
Numerical Approximation of the Product of the Square
Root of a Matrix With a Vector

E. J. Allen∗, J. Baglama∗∗, and S. K. Boyd∗

Department of Mathematics and Statistics∗

Texas Tech University
Lubbock, TX 79409-1042

Department of Mathematical Sciences∗∗

Ball State University
Muncie, IN 47306

Abstract

Given an n × n symmetric positive definite matrix A and a vector ~c, two numer-
ical methods for approximating A1/2~c are developed, analyzed, and computationally
tested. The first method applies a Newton iteration to a specific nonlinear system to
approximate A1/2~c while the second method applies a step-control method to numer-
ically solve a specific initial-value problem to approximate A1/2~c. Assuming that A is
first reduced to tridiagonal form, the first method requires O(n2) operations per step
while the second method requires O(n) operations per step. In contrast, numerical
methods that first approximate A1/2 and then compute A1/2~c generally require O(n3)
operations per step.

Keywords: Matrix square root, numerical method, nonlinear system, initial-value problem,
Lanczos method

Mathematics subject classification: AMS(MOS) 65F30

1

1 Introduction

Let A be a given n × n symmetric positive definite matrix and ~c a given vector of length
n. In this investigation, numerical methods for directly approximating A1/2~c are described,
analyzed, and computationally compared. These methods differ from the approach of first
approximating A1/2 and then calculating A1/2~c which generally require O(n3) operations per
step. The numerical methods described here for directly approximating A1/2~c can be achieved
in O(n2) or in O(n) operations per step assuming that A is first reduced to tridiagonal form.
The initial reduction of A to tridiagonal form requires about 4n3/3 operations.

These numerical methods can be applied, for example, in numerical solution of stochastic
differential equations. Two specific such applications occur in population dynamics [1] and
in neutron transport [2]. In these problems, systems of Ito stochastic differential equations
arise of the form {

d~y/dt = f(~y, t) + A1/2(~y, t)d ~W (t)/dt
~y(0) = ~y(0)

(1.1)

where A(~y, t) is a known n× n symmetric positive definite matrix, vector ~y is a function of

time t, and ~W (t) is the n-dimensional Wiener process. (Any symmetric square root of A
can be substituted into (1.1). This follows from the forward Kolmogorov equation [3] which
describes the probability distribution of ~y(t). For A1/2 symmetric, the forward Kolmogorov
equation depends on the elements of A and not of A1/2.) To solve (1.1) numerically using
Euler’s method, for example, results in the iteration:

~ym+1 = ~ym + f(~ym, tm)∆t + A1/2(~ym, tm)~ηm

√
∆t (1.2)

for m = 0, 1, 2 . . . where tm = m∆t, ~ym ≈ ~y(tm), and (~ηm)i ∈ N(0, 1) for i = 1, 2, . . . , n. To
compute (1.2) at each time step, it is necessary to approximate the product A1/2(~ym, tm)~ηm

given A(~ym, tm) and ~ηm. (It does not appear possible to reformulate (1.1) or to devise a
numerical method where the square root of A does not appear in the iteration.)

Before describing the numerical methods for directly approximating A1/2~c, it is impor-
tant to review numerical methods for approximating A1/2. There has been much recent
interest in developing numerical methods for calculating A1/2 [4-16]. In particular, Lakic
and Petkovic[13] derive third-order methods, based on the Euler-Chebyshev method, for
n × n matrices with real nonnegative eigenvalues. In their second method, Tm → A1/2 as
m →∞ where B = A/‖A‖, R0 = I, S0 = B, and

Rm+1 = Rm(3
8
I + 3

4
Sm(I − 1

6
Sm))

Sm+1 = Sm(3
8
I + 3

4
Sm(I − 1

6
Sm))−2

Tm =
√
‖A‖Rm.

(1.3)

Higham[11] recommends for A symmetric positive definite the following second-order
Newton iteration in which Xm → A1/2 as m →∞ where A = RT R (Cholesky factorization),
Y0 = R, and

2

{
Ym+1 = 1

2
(Ym + Y −T

m)
Xm = Y T

m R.
(1.4)

In addition, Higham recommends using the numerically stable Schur method of Björck and
Hammarling [5] for a general n × n matrix A. In this method, first the Schur form of A is
computed, i.e. A = QTQ∗. Then A1/2 = QRQ∗ where R = T 1/2 and T is upper triangular.
The matrix R can be computed using the algorithm:

for j = 1 : n

rjj = t
1/2
jj

for i = j − 1 : −1 : 1

rij = (tij −
j−1∑

k=i+1

rikrkj)/(rii + rjj)

end
end.

(1.5)

For A symmetric positive definite, the Schur form of A is QDQ∗ where D is diagonal so
A1/2 = QD1/2Q∗. In references [5-16], many interesting methods for numerically computing
A1/2 are described. The above three methods are representative and the methods involve at
least O(n2) floating point operations per step. (For example, Lu’s method [14] requires about
10n3/3 + 5n2m/2 operations where m is an integer that depends on the desired accuracy of
the approximation.) For large systems, these methods are computationally time consuming.
The only other numerical method available for estimating A1/2~c employs a Krylov procedure
for approximating functions [17]. When the n × n symmetric matrix A is very large, then
A1/2~c can be approximated using the Krylov subspace

Km(A,~c) = span{~c, A~c, A2~c, . . . , Am−1~c} (1.6)

where m ≤ n. Let Vm = [~v1, ~v2, . . . , ~vm] be an orthonormal basis for (1.6) where ~v1 = ~c
‖~c‖2 .

The best approximation to A1/2~c from (1.6) is given by

A1/2~c ≈ ‖~c‖2VmV T
m A1/2Vm~e1 (1.7)

where ~e1 = (1, 0, . . . , 0)T . However, equation (1.7) requires A1/2Vm~e1. If the Lanczos method
is used to create the orthonormal basis Vm then we have

AVm = VmTm + ~fm~eT
m

Tm = V T
m AVm

(1.8)

where Vm is a n×m matrix, Vm~e1 = ~c
‖~c‖2 , V T

m Vm = I, Tm is a m×m symmetric tridiagonal

matrix, and ~fm satisfies V T
m

~fm = 0. Using Tm = V T
m AVm, T

1/2
m approximates V T

m A1/2Vm.
This gives the following approximation to A1/2~c:

A1/2~c ≈ ‖~c‖2VmT 1/2
m ~e1. (1.9)

3

However, application of this procedure still requires computing the square root of the tridi-
agonal matrix Tm by some numerical method such as by one of the methods described above.

In the present investigation, two numerical methods for directly approximating A1/2~c,
without explicitly approximating A1/2, are described, analyzed, and computationally com-
pared. The first method involves applying a modified Newton procedure to solve a specific
nonlinear system. The second method involves applying a step-control method to solve a
specific initial-value problem. If matrix A is initially reduced to Hessenberg form, only O(n2)
arithmetic operations per step are required in the first method to compute A1/2~c and only
O(n) operations per step are required in second method to compute A1/2~c. Reduction of A
to Hessenberg form, i.e. tridiagonal form as A is symmetric, requires about 4

3
n3 operations

but is only performed once. Specifically, A is reduced to tridiagonal form using Householder
similarity transformations to obtain

A = QT TQ (1.10)

where T is tridiagonal and QT Q = I. Then, either the Newton or the step-control numerical
method is used to calculate T 1/2~̂c where ~̂c = Q~c. Finally, A1/2~c is given by

A1/2~c = QT T 1/2~̂c = QT T 1/2Q~c. (1.11)

Only once, initially, are O(n3) operations required and that is to compute Q and T. (No-
tice that, alternatively, A can be reduced to tridiagonal form using the Lanczos method
and if m < n approximation (1.9) can be applied. However, in the present investigation,
Householder similarity tranformations appeared to provide greater accuracy and were used
to reduce A to tridiagonal form in all the numerical examples.)

Before describing these two numerical methods, it is useful to state some important
results about square roots of matrices. A nonsingular matrix always has at least one square

root [18]. A singular matrix may not have a square root. Consider, for example,

[
0 1
0 0

]
.

A nonsingular matrix may have an infinite number of square roots. For example, A =[
1 0
0 1

]
=

[
cosθ sinθ
sinθ −cosθ

]2

for any value of θ. An n × n matrix with n distinct nonzero

eigenvalues has 2n square roots [18]. Finally, a positive (semi)definite matrix has a unique
positive (semi)definite square root [19].

In the next section, a numerical method for approximating A1/2~c is described that is based
on solving a nonlinear system using a modified Newton’s method. In the third section, it
is shown that numerical solution of a certain initial-value problem yields an approximation
to A1/2~c. A step-control procedure based on the Runge-Kutta-Fehlberg method is used
to approximately solve the initial-value problem to estimate A1/2~c. These methods are
computationally compared in the fourth section. The two numerical methods are completely
different, the methods are useful for comparison purposes, and extensions of the methods
may result in additional applications.

4

2 A Modified Newton Method

Let the function F (~x) be defined as

F (~x) =

~xT~x− ~cT A~c
~xT A~x− ~cT A2~c
.
.
.

~xT An−1~x− ~cT An~c

 , (2.1)

i.e. (F (~x))i = ~xT Ai−1~x − ~cT Ai~c. Clearly, a solution of F (~x) = ~0 is ~x = A1/2~c where A1/2 is
any symmetric square root of A.

In this section, a modified Newton’s method is described and analyzed for computing the
solution of F (~x) = ~0. Consider first Newton’s method for solution of F (~x) = ~0:

~xk+1 = ~xk − (F ′(~xk))
−1F (~xk), for k = 0, 1, 2, · · · , (2.2)

with ~x0 given and where

F ′(~x) = 2

~xT

~xT A
.
.
.

~xT An−1

 . (2.3)

Applying a Newton attraction theorem [20], the following result is obtained.

Theorem 2.1 Let A1/2 be a square root of A and let ~z = A1/2~c. Assume that F ′(~z) is
nonsingular. Then there exists a δ > 0 and an open ball S about ~z, i.e. S = {~x ∈ Rn :
‖~x− ~z‖2 < δ}, such that F (~x) = ~0 has the unique solution ~z in S and the sequence {~xk}∞k=0

defined by (2.2) converges to ~z provided that ~x0 ∈ S.

Proof: See [20], Theorem 10.2.2.

Equation (2.2) can be written in the convenient form:{
~xk+1 = 1

2
~xk +~bk

F ′(~xk)~bk = ~r
(2.4)

where ~r = [~cT A~c ~cT A2~c · · · ~cT An−1~c]T . Equation (2.4) is now modified to ensure that
~xT

k ~xk = ~cT A~c = w2 for each k. Specifically,
~xk+1 = w(1

2
~xk +~bk)/wk

F ′(~xk)~bk = ~r

wk = ((1
2
~xk +~bk)

T (1
2
~xk +~bk))

1/2

(2.5)

5

where w = (~cT A~c)1/2. Equation (2.5) is the modified form of Newton’s method that is
studied in the present investigation. Before presenting an error analysis of this method, it is
worthwhile to note that often a good choice for ~x0 is given by

~x0 = w~y/‖~y‖2 (2.6)

where ~y satisfies

~y = (D1/2 + B)~c (2.7)

with BD1/2 + D1/2B = A − D, and D is the diagonal matrix associated with A, that
is Dii = Aii for 1 ≤ i ≤ n. This approximation results by letting A1/2 = D1/2 + B,
squaring this expression, and neglecting the B2 term. Matrix B can be rapidly calculated
as Bij = (A−D)ij/(D

1/2
ii + D

1/2
jj) for 1 ≤ i, j ≤ n. In addition, if the conditions of Theorem

2.1 are satisfied and ~x0 = C0~c where C0 is symmetric, then it can be shown that ~xk = Ck~c
for k = 0, 1, 2, · · · where each Ck is symmetric. In this case, the sequence {~xk}∞k=0 converges
to A1/2~c where A1/2 is symmetric.

For method (2.5), the Newton-Kantorovich theorem [20] can be applied to prove that the
method converges quadratically provided that ‖~x0 − A1/2~c‖2 is sufficiently small. However,
for this specific problem, it is simpler to directly prove a quadratic convergence result than
to show that the conditions of the Newton-Kantorovich theorem are satisfied. Therefore, the
following theorem and proof are presented in this paper.

Theorem 2.2 Let A1/2 be a square root of symmetric positive definite n× n matrix A and
define R = F ′(A1/2~c). Assume that R is nonsingular. Let ~εk = ~xk−A1/2~c where ~xk is defined

by (2.5). Let p = (
n−1∑
m=0

‖A‖2m
2)1/2. If ‖~ε0‖2 ≤ q = min(w, 1

9
p‖R−1‖2) where w2 = ~cT A~c, then

‖~εk+1‖2 ≤ 8p‖R−1‖2‖~εk‖2
2 for k = 0, 1, 2, . . . and ~xk → A1/2~c as k →∞.

Proof: The proof uses an inductive argument. Assume that ‖~εk‖2 ≤ q. It will be shown
that this implies that ‖~εk+1‖2 ≤ q and that ‖~εk+1‖2 ≤ 8p‖R−1‖‖~εk‖2

2. These inequalities
imply that ~εk → ~0 as k →∞.

First, since ~xk = A1/2~c + ~εk, by (2.5),

A1/2~c + ~εk+1 = w(
1

2
A1/2~c +

1

2
~εk +~bk)/wk. (2.8)

Define ~zk by

~zk = ~bk −
1

2
A1/2~c +

1

2
~εk. (2.9)

Then (2.8) becomes:

~εk+1 = (A1/2~c + ~zk)/(1 + rk)
1/2 − A1/2~c (2.10)

where

6

rk = (2~zT
k A1/2~c + ~zT

k ~zk)/w
2. (2.11)

Taking the product ~εT
k+1~εk+1 gives

‖~εk+1‖2
2 = 2w2 − 2(A1/2~c)T (A1/2~c + ~zk)/(1 + rk)

1/2. (2.12)

Consider ~zk. As F ′(~εk + A1/2~c)~bk = ~r, then

F ′(~εk + A1/2~c)~zk =
1

2
F ′(~εk)~εk. (2.13)

Letting Ck = F ′(~εk), (2.13) becomes

(R + Ck)~zk =
1

2
Ck~εk. (2.14)

But ‖Ck‖2 ≤ 2p‖~εk‖2 and by hypothesis, ‖~εk‖2 ≤ q. Hence R + Ck is nonsingular as
R + Ck = R(I + R−1Ck) and ‖R−1Ck‖2 ≤ 2‖R−1‖pq ≤ 2

9
. Therefore, ~zk = 1

2
(R + Ck)

−1Ck~εk

and it follows that

‖~zk‖2 ≤
1

2
‖R−1‖2‖Ck‖2‖~εk‖2/(1−

2

9
)

≤ 9

7
p‖R−1‖2‖~ε‖2

2 ≤
1

7
w. (2.15)

Returning to rk, the above inequalities imply that

|rk| ≤
2

w
‖~zk‖2 +

1

w2
‖~zk‖2

2

≤ 15

7w
‖~zk‖2 ≤

135

49w
p‖R−1‖2‖~εk‖2

2 ≤
15

49
. (2.16)

Considering (2.12), but with (1 + rk)
−1/2 expanded three terms in a Taylor series, gives

‖~εk+1‖2
2 = 2w2 − 2(A1/2~c)T (A1/2~c + ~zk)(1−

1

2
rk +

3

8
(1 + γk)

−5/2r2
k) (2.17)

for some γk with 0 ≤ |γk| ≤ |rk| ≤ 15
49

. The above expression can be simplified to

‖~εk+1‖2
2 = 2(~zT

k A1/2~c)2/w2 + ~zT
k ~zk + (A1/2~c)T~zk~z

T
k ~zk/w

2

−2(A1/2~c)T (A1/2~c + ~zk)
3

8
(1 + γk)

−5/2r2
k. (2.18)

Applying the Cauchy-Scharwz inequality and substituting in the lower bound on γk yields

‖~εk+1‖2
2 ≤

22

7
‖~zk‖2

2 +
3

4
(
49

34
)5/2w(w + ‖~zk‖2)r

2
k. (2.19)

7

Finally, applying inequalities (2.15) and (2.16),

‖~εk+1‖2 ≤ (13)1/2‖~zk‖2 ≤ 8p‖R−1‖2‖~εk‖2
2. (2.20)

Thus, as ‖~εk‖2 ≤ q, then ‖~εk+1‖2 ≤ ‖~εk‖2 ≤ q and the inductive proof is complete.

There are two computational difficulties associated with applying method (2.5). First,
even with A reduced to tridiagonal form, the number of operations per step is O(n3). How-
ever, the quasi-Newton procedure, Broyden’s method [20,21] can be applied in O(n2) oper-
ations per step for this problem. A modified Broyden’s method, analogous to method (2.5),
has the form for k = 0, 1, 2, . . . ,

~vk+1 = ~xk −HkF (~xk)
~xk+1 = w~vk+1/(~v

T
k+1~vk+1)

1/2

Hk+1 = Hk + (~sk −Hk~yk)~s
T
k Hk/~s

T
k Hk~yk

~yk = F (~xk+1)− F (~xk)
~sk = ~xk+1 − ~xk

(2.21)

where H0 = (F ′(~x0))
−1. With A tridiagonal, method (2.21) requires only O(n2)) operations

per iteration and compares very well in accuracy with method (2.5). The second difficulty
associated with this method is that F ′(~xk) is ill-conditioned for n large. This leads to
computational problems using either method (2.5) or (2.21). To alleviate this problem, a
special Krylov subspace procedure based on the Lanczos method [22,23,24] was developed
in the present investigation and is applied with method (2.5) to decompose A into a product
of orthogonal and tridiagonal matrices at each iteration. When applied with A reduced to
tridiagonal form, this procedure also only requires O(n2) operations per step and significantly
reduces the ill-conditioning problem associated with F ′(~xk) for n large.

In this procedure, the primary iteration is (2.5). However, to compute ~bk from the linear

system F ′(~xk)~bk = ~r at each step, a special technique explained below is used. First, using
the Lanczos method with initial vector ~c, matrix A is decomposed in the form

AVc = VcTc (2.22)

where V T
c Vc = I, Tc is tridiagonal, Kc = VcRc, Kc = [~c A~c · · · An−1~c], and Rc =

[~e1 Tc~e1 · · · T n−1
c ~e1]. For A tridiagonal, this decomposition can be performed in O(n2)

operations. (Notice that this step can be skipped if matrix A is initially made tridiagonal
using the Lanczos method with vector ~c.) Next, it is noticed that

F ′(~xk)~bk = ~r (2.23)

has the form

2KT
x
~bk = KT

c A~c (2.24)

where Kx = [~xk A~xk · · · An−1~xk]. Thus,

8

~bk =
1

2
(KT

x)−1KT
c A~c (2.25)

and

~bT
k =

1

2
~cT AKcK

−1
x . (2.26)

The full nonsymmetric matrix Kx in (2.26) can be simplified by applying the Lanczos method
to matrix A with initial vector ~xk. Then,

AVx = VxTx (2.27)

where Tx is tridiagonal, V T
x Vx = I, and Kx = VxRx with Rx = [~e1 Tx~e1 · · · T n−1

x ~e1]. In the

above, however, Rx and Rc are ill-conditioned so ~bk must be expressed without using Rx and
Rc. To accomplish this, matrix M is defined as

M = RcR
−1
x . (2.28)

Then, ~bT
k becomes ~bT

k = 1
2
[~cT AVcRcR

−1
x V −1

x] = 1
2
[~cT VcTcMV T

x] so

~bk =
‖~c‖2

2
VxM

T Tc~e1 (2.29)

as V T
c ~c = ‖~c‖2~e1. Assuming that A is tridiagonal, Vx can be found by using the Lanczos

method in O(n2) operations. (This step is required for each iteration k and if A is not
initially reduced to tridiagonal form, this step would require O(n3) operations rather than
O(n2) operations.) Finally, by equating columns of the equation MRx = Rc, upper triangular
matrix M can be shown to satisfy {

~e1 = M~e1

TcM = MTx.
(2.30)

As Tc and Tx are tridiagonal, M can be efficiently calculated column by column using (2.30)
in O(n2) operations. The following MATLAB procedure illustrates one way M can be
calculated.

M = sparse(n, n);
M(1, 1) = 1;
for i = 2 : n
v1 = M(1 : i, 1 : i− 1) ∗ Tx(1 : i− 1, i− 1);
v2 = Tc(1 : i, 1 : i− 1) ∗M(1 : i− 1, i− 1);
v1(i) = 0;
M(1 : i, i) = (v2− v1)/Tx(i, i− 1);
end

The vector ~bk is now calculated using (2.29).

9

To summarize this procedure, method (2.5) is modified to the form:
~xk+1 = w(1

2
~xk +~bk)/wk

~bk = ‖~c‖2
2

VxM
T Tc~e1

wk = ((1
2
~xk +~bk)

T (1
2
~xk +~bk))

1/2

(2.31)

where the Lanczos method is used to find Tc, Tx, and Vx, and M is computed from (2.30).
Notice that this method avoids the ill-conditioned matrices F ′(~xk), Rx, and Rc and each
step can be performed in O(n2) arithmetical operations. As shown in the fourth section,
computational results obtained using method (2.31) are more stable than those obtained
using methods (2.5) or (2.21).

3 An Initial-Value Problem Method

In this section, it is assumed that the n × n symmetric positive definite matrix A satisfies
‖A‖∞ < 1. This assumption entails no loss of generality as A1/2~c = β1/2(A/β)1/2~c for β a
scalar and ‖A/β‖∞ can be made less than unity by selecting β sufficiently large.

Consider the initial-value problem{
d~x(t)/dt = −1

2
(At + (1− t)I)−1(I − A)~x(t)

~x(0) = ~c.
(3.1)

As (I−A) is nonsingular and commutes with (At+(1−t)I)−1, the solution of this initial-value
problem is

~x(t) = (At + (1− t)I)1/2~c. (3.2)

Hence, ~x(1) = A1/2~c. Furthermore, as shown in the following theorem, ~x(1) = A1/2~c where
A1/2 is the positive definite square root of A.

Theorem 3.1 The solution ~x(t) of (3.1) satisfies ~x(1) = A1/2~c where A1/2 is the positive
definite square root of A.

Proof: First, as (At + (1 − t)I)−1(I − A) is continuous on the interval 0 ≤ t ≤ 1, system

(3.1) has a unique solution on this interval [25]. Let ~x(t) =
n∑

i=1

bi(t)~zi where ~zi, 1 ≤ i ≤ n,

are orthogonal eigenvectors of A with respective eigenvalues λi, 1 ≤ i ≤ n. Substituting this
expression into (3.1) results in{

dbi(t)/dt = −1
2
(1− λi)(1 + (λi − 1)t)−1bi(t)

bi(0) = ~cT~zi/~z
T
i ~zi.

(3.3)

The solution of (3.3) is:

bi(t) = (1 + (λi − 1)t)1/2~cT~zi/~z
T
i ~zi for i = 1, 2, . . . , n. (3.4)

10

It follows that the solution ~x(t) at t = 1 is

~x(1) =
n∑

i=1

λ
1/2
i (~cT~zi)~zi/~z

T
i ~zi = A1/2~c (3.5)

where A1/2 is the positive definite square root of A.

Before continuing, it is important to note that there are an infinite number of initial-value
problems whose solution at t = 1 is A1/2~c. However, it is difficult to find an initial-value
problem as simple as (3.1) that has two important features. The first feature is that the
right-hand side of (3.1) contains no square roots and is continuous for 0 ≤ t ≤ 1. The
second feature, which will be shown below, is that (3.1) can be solved numerically using
O(n) operations per iteration if A is tridiagonal.

To estimate A1/2~c, (3.1) is solved numerically from t = 0 to t = 1. The numerical ap-
proximation obtained for ~x(1) provides an estimate of A1/2~c. There are, of course, many
accurate numerical schemes for solving initial-value system (3.1). A step-control method is
applied in the present investigation. (A step-control method is applied here to reduce the
total number of calculations required to achieve a specified error. This allows a fair com-
putational comparison of this method with the other methods.) The step-control procedure
applied here is based on the popular Runge-Kutta-Fehlberg procedure [21,26] in which the
results of two different Runge-Kutta methods (of orders 4 and 5) are combined to estimate
the error at each step and control the step size.

Although not applied computationally in the present investigation, it is worthwhile to
consider the simple Euler’s method for this problem. Euler’s method for system (3.1) has
the form: {

~xk+1 = ~xk + ∆t~rk

(I − (I − A)tk)~rk = 1
2
(I − A)~xk

(3.6)

for k = 0, 1, 2, . . . , N where ~x0 = ~c, tk = k∆t, and ∆t = 1/N . Then, ~xN ≈ ~x(1) = A1/2~c.
In addition, if A is tridiagonal and positive definite (reduced initially to Hessenburg form),
then only O(n) operations are required per time step in Euler’s method (3.6) to calculate
~xk+1 from ~xk. It is easy to see that this is likewise the case for the Runge-Kutta-Fehlberg
procedure. That is, numerical solution of (3.1) requires only O(n) operations per iteration
after initial reduction of A to tridiagonal form.

The following proposition about iteration (3.6) is conceptually useful and supports the
conclusion of Theorem 3.1. First, note that (3.6) can be put in the form:

~xN = CN−1CN−2 . . . C1C0~c (3.7)

where Ck = I − ∆t
2

(I − (I − A)tk)
−1(I − A) for k = 0, 1, 2, . . . , N − 1. Equation (3.7) and

Proposition 3.1 imply that CN−1CN−2 . . . C1C0 is an approximation to the positive definite
square root of A. (It is interesting to note that CN−1CN−2 . . . C1C0 is similar in form to an

11

approximation to A1/2 developed by Lu [14] using an entirely different approach, specifically,
a Pade′ approximation method.)

Proposition 3.1: Assume that the symmetric positive definite n × n matrix A satisfies
‖A‖∞ < 1 and that ∆t < γ = 2(1 − ‖I − A‖2)/‖I − A‖2. Then CN−1Cn−2 . . . C1C0 is
symmetric positive definite.

Proof: First note that iteration (3.6) can be written as:{
~xk+1 = (I −∆tBk)~xk for k = 0, 1, . . . , N − 1
Bk = 1

2
(I − (I − A)tk)

−1(I − A) = 1
2
(I − A)(I − (I − A)tk)

−1.
(3.8)

Note that ‖Bk‖2 ≤ 1
2
‖I − A‖2‖(I − (I − A)tk)

−1‖2 ≤ 1
2
‖I − A‖2/(1− tk‖I − A‖2) ≤ 1

2
‖I −

A‖2/(1 − ‖I − A‖2) since ‖I − A‖2 < 1. Thus, as ∆t < γ, ‖Bk‖2∆t < 1 and I − ∆tBk is
symmetric positive definite for k = 0, 1, . . . , N−1. In addition, Ck = I−∆tBk and iteration
(3.8) has the alternate form:{

~xk+1 = Ck~xk for k = 0, 1, . . . , N − 1
~x0 = ~c.

(3.9)

For k = 1, ~x2 = C1C0~x0 = C1C0~c. But (C1C0)
T = CT

0 CT
1 = C0C1 = C1C0. To see the

last equality, note that C0C1 = (I − ∆tB0)(I − ∆tB1) = (I − ∆t
2

(I − A))(I − ∆t
2

(I − (I −
A)∆t)−1)(I−A) = (I−∆t

2
(I−(I−A)∆t)−1)(I−A)(I−∆t

2
(I−A)) as (I−A)(I−(I−A)∆t)−1 =

(I− (I−A)∆t)−1(I−A). Thus, C1C0 is symmetric. Similarly, it can be shown that C2C1C0

is symmetric, C3C2C1C0 is symmetric, · · · , and CN−1CN−2 · · ·C1C0 is symmetric. As seen
earlier, Ck is symmetric positive definite for each k. In addition, C1C0 is positive definite.
To see this, notice that if C1C0~x = λ~x, then C0~x = λC−1

1 ~x so that ~xT C0~x = λ~xT C−1
1 ~x or

that λ = ~xT C0~x/~xT C−1
1 ~x > 0. As all the eigenvalues of C1C0 are positive, C1C0 is positive

definite. By an inductive argument, CN−1CN−2 · · ·C1C0 is positive definite.

In the next section, The two numerical methods (2.31) and (3.6) are computationally
compared for several matrices A. Computational experiments based on the biological or
physical examples described in [1] or [2] are not performed in the present investigation.

4 Computational Comparisons

In computational experiments, five different forms for the n× n symmetric positive definite
matrix A were considered. These were the following:

A1 = tridiagonal with diagonal elements 4 and off-diagonal elements -1,

A2 = 1
2
BT DB where B =

[
I −I
I I

]
with I the n

2
× n

2
identity matrix and D a diagonal

matrix with elements dii = i for i = 1, 2, . . . , n,

12

A3 = tridiagonal with diagonal elements 2 and off-diagonal elements -1,

A4 = BT B where bij = 1 for j ≤ i and bij = 0 for j > i, and

A5 = n× n Hilbert matrix.

The size n of matrix A was selected to be n=4, 8, 16, 32, and 64. The condition numbers,
‖A‖2‖A−1‖2, of the above matrices for these values of size n are tabulated in Table 4.1.

Table 4.1 Condition Numbers of Matrix A For Five Values of Size n

Matrix A n=4 n=8 n=16 n=32 n=64
A1 2.36 2.77 2.93 2.98 3.00

A2 4.00 8.00 16.00 32.00 64.00

A3 9.47 32.2 116.5 440.7 1711.7

A4 29.3 113.5 437.7 1708.7 6740.7

A5 1.55× 104 1.53× 1010 2.02× 1022 4.75× 1046 3.48× 1095

In all the calculations, the vector ~c was assigned the entries ci = −1 for i odd and ci = 3
for i even. (In order to check and compare computational results, a specific vector was
selected for ~c rather than, for example, assigning ~c as a random vector.) Five methods were
computationally compared for calculating A1/2~c. Methods (1.3) and (1.4), that involved first
calculating A1/2 and then computing A1/2~c, were compared with Broyden method (2.21), the
Newton-Lanczos procedure (2.31), and the Runge-Kutta-Fehlberg(RKF) method for (3.1).
Iterations continued in the methods until the error ‖F (~xk)‖2 satisfied ‖F (~xk)‖2 < 10−5 with
F defined in (2.1). Iterations (or steps) are defined in the RKF procedure as the number
of intervals in t required to achieve the desired accuracy. The results of the computations
for these five methods for all the matrices studied are given in Table 4.2. A * in the table
signifies that the method failed to converge in 1000 iterations for that matrix.

Based on the calculational results obtained, which are summarized in Table 4.2, the
Newton-Lanczos method (2.31) and the RKF method (3.1) were the fastest methods com-
putationally for the matrices studied. (Recall that the computational work per iteration is
proportional to n3 for methods (1.3) and (1.4), proportional to n2 for methods (2.21) and
(2.31), and proportional to n for method (3.1).) Method (2.31) is clearly superior to method
(2.21) (as well as to (2.5)) as methods (2.21) and (2.5) suffer from ill-conditioning as ma-
trix size n increases. Methods (3.1) and (1.3) converged for all matrices studied. However,
method (3.1) is faster computationally than method (1.3) for large matrices requiring only
O(n) operations per step.

Table 4.2 Number of Iterations to Convergence for Approximating A1/2~c

13

Matrix Size n Method (1.3) Method (1.4) Method (2.21) Method (2.31) Method (3.1)
A1 4 3 4 230 4 2
A2 4 2 3 126 4 3
A3 4 4 5 30 5 4
A4 4 4 6 987 12 7
A5 4 7 10 * 14 55
A1 8 3 4 * 3 3
A2 8 2 3 * 6 6
A3 8 4 6 * 6 10
A4 8 5 7 * 65 14
A5 8 9 13 * * 78
A1 16 3 4 * 4 4
A2 16 3 4 * 8 8
A3 16 5 7 * 6 15
A4 16 6 8 * * 18
A5 16 10 * * * 92
A1 32 3 4 * 4 4
A2 32 3 4 * 7 11
A3 32 5 8 * 7 20
A4 32 6 9 * * 24
A5 32 10 * * * 105
A1 64 3 4 * 4 5
A2 64 3 4 * * 10
A3 64 6 8 * 7 25
A4 64 7 10 * * 30
A5 64 10 * * * 118

5 Summary

Two numerical methods for calculating A1/2~c, given an n × n symmetric positive definite
matrix A and a vector ~c, were derived, analyzed, and computationally tested. The two
methods only require either O(n2) or O(n) arithmetic operations per iteration assuming that
A is initially reduced to tridiagonal form. (Reduction to tridiagonal form by Householder
similarity transformations requires about 4

3
n3 operations but is only performed once.) The

first numerical method applies a Newton iteration to a certain nonlinear system. To reduce
problems associated with the solution of an ill-conditioned linear system at each iteration, a
special Krylov subspace procedure is applied in this numerical method. The second numerical
method approximately solves a certain initial-value problem whose solution at t = 1 is A1/2~c
where A1/2 is the positive definite square root of A. A step-control procedure based on the
Runge-Kutta-Fehlberg method was applied in the present investigation to numerically solve
the initial-value problem. Both the Newton-Lanczos method and the step-control method

14

rapidly converged for a variety of matrices studied. In particular, for large matrices, the two
methods appear to be computationally superior to the procedure of first calculating A1/2

and then computing the product A1/2~c. Future work includes development and analysis of
efficient numerical methods for approximating A1/m~c for general matrices A.

6 Acknowledgements

Partial support for this research was provided by National Science Foundation Grants DMS-
9622690 and DMS-9626417. The authors are grateful to the anonymous referee whose in-
sightful comments resulted in an improved paper.

References

[1] E. J. Allen, Stochastic Differential Equations and Persistence Time of Two Interacting
Populations, Dynamics of Continuous, Discrete, and Impulsive Systems, 5, 271-281
(1999).

[2] W. D. Sharp and E. J. Allen, Stochastic Neutron Transport Equations for Rod and
Plane Geometries, Annals of Nuclear Energy, 27, 99-116 (2000).

[3] T. Gard, Introduction to Stochastic Differential Equations, Springer-Verlag, New York
(1987).

[4] S. K. Boyd, Numerical Methods for Approximation of Square Roots of Positive Definite
Matrices in Matrix-Vector Products, Thesis in Mathematics, Texas Tech University,
Lubbock (1999).

[5] A. Björck and S. Hammarling, A Schur Method for the Square Root of a Matrix, Linear
Algebra and Its Applications, 52/53, 127-140 (1983).

[6] E. D. Denman, Roots of Real Matrices, Linear Algebra and Its Applications, 36, 133-139
(1981).

[7] V. Druskin and L.Knizhnerman, Extended Krylov Subspaces: Approximation of the
Matrix Square Root and Related Functions, SIAM J. Matrix Anal. Appl., 19, 755-771
(1998).

[8] M. A. Hasan, A Power Method for Computing Square Roots of Complex Matrices,
Journal of Mathematical Analysis and Applications, 213, 393-405 (1997).

[9] N. J. Higham, Newton’s Method for the Matrix Square Root, Mathematics of Compu-
tation, 46, 537-549 (1986).

15

[10] N. J. Higham, Computing Real Square Roots of a Real Matrix, Linear Algebra and Its
Applications, 88/89, 405-430 (1987).

[11] N. J. Higham, Stable Iterations for the Matrix Square Root, Numerical Algorithms, 15,
227-242 (1997).

[12] W. D. Hoskins and D. J. Walton, A Faster, More Stable Method for Computing the pth
Roots of Positive Definite Matrices, Linear Algebra and Its Applications, 26, 139-163
(1979).

[13] S. Lakic and M. S. Petkovic, On the Matrix Square Root, ZAMM · Z. Angew. Math.
Mech., 78, 173-182 (1998).

[14] Y. Y. Lu, A Pade′ Approximation Method for Square Roots of Symmetric Positive
Definite Square Matrices, SIAM J. Matrix. Anal. Appl., 19, 833-845 (1998).

[15] F. Stummel and K. Hainer, Introduction to Numerical Analysis, Scottish Academic
Press, Edinburgh (1980).

[16] Y. T. Tsay and L. S. Shieh and J. S. H. Tsai, A Fast Method for Computing Principal
nth Roots of a Complex Matrix, Linear Algebra and Its Applications, 76, 206-221 (1986).

[17] M. Hochbruck and C. Lubich, On Krylov Subspace Approximations to the Matrix Ex-
ponential Opperator, SIAM J. Numer. Anal., 34, 1911-1925 (1997).

[18] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge (1991).

[19] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge
(1985).

[20] J. M. Ortega and W. C. Reinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York (1970).

[21] R. L. Burden and J. D. Faires, Numerical Analysis, 5th edition, PWS-Kent Publishing
Company, Boston (1993).

[22] C. Lanczos, An Iterative Method for the Solution of the Eigenvalue Problem of Lin-
ear Differential and Integral Operators, Journal of Research of the National Bureau of
Standards, 45, 225-282 (1950).

[23] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company,
Boston (1996).

[24] J. W. Demmel, Applied Numerical Linear Algebra, Society for Industrial and Applied
Mathematics, Philadelphia (1997).

16

[25] F. Brauer and J. A. Nohel, The Qualitative Theory of Ordinary Differential Equations,
Dover Publications, Mineola, New York (1989).

[26] D. R. Kincaid and E. W. Cheney, Numerical Analysis: Mathematics of Scientific Com-
puting, Brooks/Cole, Pacific Grove, California (1991).

17

