the number of matrix-vector product evaluations is larger. This depends on that the
eigs6.0 code is more efficient. We expect that a FORTRAN implementation of the
IRBL method with a MEX user interface for MATLAB would require significantly
less execution time than the irbleigs code available. O

TABLE 5.7
Ezample 2: Parameter values. Default values are marked by superscript =. Preconditioning
option D denotes the diagonal preconditioner diag(A).

irbleigs jdar eigsb.3
blsz = 3* jmax = 15 cheb =1
k=5 k=5 k=5
nbls =5 MazIt = 15000 mazit = 2000
mazit = 2000 | Precond=[]*,D |p=15
mazdpol = n* | sigma =10 sigma =0
zertyp =WL* | tol = 106 tol = 106
sigma =0 LSolver =MINRES
sizint = 1* LS MaxIt =100
tol = 10~6*

Example 2 (Interior eigenvalues). We consider a matrix that arises from the
Anderson model of localization in quantum physics for investigation of quantum me-
chanical effects of disorder; see [15] for more details. The matrix, denoted by A, is real
symmetric and indefinite. The diagonal entries represent disorder and are uniformly
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TABLE 5.8
Ezample 2. Anderson model of localization.

irbleigs eigsb.3 jdar

# matrix-vector | CPU | # matrix-vector | CPU | # matrix-vector | CPU
products time products time products time

1 17145 176s 43112 268s 35062 289s
2 18615 194s 64608 405s 41021 352s
3 13770 135s 41668 261s 39506 327s
4 14520 147s 50761 316s 35668 301s
5 14820 147s 46741 289s 22134 183s

Fic. 5.1. The sparsity pattern of a 125 X 125 matriz for the Anderson model of localization.
The matriz has 725 nonvanishing entries.

distributed random numbers in the interval [52,4]. The nonvanishing off-diagonal
entries are determined by the probability that electrons move from one site to a neigh-
boring site; they are normalized to be unity. Figure 5.1 shows the sparsity pattern of
such a matrix of size 125 x 125.

The eigenvalues of A represent quantum mechanical energy levels. Of particular
interest are the eigenvalues closest to the origin. In the present example, we let
w := 16.5; this models the critical disorder case. The order of the matrix is n = 1728.
We would like to compute the five eigenvalues closest to the origin.

We computed approximations of the desired eigenvalues for five matrices of this
kind with the irbleigs, eigs5.3 and jdqr codes. The values of the parameters used
for the methods are displayed in Table 5.7. The number of matrix-vector product
evaluations and the CPU times required for each one of these matrices is reported
in Table 5.8. The smallest eigenvalue of each matrix generated is about —10, and
the largest eigenvalue about 10. The eigenvalue closest to the origin is of magnitude
from about 1072 to about 1072. For instance, the first one of the five matrices
generated had the smallest eigenvalue —10.24, the largest eigenvalue 10.21, and the
five eigenvalues closest to the origin were —0.020, —0.013, 0.0011, 0.0058 and 0.019.

The choice of parameters allows storage of at most 15 basis vectors for each
method. Table 5.8 shows the eigs5.3 and jdgr codes to require substantially more
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matrix-vector product evaluations than the irbleigs code. Use of the diagonal pre-
conditioner diag(A) did not reduce the number of matrix-vector product evaluations
required by the jdqr code. O

TABLE 5.9
Ezample 3: Parameter values. Default values are marked by superscript *. Preconditioning
option D denotes the diagonal preconditioner diag(A).

irbleigs jdar eigsb.3
blsz = 2,3* jmax = 12 cheb =1
k=6 k=6 k=6
nbls = 6,4 MaxIt = 100* maxit = 300*
mazit = 100* Precond=[1*, D p=12

maxdpol = n*

sigma = 0.01205

sigma = 0.01205

zertyp =WL* tol =107%,1078*,10~° | tol = 106,108
sigma = 0.01205 | LSolver =GMRES

sizint = 1* LS MaxIt = 12

tol = 10~6*

TABLE 5.10
Ezample 3. 362 x 362 PLAT362 Harwell-Boeing matriz. Superscript x indicates that not all
maultiple eigenvalues were found.

irbleigs
# matrix-vector | CPU | magnitude of
blsz/nbls products time | largest error
2/6 432 2.01s | 2.74-10"12
3/4 528 2.08s | 1.12-10712
jdagr
# matrix-vector | CPU | magnitude of
tol products time | largest error
107° 542* 3.38s | 1.22-107™T
10-8 922* 5.53s | 8.36-10716
1079 1197 6.89s | 3.66-10"16
eigsb5.3
# matrix-vector | CPU | magnitude of
tol products time | largest error
107° 651* 313s | 4.01-1077
10-8 1081 4.67s | 3.64-10716

Example 3 (Interior eigenvalues). We consider the 362 x 362 matrix PLAT362
from the Harwell-Boeing Sparse Matrix Collection [14]. This matrix arises in a finite
difference model associated with the North Atlantic Ocean. Its eigenvalues are known
to be of multiplicity two. The eigenvectors associated with eigenvalues in the interval
I := [0.001,0.024] correspond to natural modes that contribute to global tides and
therefore are of interest. We seek to determine six eigenpairs associated with eigenval-
ues close to the midpoint 0.01205 of the interval I. Table 5.9 displays the parameter
values used for the different codes.
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Table 5.10 shows that the irbleigs code did not miss any multiple eigenvalues,
and required the fewest matrix-vector product evaluations and the least CPU time.
Since we know that each eigenvalue is of multiplicity two, we chose the block-size to
be two. The eigs5.3 and jdqr codes failed to find any multiple eigenvalues when
tol = 107%. Decreasing the tolerance to tol = 10~%, the eigs5.3 code was able to
detect all multiple eigenvalues, but this resulted in a significant increase in the number
of matrix-vector product evaluations and in CPU time. The jdqr code was only able
to capture one multiple eigenvalue when tol = 10~8. Decreasing the tolerance further
to tol = 1079, the jdqr code successfully determined all multiple eigenvalues. When
the diagonal preconditioner diag(A) was used for the jdgr code, no eigenvalues were
found within the default maximum number of iterations. O

TABLE 5.11

Ezample 4: Parameter values. Default values are marked by superscript x. LR stands for
largest real part and LA for largest algebraic.

irbleigs jdar eigsb.3 eigs6.0
blsz=1,2 jmax = 5,10 cheb = 0* k=2
k=2 k=2 k=2 maxit = 300*
nbls =5 MaxIt = 1000 maxit = 300* | p=5,10
maxit = 100* Precond = [ ]* p=5,10 sigma =LA
mazdpol = 200* | sigma =LR sigma =LR tol =107°
zertyp = ML* tol =107° tol =107°
sigma =LE* LSolver =MINRES,CG
sizint = 1* LS MaxIt =10
tol =107°

Example 4 (Largest eigenvalue). Let A be the matrix S3DKT3M2 from the
Harwell-Boeing Sparse Matrix Collection [14]. This is a 90449 x 90449 real symmet-
ric positive definite matrix with 3753461 nonzero entries. It is one of the largest
symmetric matrices in this matrix collection. The matrix stems from a finite element
discretization of a cylindrical shell. Its largest and smallest eigenvalues are 8.7984-103
and 2.4269 - 1078, respectively; see the web site http://math.nist.gov/MatrixMarket.
The second and third largest eigenvalues, obtained from numerical calculations, are
8.7967 - 10% and 8.7939 - 10%, respectively. We seek to compute the two largest eigen-
values of A. These eigenvalues are close, but simple. We used the parameter values
displayed in Table 5.11 for the different codes.

The computations for this example were carried out in MATLAB version 6.5 on
a Dell Precision workstation 530 with two 2.4 GHz (512k cache) Xeon processors and
2.0 GB (400 MHz) of memory.

This example shows that the irbleigs code can compute eigenvalues of a very
large matrix quickly and efficiently with a Krylov subspace of only 5 Lanczos vectors.
Table 5.12 shows the other methods to require more than 4 times as many matrix-
vector product evaluations when storage of only 5 Lanczos vectors is allowed. The
superior performance of the irbleigs code, compared with the codes eigs5.3 and
eigs6.0, depends on the different choices of shifts used by the codes.

When Krylov subspaces of 10 vectors were allowed, all methods successfully de-
termined the two largest eigenvalues. Table 5.12 shows the irbleigs code to be
competitive in this situation also.

Several different values were used for the parameter LS_Max It of the jdqr code;
the best results were achieved for LS_MazIt = 10. The results displayed for the
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TABLE 5.12
Ezample 4: 90449 x 90449 S3DKT3M2 Harwell-Boeing matriz. * MINRES was used to solve
the linear system in jdgr. ** CG was used to solve the linear system in jdar. The magnitude of
largest error only pertains to the largest eigenvalue. eigs5.3 was unable to compute two eigenvalues
with only 5 Lanczos vectors.

irbleigs
# matrix-vector | CPU | magnitude of
blsz/nbls products time | largest error
1/5 350 98s 1.79-107%
2/5 680 129s 6.39-1074
jdqr
# Lanczos | # matrix-vector | CPU | magnitude of
vectors products time | largest error
5 1543* 384s | 9.82-10~M
10 832** 203s | 1.32-10710
eigsb.3
# Lanczos | # matrix-vector | CPU | magnitude of
vectors products time | largest error
5 — —_ _
10 1093 465s | 8.32-107°
eigs6.0
# Lanczos | # matrix-vector | CPU | magnitude of
vectors products time | largest error
5 2632 608s 8.08-10 1
10 753 174s 2.42-107*

jdqr code are for the iterative method that required the smallest number of matrix-
vector product evaluations. The required tolerance for the jdqr code was the same
as for the other codes, but when the computations were terminated by the code, very
accurate eigenvalue approximation had been determined. The use of the diagonal
preconditioner diag(A) in the jdqr code did not reduce the number of matrix-vector
product evaluations required. O

Example 5 (Generalized eigenvalue problem). We consider a generalized eigen-
value problem (4.1), where the matrices H and M are chosen to be the matrices
BCSSTKO08 and BCSSTMO08 from the Harwell-Boeing Sparse Matrix Collection [14].
These matrices are of size 1074 x 1074 and arise from dynamic analysis in structural
engineering for TV studios. The matrix BCSSTKOS is a Hermitian positive definite
stiffness matrix and BCSSTMO08 is a Hermitian positive definite mass matrix.

We seek to determine the four smallest eigenvalues. They are about 6.9, 18.14202,
18.142366 and 18.142366. The largest eigenvalue is about 1.7 - 107 and equals the
spectral radius of the matrix A given by (4.2). This example poses many difficulties
for eigensolvers because there are several clusters of eigenvalues, the second and third
smallest eigenvalues are very close, the third smallest eigenvalue is numerically of
multiplicity two and the spectral radius of the matrix A defined by (4.2) is much
larger than any one of the desired eigenvalues.

We use the Cholesky factorization of the mass matrix M. With the parameter



26 J. Baglama et al.

mazit = 5000 and the other parameters for the irbleigs code assigned their default
values, the code required 14283 matrix-vector product evaluations with the matrix H
and 147 seconds of CPU time. The magnitude of the largest error in the computed
approximations of the desired eigenvalues was 2.15-10~!. The large error depends on
the large spectral radius.

To increase the rate of convergence and reduce the error in the computed eigen-
value approximations, we set maxdpol = 1000, tol = 1078, mazit = 5000, and
sizint = 2. Using these new values of the parameters, the irbleigs code required
12315 matrix-vector product evaluations with the matrix H and 126 seconds of CPU
time. The magnitude of the largest error in the computed approximations of the
desired eigenvalues was reduced to 6.6 - 1075. Both runs with the irbleigs code
required storage of only 9 Lanczos vectors.

For comparison, we also tried to compute the desired eigenvalues with the eigs6.0
code using the parameter values tol = 1078, p = 9, and maxit = 5000. This code
failed to determine the four desired eigenvalues within 50000 matrix-vector product
evaluations. Increasing the tolerance to tol = 1075 and increasing the number of
Lanczos vectors p to 20 did not help; eigs6.0 still failed to determine the desired
eigenvalues within 50000 matrix-vector product evaluations. The eigs5.3 code was
not able to determine these eigenvalues either. The jdqr code is not designed for
generalized eigenvalue problems and would require a different function for matrix-
vector product evaluation than the one used for irbleigs and eigs6.0. We therefore
do not report the performance of the jdqr code. O

Example 6 (Singular values). Consider the 1033 x 320 matrix WELL1033 and
the 1850 x 712 matrix WELL1850 from the set LSQ in the Harwell-Boeing Sparse
Matrix Collection [14]. These matrices arise from surveying problems. The condition
number of a matrix C € R™*™  m > n, of full rank is given by x(C) := 01 /0oy, where
o1 and o, denote the largest and smallest singular values of C, respectively; cf. (4.4).
We can compute the condition number of the matrix C' by determining the largest
and smallest positive eigenvalues of the matrix A € R(™m+7)x(m+n) defined by (4.3).
Note that the matrix A is not explicitly formed; only a function for the evaluation of
matrix-vector products with the matrices C' and C* is required. The computation of
the smallest positive eigenvalue of A requires the determination of eigenvalues close
to the origin. We applied the irbleigs code with parameter values ¥ = 1 + blsz,
blsz = 3, nbls = 5, maxit = 1000 and sigma = 0.

The number of matrix-vector product evaluations refers to the matrix A defined
by (4.3) with C being one of the matrices WELL1033 or WELL1850. The computation
of the smallest singular value and associated singular vectors of the matrix WELL1033
with the irbleigs code required the evaluation of 4635 matrix-vector products and
43 seconds of CPU time. The corresponding computations for the matrix WELL1850
required 3960 matrix-vector product evaluations and a CPU time of 64 seconds.

To compute the largest singular value and associated singular vectors of the matri-
ces WELL1033 and WELL1850, we set k¥ = 1 and sigma =LE. For the former matrix,
the irbleigs code required only 105 matrix-vector product evaluations and 0.84 sec-
onds of CPU time, and for the latter matrix 150 matrix-vector product evaluations and
2.17 seconds of CPU time. We obtained the approximations 1.8065/0.0109 ~ 1.66-102
and 1.7943/0.0161 = 1.11 - 10? of the condition numbers of the matrices WELL1033
and WELL1850, respectively.

We also used the code eigs5.3 with parameters k& = 4, sigma = 0, p = 15,
tol = 1078, mazit = 1000 and cheb = 1. With this choice of parameters eigs5.3
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failed to locate the smallest positive eigenvalue of the matrix A for both matrices
WELL1033 and WELL1850. Increasing the number of Lanczos vectors to p = 50 did
not help; eigsb. 3 still failed to determine the smallest positive eigenvalue.

The code jdqr with parameters k = 4, sigma = 0, jmaz = 15, MaxIt = 9000
and tol = 1079, and without preconditioner, also had difficulties to compute the
smallest positive eigenvalue of A for both matrices WELL1033 and WELL1850; over
20000 matrix-vector product evaluations with the matrix A were required.

We remark that both MATLAB versions 5.3 and 6.0 have functions svds for
computing a few singular values and associated singular vectors of a large sparse
matrix. The svds function of MATLAB version 5.3 calls eigs5.3 and the svds
function of MATLAB version 6.0 calls eigs6.0 to determine appropriate eigenvalues
and eigenvectors of the Hermitian matrix A defined by (4.3). The svds functions
of both MATLAB versions apply a shift-and-invert approach to locate nonextreme
eigenvalues of A. Therefore, these svds functions are not well suited for very large
matrices. O

6. Conclusion. This paper presents a restarted block-Lanczos method for the
computation of a few nearby extreme or nonextreme eigenvalues of a large Hermitian
matrix A. The method does not require factorization of A, and can therefore be
applied to very large problems. Numerical examples show the method to be compet-
itive with other available codes with regard to the number of matrix-vector product
evaluations required and with regard to storage demand. Applications to generalized
eigenvalue problems and the computation of a few singular values and vectors are also
discussed.
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