ADAPTIVELY PRECONDITIONED GMRES ALGORITHMS

J. BAGLAMA *, D. CALVETTI ', G. H. GOLUB !, AND L. REICHEL §

Abstract. The restarted GMRES algorithm proposed by Saad and Schultz [22] is one of the
most popular iterative methods for the solution of large linear systems of equations Az = b with a
nonsymmetric and sparse matrix. This algorithm is particularly attractive when a good precondi-
tioner is available. The present paper describes two new methods for determining preconditioners
from spectral information gathered by the Arnoldi process during iterations by the restarted GMRES
algorithm. These methods seek to determine an invariant subspace of the matrix A associated with
eigenvalues close to the origin, and move these eigenvalues so that a higher rate of convergence of
the iterative methods is achieved.
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1. Introduction. Many problems in Applied Mathematics and Engineering give
rise to very large linear systems of equations

(1.1) Az = b, AeRP™, z,b e R,

with a sparse nonsymmetric nonsingular matrix A. It is often desirable, and some-
times necessary, to solve these systems by an iterative method. Let zg be an initial
approximate solution of (1.1), and let ro = b — Az be the associated residual vector.
Introduce the Krylov subspaces

(1.2) K. (A, ro) = span{rg, Arg, ..., A" tr}, m=12 ...,

associated with the matrix A and vector ro. Many popular iterative methods deter-
mine the mth iterate, zy,, so that z, — 29 € Ky (A, rg). We refer to such methods
as Krylov subspace iterative methods; see, e.g., Freund et al. [12] for a recent review.

Let the iterate z,, be generated by a Krylov subspace iterative method. Then
the residual error r,, = b — Az, associated with z,,, satisfies

(13) 'm = pm(A)TO:
where the residual polynomial p,, is determined by the iterative method, and satis-
fies pm(0) = 1. Let || - || denote the Euclidean norm on R", as well as the associ-

ated induced matrix norm on R"*"™. The restarted Generalized Minimal Residual
(GMRES(m)) algorithm by Saad and Schultz [22], described in Section 3, is one of
the most popular Krylov subspace iterative methods for the solution of linear systems
with a nonsymmetric matrix. The residual polynomial determined by this algorithm
satisfies

(1.4) llpm (A)roll = min [|p(A)ro|,
pellf,
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where 112, denotes the set of all polynomials p of degree at most m such that p(0) = 1.

The analysis and implementation of the restarted GMRES(m) algorithm, and
modifications thereof, continue to receive considerable attention; see, e.g., [4, 5, 7,
8,9, 10, 14, 25, 26]. These algorithms are particularly attractive when a suitable
preconditioner M~! € R™*" for the matrix A is available; see, e.g., [2, 15, 21] for
recent discussions on preconditioners. A matrix M ! is a good preconditioner if the
application of an iterative method of interest to the preconditioned linear system of
equations

(1.5) M~ Az = M~

gives a higher rate of convergence of the computed iterates than application of the
iterative method to the original linear system (1.1). Moreover, we would like the
preconditioner M ~! have the property that for any w € R”, the vector M 1w can
be rapidly evaluated. The matrix M~! in (1.5) is sometimes referred to as a left
preconditioner.

The present paper describes two new adaptive methods for determining precondi-
tioners during the iterations with the restarted GMRES(m) algorithm. The standard
implementation of the restarted GMRES(m) algorithm [22] is based on the Arnoldi
process [1], described in Section 2, and this allows spectral information of A to be
gathered during the iterations. We use this information to determine an approxi-
mation of an invariant subspace of A associated with eigenvalues close to the origin.
Our preconditioner essentially removes the influence of these eigenvalues on the rate
of convergence. We will focus on the effect of the preconditioner on the spectrum
of A, however, it is known that the rate of convergence of the iterates computed by
the GMRES(m) algorithm also is determined by pseudospectra of A; see Nachtigal
et al. [19]. For ease of presentation, we ignore the effect of the preconditioner on
the pseudospectra in the present paper. Our preconditioners are particularly effective
when there is a cluster of a few eigenvalues of A that have a large influence on the rate
of convergence. A few illustrations can be found in Section 4. The determination as
well as the application of our preconditioners does not require the evaluation of any
matrix-vector products with the matrix A in addition to those needed for the Arnoldi
process and for the evaluation of certain residual errors. The implementations use
the recurrence formulas of the Implicitly Restarted Arnoldi (IRA) method described
by Sorensen [23] and more recently by Lehoucq [17]. Our preconditioners can be
combined with other preconditioners, and are also applicable when no other known
efficient preconditioner is available.

A different method to adaptively determine a preconditioner during iterations
by the restarted GMRES(m) algorithm has recently been described by Erhel et al.
[11]. By utilizing the recurrence formulas of the IRA method, our preconditioning
scheme allows more flexibility in the choice of preconditioner and requires less com-
puter memory than the method described in [11]. Another adaptive preconditioning
method has been presented by Kharchenko and Yeremin [16]. Their method differs
from our schemes in how approximate invariant subspaces are determined. Morgan
[18] also uses approximate invariant subspaces to improve the rate of convergence
of the restarted GMRES(m) algorithm; instead of constructing a preconditioner, he
appends an approximate invariant subspace to the Krylov subspaces generated by
the Arnoldi process. We feel that our new algorithms are attractive because of their
simplicity, and because the IRA method, on which our algorithms are based, typically
determines adequate approximate invariant subspaces fairly rapidly.
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Let the matrix A have the spectral factorization
(1.6) A=5SAS7 A = diag[A1, A2, ..., A
Then (1.3) and (1.4) yield the bound

(1.7) Irmll < IISIIHS'lIIIIT‘oIIplgli;i(zgg) p(2)]),

where A(A) denotes the spectrum of A. Note that the bound (1.7) would decrease
if we were able to replace A(A) by a subset. Our preconditioners have roughly this
effect. For definiteness, assume that the eigenvalues of A have been ordered according
to

(18) 0< il < Al <o < P,
and let A be scaled so that
(1.9) [An| = L.

A good approximation of such a scaling of A can be determined during the iterations.
This is discussed below.
The Arnoldi process determines a decomposition of the form

(1.10) AV = Vi Hon + fmel,

where V,, € R**™ f. e R*, VIV, =1, VIf, =0, and H, € R"*™ is an upper
Hessenberg matrix. We refer to (1.10) as an Arnoldi decomposition of A. Throughout
this paper e; denotes the jth axis vector of appropriate dimension, and I; denotes
the identity matrix of order j. When Vj,e; = ro/||ro||, the columns of V,, span the
Krylov subspace K, (A, 7o) defined by (1.2). For future reference, we define

(1.11) ¥m = [ fmll.

Let the matrix V3 € R™®** consist of the first k& columns of V,,, and let the
columns of the matrix W, _; span R™\span{V}}, where span{V;} denotes the span
of the columns of Vj,. Assume that WnT_kWn_k = I,_1. Thus, the columns of the
matrix [Vy W, _x] form an orthogonal basis of R”. Introduce the matrix

(1.12) M= Vi HyViE + W W,

We will use the inverse of matrices of the form (1.12) with £ < n as left precondi-
tioners. The form of the inverse is given below.

ProrosITION 1.1. Let @ € R™ ™ be an orthogonal matriz, and partition it
according to Q = [V W], where the submatriz V consists of the k first columns of Q,
and the submatriz W consists of the remaining columns. Assume that H = VT AV is
nonsingular. Then the matriz

(1.13) M=vHVT + ww?
1s nonsingular, and its inverse is given by

(1.14) Mt =vH vt pww?.
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Proof. The matrix (1.13) can be written as
H 0 ] vT ]

M:[VW][O L.

and therefore

(1.15) 1\4—1:[1/W][H_1 0] VT].

0 In—k
This shows (1.14). O

When the columns of the matrix V in Proposition 1.1 span an invariant subspace
of A, the eigenvalues of the matrix M ' A4 can be expressed in terms of the eigenvalues
of A.

COROLLARY 1.2. Let the matrices V., W and H be as in Proposition 1.1, and
assume, moreover, that the columns of the matriz V' span an invariant subspace of A
associated with the eigenvalues A1, As, ..., Ar. Then

A(M_lA) = {Ak‘+1; )‘k+2a cey An: 1: 1: B 1}1
where the eigenvalue 1 has multiplicity at least k.
Proof. The matrix A is similar to
R

(1.16) A W

rtewi=[4 2]

0 A
and )\(fizz) = {Ak+1, Ak42. .., An}. Formula (1.16) and the representation (1.15) yield
_ I H_lfiu vT
M™'A= -
[ VW] [ 0 A W
Thus, the spectrum of M ~! A consists of /\(/122) and the eigenvalue 1. The multiplicity
of the latter eigenvalue is at least k. O
A result analogous to Corollary 1.2 for a right preconditioner is shown by Erhel et

al. [11]. We remark that application of preconditioners of the form (1.14) is simplified
by the fact that

(1.17) ww?t =1, -vvT.

Thus, the matrix W does not have to be computed.

The following example compares bounds for the rate of convergence of iterates
determined by the GMRES(m) algorithm when applied to the original linear system
(1.1) and to the preconditioned linear system (1.5) with the preconditioner (1.14),
where we assume that the conditions of Corollary 1.2 hold.

Example 1.1. Assume that A has a spectral factorization of the form (1.6) with
all eigenvalues real and positive, and let the eigenvalues be ordered according to (1.8).

Then (1.7) yields that

1/m 1/m
(1.18) lim sup <||rm||) < lim sup min < max |p(z)|>

m—+00 lI7oll m—oo PEMY \A1<z<A,

T (5t

Tm(An+>\1 )

X
An
- An—A1

m—oo A<z

)1/7”,

= lim sup ( ma

k2 -1
(1.19) = m; k= An/A1,
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where T, (z) is the Chebyshev polynomial of the first kind of degree m for the interval
[—1,1], i.e., Tip(2) = cos(marccos(z)) for —1 < z < 1, and the equality (1.19) fol-
lows from well-known properties of the Chebyshev polynomials; see, e.g., [13, Section
10.1.5].

Let M~! be the preconditioner (1.14), and assume that the conditions of Corol-
lary 1.2 hold. This preconditioner eliminates the influence of the k smallest eigen-
values of A on the rate of convergence of the GMRES(m) algorithm. Specifically,
the GMRES(m) algorithm applied to the preconditioned linear system (1.5) yields a
sequence of residual vectors that can be bounded by

(1.20) lim sup

m— 00

/m  ~1/2 1/2
Tm PR ke —1 -
<|I II) < R = A/ Aest,

7ol FIVENE ISV

where, as usual, rp, = b — Az,,. The bound (1.20) can be shown by first noting that

1/m _1 1/m
m . M~ rpy
(1.21) lim sup <||r ”) < lim sup <w> ,

m—o0 ||T’0|| m— 00 HM_lT'o”

and then applying the bound (1.18) to the right-hand side of (1.21). D

In actual computations, we determine a preconditioner from a Krylov subspace
span{V }, which is close to an invariant subspace. The computations of Example
1.1 suggest that the GMRES(m) algorithm will require fewer iterations to determine
an accurate approximate solution of (1.1) when applied to the preconditioned linear
system (1.5) with such a preconditioner than when applied to the original unprecon-
ditioned system (1.1). This is verified by numerical experiments, some of which are
presented in Section 4.

2. Construction of the preconditioners. In this section we describe how to
determine an approximate invariant subspace of A associated with the eigenvalues
A1, A2, ..., Ag, by using the recursion formulas of the IRA method of Sorensen [23].
We first present the Arnoldi process [1].

ALGORITHM 2.1. ARNOLDI PROCESS
Input: k, m, upper Hessenberg matriz Hy = [hﬂ]}“zzl € RFXE v, € R*F,
fr € R™M\{0}, such that Hy = VI AV, VIV = I, VL fr = 0;
Output: upper Hessenberg matriz Hy, = [hj]",_, € R™™, V,, € R™™,
fm €R?, such that Hy = VEAV,, VIV, =1, VEfn =0;
Ve = | fell;
if k>0 then hpy1r = i, endif
fori=k+1,k+2,...,mdo
vi = fi-1/vi-1;
fort=1,2,...,5 do hy; = 'U?A'Uj,’ endfor £;
fi = Avy — 30 hijui;
vi = WG R =55
endfor j;
O

We may assume that all vectors f;, & < j < m, generated by Algorithm 2.1 are
nonvanishing, because if f; = 0, then the columns of the matrix V; generated span an
invariant subspace of 4, and V; can be used to construct a preconditioner as described
in Example 1.1. When k£ = 0 on input to Algorithm 2.1, only the initial vector fy has
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to be provided. We note that if f,, # 0, then we can define the matrix
(2.1) Vins1 = [Vin fon/7m] € R?XU7HD

with orthogonal columns. In the sequel, we will use the matrix

(2.2) Hp =V, 1 AV,

This is an (m + 1) x m matrix of Hessenberg-type, whose leading m x m principal
submatrix is H,,, and whose (m + 1)st row is el

Numerical difficulties can arise in the computation of the vectors f; in the al-
gorithm. The computations are done by the modified Gram-Schmidt process, with
one reorthogonalization. Neglecting to enforce orthogonality of each vector f; against
the vectors vy, va,...,v; can give rise to spurious eigenvalues of the matrix fH,,, i.e.,
eigenvalues which cannot be considered approximations of eigenvalues of A.

Given the Arnoldi decomposition (1.10) with initial vector v; = V€1, the recur-
sion formulas of the IRA method can be used to compute the vector

(2.3) 0" = Dk (A)vr,

for any monic polynomial

m—k

Ym-i(2) = [T (== %)

ji=1

of degree m — k without evaluating any new matrix-vector products with the matrix
A. The coefficient nm,—p is a scaling factor chosen so that ||v§m_k)|| = 1. We will
discuss the selection of the zeros z; below.

The recursion formulas of the IRA method are truncated versions of the recur-
sion formulas for the QR algorithm with explicit shifts, with the zeros z; chosen as
shifts; see, e.g., [13, Chapter 7] for a description of the QR algorithm. We there-
fore sometimes refer to the zeros z; as shifts. Thus, let the decomposition (1.10) be
given, and determine the QR factorization H,, — z11,, = QMR where z; € C,
QW RM ¢ ™™ (QUNTQW = I, and R is upper triangular. Putting V' = Vm,
H = H,, and I = I,;, we obtain

(24.1) (A—=2D)V —V(H — 2,.1) = fmek,

(24.2) (A= 2DV —VQWRM = f,,eL

(24.3) (A—1l)(VQW) - (VQ<1>)(R<1>Q<1>) fmel QW)
(24.4) AVQW) = (VQWYRMQW 4 211) = frneL Q).

Let V) = vQW and HMW = RMWQM) 4 2, I. Then H(Y) is also a Hessenberg matrix.
Multiplication of equation (2.4.2) by e; yields

(2.5) (A= 2Dy = vy,

where p( ) = eTR(l)el and vgl) = Ve, Equation (2.5) displays the relationship
between the initial Arnoldi vector v; and the vector v( ). After applying m — k shifts
21,29, ..., Zm_k, We obtain the decomposition

(2.6) AV = ymm R R 4 f el Q,
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where
Vn(@m_k) _ ['Ugm—k)’ ‘Ugm—k)’ o ,Ugnm—k)] = V0, Hr(nm_k) — QTHmQ

Here @ = QMWQ® ...Q=%) and QU) denotes the orthogonal matrix associated
with the shift z;. Introduce the partitioning

~ T )
Yreiery  Hpop

m=—k)
Hr(nm_k) _ [ f{](C ’ G

and equate the first k columns on the right-hand side and left-hand side of (2.6). This
gives

(2.7) AVEPTE Z ylm R gom k) ek T
where
(2.8) (m=k) — "R 3 + fmel Qe

and V,{" M = [Vk(m_k) Vn(;ﬁ;k)] It follows from
Ve =0 (T =0

and (2.8), that (Vk(m_k))Tf,Em_k) = 0. Thus, (2.7) is an Arnoldi decomposition of A.
By construction, the vector ‘Ugm_k) = Vk(m_k)el can be written as (2.3).

While our description of the IRA method is based on recursion formulas for the
QR algorithm with explicit shifts, our implementation is based on the QR algorithm
with implicit shifts for reason of numerical stability; see [13, Chapter 7] for a descrip-
tion of this QR algorithm. The use of implicit shifts allows the application of complex
conjugate shifts without using complex arithmetic.

We first apply the Arnoldi process to compute the Arnoldi decomposition (1.10),
and then use the recursion formulas of the IRA method to determine the Arnoldi
decomposition (2.7). The purpose of these computations is to determine an accu-
rate approximation of an invariant subspace of A associated with the eigenvalues

A1, A2, ..., Ax. We would like to choose the zeros zq,z29,..., zm_p of ¥,,_i, so that
the first column 'vgm_k) of Vk(m_k) defined by (2.3) is in, or close to, an invariant
subspace of A associated with the eigenvalues A, As, ... Ag.

Let {Hj(m)};»”zl denote the eigenvalues of the upper Hessenberg matrix H,, in
(1.10), and order them so that

(2.9) 0] < 105 < < 185,

Since H,, = V,L AV,, is an orthogonal projection of A, we consider the HJ(-m) to be
(m—k)

approximations of eigenvalues of A. In order to force the vector v;
invariant subspace of A associated with the k eigenvalues of A of smallest magnitude,
we choose the zeros

into an

(2.10) 5=00" 1< j<m—k,

i.e., the z; are chosen to be available approximations of the m — k eigenvalues of A
of largest magnitude. This selection of zeros is discussed by Sorensen [23], Calvetti
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et al. [6] and Lehoucq [17], and these zeros are there referred to as “exact shifts”.
Numerical experience indicates that the ordering of the shifts according to (2.10) is
adequate in the sense that the computed matrices H,gm_k) € R*** have eigenvalues
very close to the k eigenvalues of H,, of smallest magnitude.

)

Let {0](»’“), ;(/J(»k)}}“:1 be eigenvalue-eigenvector pairs of H,Em_k , and introduce the

vectors z; = Vk(m_k)y](»k), 1< j <k. Then {Hj(»k), xj}}“:l are approximate eigenvalue-
eigenvector pairs of A with residual errors

1 —2; 0| = 1AV =V ) = 1AL 1< <k
We accept span{Vj} as an approximate invariant subspace of A if

m—k k m—k .
(2.11) A NEE ™ < IH™ Nl equbspace, 1< G <k,

where €gupspace > 0 is a parameter. The purpose of the matrix H,(cm_k) in (2.11) is to
make the bound invariant under scaling of A.

If the inequalities (2.11) are not satisfied, then we apply Algorithm 2.1 with the
Arnoldi decomposition (2.7) as input in order to determine a new Arnoldi decompo-
sition (1.10) with an m x m upper Hessenberg matrix H,,. We then again apply the
recursion formulas of the IRA method with the zeros chosen to be the m — k eigen-
values of H,, of largest magnitude. This gives an Arnoldi decomposition of the form
(2.7), and we check whether the inequalities (2.11) are satisfied. The computations
are repeated in this fashion until (2.11) holds. We obtain in this way an Arnoldi
decomposition of the form (2.7) with matrices V3, = Vk(m_k) and Hy = H,(cm_k),
that, in general, span{V}} is an accurate approximation of an invariant subspace as-
sociated with the k eigenvalues of smallest magnitude of A, and A(H}) is an accurate
approximation of the set {}; }}“:1. The accuracy of the approximations depends on
the parameter €qupspace in (2.11), the distribution of the eigenvalues of A, and the
departure from normality of A. The matrices V3 and Hj so obtained are used to
define our first preconditioner

such

(2.12) Mt =viH'VE + T -V

where we have used (1.17).

We describe in Section 3 how to combine the TRA process with the restarted
GMRES algorithm and Richardson iteration, so that we can improve an available
approximate solution of (1.1) while determining the preconditioner M;*.

Having computed the preconditioner M~1 = Ml_l, we apply the method outlined
above to the preconditioned system (1.5) in order to determine an approximation of an
invariant subspace associated with the eigenvalues of smallest magnitude of the matrix
Ml_lA, and simultaneously improve an available approximate solution of (1.1). This
yields a new preconditioner MZ_1 for the system Ml_lAa: = Ml_lb, or equivalently,
a new preconditioner M1 = Mz_lMl_1 for the system (1.1). The computations are
continued in this manner until we have determined a preconditioner of the form
(2.13) M~ =MI'MZ M
for some specified integer ag > 1. The form (2.13) of the preconditioner makes it
natural to scale A so that (1.9) holds. An approximation of such a scaling is achieved

by scaling the linear system (1.1) by the factor 1/|9£nm)|, where 057 is an eigenvalue
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of largest magnitude of one of the matrices H,, generated by Algorithm 2.1 during
our computation of the preconditioner Ml_l. We remark that for certain matrices A
other techniques for achieving such a scaling may be available. For instance, one may
be able to use Gershgorin disks or the inequality |A,| < ||A4||«, where || - ||« is any
matrix norm induced by a vector norm; see [24, Chapter 6] for details on the latter
topics.

3. The iterative methods. This section describes our two algorithms for adap-
tive preconditioning in detail. One of them, Algorithm 3.5, combines the IRA process
with Richardson iteration and the GMRES algorithm. The other scheme, Algorithm
3.6, does not apply Richardson iteration. We first recall the restarted GMRES(m)
algorithm by Saad and Schultz [22] for the solution of linear systems of equations

(1.1).

ALGORITHM 3.1. RESTARTED GMRES(m) ALGORITHM

Input: m, wnitial approxzimate solution xg € R", €solution > 0.

Output: approzimate solution x,,, associated residual vector ry,.

Tm =7rg :=b— Azg; Tm 1= Zo;

while ||rm||/|I7o|l > €solution 40
Compute Arnoldi decomposition (1.10) by Algorithm 2.1 with input k = 0
and fo = rp. Then the matrices Vipty and Hy,, defined by (2.1) and (2.2),
respectively, are also available.
Compute solution y, € R™ of yIélfl{ITInH l7mller — Hmyl|-

Tm =Ty + Vinlm; 'm :=rm — Vm+1Hmym:'
endwhile;
Oa

We now describe how to improve an available approximate solution by Richardson
iteration while applying the recursion formulas of the TRA method to an Arnoldi
decomposition. These iterations can be carried out without evaluating matrix-vector
products with the matrix A. Let 2z be an available approximate solution of (1.1).
Richardson iteration can be written as

(31) ,l‘j:Ij_1+6jT’j_1, j:1a2a"'ﬂ
rj—1= b— Al‘j_l,

where the §; € C are relaxation parameters. We would like the parameters ¢; to be
such that the approximate solutions z; converge rapidly to the solution of (1.1) as j
increases. For future reference, we note that the residual vectors (3.2) can be written
as

j—1

(3.3) ric = [J(I = 8cA)ro.

=1

THEOREM 3.2. Let zg be an approzimate solution of (1.1), and let ro = b— Axg.
Consider the Arnoldi decomposition AV,, = Vi, Hy + fmef1 with the nitial vector
v1 = Viper given by vi = ro/||rol|. Apply the recursion formulas of the IRA method
with zeros z1,za,...,2; for some j < m. Then the residual vectors (3.2) associated
with the iterates (3.1) computed by Richardson iteration with relazation parameters
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8; = 1/z; are given by
. j Z .
(34) rj= (= Iroll [T sepifo”,  1<i<m,
=1

where vgj) =V QWQ® ...QUWe; and p(ljl) = e{R(j)el for j < m. Here Q) denotes
the orthogonal matriz and RY) the upper triangular matriz associated with the zero
zg wn the IRA recursion formulas. Moreover, vgm) = (h(lT_l) — zm)vgm_l) + fl(m_l)
and p(lT) =1.

Proof. We first show (3.4) for j = 1. Substitution of v; = ro/||ro|| into (2.5) yields

(A= z11)ro = [|rol|vf oY,
The representation (3.3) now shows that
(3.5) ri = (I — 8 A)rg = =8, (A — 21 D)o = ||ro||(—61 )0 p{Y.
We turn to the case when j = 2. From (3.3) and (3.5), we obtain
(3.6) ry = 8185(A — 251)(A — 21 I)rg = ||ro||6162p17 (A — 2o 1)o{".

Replace V = Vi, by V;,Q) in equations (2.4.1)-(2.4.4), and multiply the equation
(2.4.2) so obtained by e;. This shows, analogously to (2.5), that

(3.7) (A= 2Dy = o7,

Substitution of (3.7) into (3.6) shows (3.4) for j = 2. Continuing in this manner yields
(3.4) for all j < m.
The case j = m has to be treated separately. We have the Arnoldi decomposition

(A= 2 D™ = (BT — 2ol 4 f

and similarly as in [3], we obtain 'Ugm) = (h(lT_l) — zm)'vgm_l) + fl(m_l). Choosing

(m) _

P11 1 completes the proof. O

Prior to the development of the GMRES(m) algorithm, Saad [20] introduced the
Full Orthogonalization (FO(m)) algorithm. This is a Galerkin method for the solution
of (1.1). Let #¢ be an approximate solution of (1.1) and let rg be the associated
residual vector. Consider the Arnoldi decomposition (1.10), and let v; = Ve be the
same as in Theorem 3.2. The FO(m) algorithm determines an improved approximate
solution #,, of (1.1) by solving the linear system

(38) anAmem = anro
and then letting

The following result shows how this approximate solution can be determined by
Richardson iteration.

THEOREM 3.3. Let the vectors zg and ro, and the Arnoldi decomposition (1.10),
be the same as in Theorem 3.2. Assume that the Arnoldi decomposition exists with
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[|fm|l # 0 and that the matriz H,, in the Arnoldi decomposition is nonsingular. Let
J=min (3.4), and let the relazation parameters for Richardson iteration be reciprocal
values of the eigenvalues of Hy,. Then, in exact arithmetic, the approzimate solution
Zy, determined by Richardson iteration (3.1)-(3.2) equals the approzimate solution
(3.9) computed by the FO(m) algorithm.

Proof. Substitute (3.9) into ry, = b— A, and use the fact that the linear system
(3.8) can be written as Hp,ym = e1]|ro]|, to obtain

(310) T'm = _fmefqym-

Introduce, for polynomials f and g, the bilinear form

< f,g>= rgf(AT)g(A)ro.

By construction,

vigr = Vmejpr = g;(A)ro, 0<j<m,
(3.11)
Jm = llfm'lgm(A)TOa
where g; is a polynomial of degree j. The g;, 0 < j < m, satisfy
1, ifj=4¢
< 9i,9e >=
0, if j#¢.

In particular, equations (3.10) and (3.11) yield

T'm = _Hmee%ymgm(A)rO:

which shows that p,(t) = —||fmllel, ymgm(t) is the residual polynomial of degree m
for the FO(m) algorithm, and therefore satisfies pp,(0) = 1. Combining formulas
(1.10) and (3.11) yields the identity

tlgo(t), 91(1), -, gm-1 ()] = [90(1), 91.(1), - -, g1 () H + || finllgm (),

which shows that the eigenvalues {9§m)}§”:1 of H,, are the zeros of ¢,,,. In particular,

all Hj(m) # 0, and therefore py, can be written as py, () = gm(?)/9m(0). It follows that

m

(3.12) pm(t) = JT(1—1/05™).
ji=1
A comparison of (3.12) with (1.3) and (3.3) shows that m steps of Richardson iteration

with relaxation parameters §; = 1/0](»m) and an application of the FO(m) algorithm
correspond to the same residual polynomial, and therefore are equivalent. O
The implementation of our iterative method is based on the following observation.
COROLLARY 3.4. Let z;_1 be an approzimate solution of (1.1), and let rj_1 =
b— Ax;_, be the associated residual vector. Let

(3.13) AV, =ViHo + feef,  £>1,

be an Arnoldi decomposition, with initial vector vi = Vier = rj_1/||rj_1||. Denote by

{6’;”}?21 the eigenvalues of Hy, let x; = x;_1 — 6;7;_1 be the approrimate solution
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obtained by one step of Richardson iteration with relazation parameter 6; = I/HEZ), for
some 1 < q < ¥, and let an application of the recursion formulas of the IRA method
to (3.13) with shift H,SZ) yield the Arnoldi decomposition

(3.14) AV = VA D+ R

Then r; = —||rj_1||6jp(111)v§1), where vgl) = Vz(_l)lel and p(lll) = e{R(l)el. Here RV
s the triangular matriz in a QR factorization of Hy — ng)lg. Moreover, )\(Hﬁ)l) =
{071 U0

Proof. The Corollary follows from Theorem 3.2 and the fact that when we use
an exact shift, the eigenvalues of the reduced matrix Hﬁ)l are the eigenvalues of the
original matrix Hy, except for the shift. The latter result is shown by Sorensen [23,
Lemma 3.10]. O

The corollary above shows that we can apply m — k shifts, one at a time, and
determine the required residual vectors from the first column of the matrices V; in
the available Arnoldi decompositions. An analogous result can be established for
complex conjugate shifts. In the latter case, the recursion formulas for the IRA
method are implemented by using the QR algorithm with implicit double shifts. This
obviates the need to use complex arithmetic. A double step of Richardson iteration,
with complex conjugate relaxation parameters, also can be carried out without using
complex arithmetic. For notational simplicity, the algorithm below for our iterative
method does not use double shifts and double steps, however, our implementation of
the algorithm used for the computed examples of Section 4 does.

ALGORITHM 3.5. ADAPTIVELY PRECONDITIONED GMRES(m) ALGORITHM
WITH RICHARDSON ITERATION
Input: tolerance for computed approximate solution €solution, tolerance for ap-
prozimate invariant subspace €subspace, dimension m of largest Krylov subspace
determined, dimension k of approzimate invariant subspace to be computed, maz-
imum number ag of preconditioners M1 to be computed, mazimum number (g
of Arnoldi decompositions of order m to be determined for each preconditioner
M
Output: computed approzimate solution x;, associated residual vector rj, pre-
conditioner M~—1! = Ma_lM;_l1 - ~M1_1 for some a < ayg.
M=t =1, 20:=0;70:=b;j:=0;
fora=1,2,... ay do
Compute Arnoldi decomposition M~ AV, = Vi, Hy + fnel by Algorithm
2.1 with initial vector vi = M ~1rg/||M ~1rg]|.
for 3 =1,2,...,60 do
Compute eigenvalues {Hgm)}g»”:l of matriz H,, in Arnoldi decomposi-
tion and order them according to (2.9).
if 3 = 0 then scale matriz and right-hand side of linear system by
factor 1/|9£nm)|. Then equation (1.9) is approzimately satisfied.
forl=1,2,... m—k do
ji=j+1;6; = l/ﬁgnm_gl_z; i =i+ My
Apply shift i) to Arnoldi decomposition and compute

m+1—4
residual vector M~1r; as described by Corollary 3.4. This gives

. o _ ‘ ‘ ‘ ‘
Arnoldi decomposition M 1AVT£12Z = V,glzzH,(n)_z + f,(n)_zeT

m—~£-
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endfor £;
if bound (2.11) is satisfied then goto 1;
Use the Arnoldi decomposition M‘lAVk(m_k) = V,fm_k)H,gm_k) +

,Em_k)e{ as input to Algorithm 2.1 and apply the Arnoldi process to

compute the Arnoldi decomposition M~ AV, = Vo Hp + fmeﬁ.
endfor 3;

1: Improve approzimate solution by GMRES(k) and update preconditioner:
The Arnoldi decomposition M~ YAV, = Vi Hy, + fkeg, as well as the ma-
trices Vip1 and Hy, cf. (2.1) and (2.2), are available.

Compute solution yr € RF of rgfi{r}cHVkTHM_lT’j - Hki‘/”;'
y

ik =25+ Viye; M7 g = M~ vy — Vi Hyyr,;
2: M(;l = k(m_k)(Hl(cm_k))_l(Vk(m_k))T + 71— Vk(m_k)(vk(m_k))T, M—l =
M—lM—l .
3: v = b— A.Z‘]'+k,'j =J4k;
Zf”’l"]H/”T’oH S €solution then done,'
endfor a;
while ||7;]|/]|70l] > €solution do
Apply GMRES(m): compute Arnoldi decomposition M~ AV, = Vi Hp, +
fmel, by Algorithm 2.1 with inatial vector vy = M=Yr;/|IM~rj||, and de-
termine the matrices V41 and Hyy, defined by (2.1) and (2.2), respectively.
Compute solution y,, € R™ of mfi{n HIM = rjller — Hunyll;
yeER™

Tjpm =T + Vinym; M_1Tj+m = M_lrj - m+1Hmym;
4: Tjpm =b—Axjim; j:=j+m;
endwhile;
O

In Algorithm 3.5, we only have to compute matrix-vector products with the matrix
A when applying the Arnoldi process, and when evaluating residual vectors r; in the
lines labeled “3:” and “4:”.

We now examine the storage requirement of Algorithm 3.5 and count the number
of n-vectors that have to be stored. Storage necessary to represent the matrix A is
ignored, since it is independent of the iterative method used. Each preconditioner
Mj—1 requires the storage of an n x k matrix Vi, and we limit the number of these
preconditioners to ag. Thus, the preconditioner M ~! defined by (2.13) requires the
storage of at most agk n-vectors. In particular, the matrix M ~! is not actually
formed. The line marked “2:” in Algorithm 3.5 is to be interpreted symbolically to
mean that the storage for the matrix M ~! and the formula for evaluating matrix-
vector products with M ~1 are updated. The GMRES(m) algorithm in the while-loop
of Algorithm 3.5 requires additional storage for the vectors z; and r;, and for the
matrix Vip41 € R *(m+1)  This is equivalent to the storage of m + 3 n-vectors. The
vector M ~'r; in Algorithm 3.5 is up to a scaling factor stored in the first column of
the matrix Vi,41. The last column of V41 contains the vector f,, up to a scaling
factor. The right-hand side vector b also has to be stored. Therefore, the total storage
requirement of Algorithm 3.5 is at most agk + m + 4 n-vectors.

Algorithm 3.6 below is obtained by replacing Richardson iteration in Algorithm
3.5 by the GMRES algorithm. This replacement makes the the residual error decrease
more smoothly as the iterations proceed. However, the iterates and preconditioners
generated by Algorithms 3.5 and 3.6 are not the same, and we have found that the
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former algorithm not seldom gives faster convergence. This is illustrated in Section
4. We therefore feel that both algorithms are of interest. The storage requirement
of Algorithm 3.6 is essentially the same as of Algorithm 3.5. For notational simplic-
ity, Algorithm 3.6 does not use double shifts, however, our implementation of the
algorithm used for the computed examples of Section 4 does.

ALGORITHM 3.6. ADAPTIVELY PRECONDITIONED GMRES(m) ALGORITHM

Input: tolerance for computed approzimate solution €solution, tolerance for ap-
prozimate invariant subspace €supspace, dimension m of largest Krylov subspace
determined, dimension k of approzimate invariant subspace to be computed, maz-
imum number ag of preconditioners Mt 1o be computed, mazimum number By
of Arnoldi decompositions of order m to be determined for each preconditioner
Mt
Output: computed approzimate solution x;, associated residual vector rj, pre-
conditioner M~—1! = M;lM;_ll - ~M1_1 for some o < .
M™Y:=1I20:=0;r0:=b;j:=0;
fora=1,2,..., a9 do
Compute Arnoldi decomposition M~*AV,, = Vi Hyy + frmel by Algorithm
2.1 with initial vector vi = M ~1rg/||M ~1ro]|.
Apply GMRES(m): determine the matrices Vyy1 and H,, defined by (2.1)
and (2.2), respectively.
Compute solution y,, € R™ Ofy%lfiﬂzn ||M_1T'j||61 — Hpyll;

Litm ‘= Lj + mem; M_1Tj+m = M_lrj - m+1Hmym;'
Tjgm = b— Axjim; j:=j+m;
for 3 =1,2,...,60 do
Compute eigenvalues {BJ(»m)}}”:l of matrizx H,, in Arnoldi decomposi-
tion and order them according to (2.9).
if j = m then scale malriz and right-hand side of linear system by
factor 1/|0£nm)|. Then equation (1.9) is approzimately satisfied.
fort=1,2,... m—k do
j=7i+1
Apply shift Hglm_gl_z to Arnoldi decomposition by using the IRA
formulas (2.4)-(2.8). This gives Arnoldi decomposition
M=AVED, =V 4 1) el
endfor £;
if bound (2.11) is satisfied then goto 1;
Use the Arnoldi decomposition M_lAVk(m_k) = Vk(m_k)H,(cm_k) +
,gm_k)e{ as input to Algorithm 2.1 and apply the Arnoldi process
to compute the Arnoldi decomposition M~YAV,, = V,, H,, + fmeg.
Apply GMRES(m): determine the matrices Viyp1 and H,y, defined by
(2.1) and (2.2), respectively.
Compute solution y,, € R™ ofyrenfill}nH ||M_1rj||el — Huyll;

Tj4m = Tj + VinYm; M_1Tj+m = M_lrj - Vm+1Hmym:'
Tigm = b— Axjim; J:=j+m;
endfor 3;

1: Improve approzimate solution by GMRES(k) and update preconditioner:
The Arnoldi decomposition M~ AV, = Vi, Hy, + fkeg, as well as the ma-
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trices Viy1 and Hy, cf. (2.1) and (2.2), are available.
Compute solution y; € RF of miI}CHVkT_}_lM_lrj — Hyyll;
yER

ik =25+ Viyr; M7 = M~ vy — Vi Hyyr,;
2. Ma_l = Vk(m—k)(H’(cm—k))—l(Vk(m—k))T + 71— Vk(m—k)(vk(m—k))T’. M—l =
M—lM—l .
3 rjpp = b— Al‘]’+k;j =J 4 k;
ZfHT’]H/”T’oH S €solution then dOTLC,'
endfor a;
while ||7;]|/]|70l] > €solution do
Apply GMRES(m): compute Arnoldi decomposition M~ AV,, = Vi, Hypy +
fmel; by Algorithm 2.1 with initial vector vy = M= /[|M ™ rj||, and de-
termine the matrices V11 and Hy, defined by (2.1) and (2.2), respectively.
Compute solution y,, € R™ of mfi{n 1M~ r|ler — Hmyll;
yeER™

Tjtm =2 + VinYm; M7 0o = M7y — Vit HipYm s
4: Tjgm =b—Axjim; ji=j+m;
endwhile;
O

The comments regarding the lines with labels “2:”, “3:” and “4:” for Algorithm
3.5 also apply to Algorithm 3.6.

4. Numerical experiments. All the numerical experiments presented in this
section were carried out on an HP 9000/735 computer using MATLAB. In all examples
we chose the initial approximate solution zy; = 0, and this gives ro = b. The vector
b had randomly generated uniformly distributed entries in the open interval (0, 1).
The purpose of the experiments was to compare Algorithms 3.5 and 3.6 to a restarted
GMRES(mg) algorithm, where the parameter mg is chosen so that the latter algorithm
is allowed at least as much computer storage as the former two algorithms. We also
compare Algorithms 3.5 and 3.6 to the GMRES algorithm without restarts, and refer
to the latter scheme as “Full GMRES”. We terminated the iterations with these
iterative methods as soon as a residual vector r; was determined, such that

731l
[I7oll

S €solution

with €sotution = 1 - 10719, For Algorithms 3.5 and 3.6, we chose the input parameter
values €subspace = 1 - 1074 ap = 3, Bp = 10, k = 10 and m = 20. The storage
requirement for both Algorithms 3.5 and 3.6 with this choice of parameters is at most
54 n-vectors. We compare these schemes with the restarted GMRES(60) algorithm,
which requires the storage of 62 n-vectors for Vi1 and z,,; see Algorithm 3.1. This
storage count assumes that the residual vector 7, in Algorithm 3.1 up to a scaling
factor is stored in the first column of the matrix Vg, .
Example 4.1. Let the matrix A € R200%200 he partitioned according to

Ain Aip
A= ] ’
[ ATy Asp ] ’

where 4; 1 € R3%3% s a circulant matrix with first row [-3/2,0,...,0, 2]. The entries
of the diagonal matrix Az 2 € R'70%170 gre uniformly distributed random numbers in
the interval (1,10). The matrix A; » is a zero matrix of appropriate order. Thus, the
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matrix A has 30 eigenvalues on a circle with center —3/2 and radius 2. The remaining
eigenvalues are uniformly distributed in the open interval (1,10). Figure 4.1 shows
A(A) (dots) and A(M ~1A) (stars), where M1 denotes the last preconditioner of the
form (2.13) computed by Algorithm 3.5 with shifts (2.10). The eigenvalues are shown
for the unscaled matrix A, and the eigenvalues for M ~1'A are also for the unscaled
matrix A and the associated preconditioner. The unscaled preconditioner maps the
eigenvalues of A of smallest magnitude to approximately sign(Re(An))|An|. This is
illustrated by Figure 4.1. Figure 4.2 shows that the iterates converge rapidly when the
preconditioner has removed many of the eigenvalues on the circle {z : |z + 3/2| = 2}.
We remark that the plot of A(M~'A) when M~! is determined by Algorithm 3.6
looks roughly the same as the plot of the eigenvalues of the preconditioner shown in
Figure 4.1.

The graph for Algorithm 3.5 in Figure 4.2 (continuous curve) was generated by
evaluating ||7;|| for every value of j for which the residual vector r; is defined, i.e.,
after every step of Richardson iteration in, and after every minimization of the residual
error by the GMRES algorithm. The graph for Algorithm 3.6 in Figure 4.2 (dashed
curve) was generated by evaluating ||7;|| after every minimization of the residual error
by the GMRES algorithm. The number of matrix-vector products with the matrix A
reported in Table 4.1, however, is only the number actually required by Algorithms
3.5 and 3.6. The piecewise linear graph for GMRES(60) in Figure 4.2 is obtained
by linear interpolation between the nodes (607, log,(||7s0jl|/|I7o0]l)) for j = 0,1,....
The nodes are marked with circles. The column “size of Krylov subspace” in Table
4.1 displays the parameter m used for Algorithms 3.1, 3.5 and 3.6. The column “#
preconditioners” shows the number of preconditioners M ! used before a sufficiently
accurate solution was found. This number is bounded by ag. The column “# vectors
in each preconditioner” is the parameter k& in Algorithms 3.5 and 3.6. The column
labeled “total # vectors used” counts the number of n-vectors in storage.

The graph in Figure 4.2 (dash-dotted curve) for “Full GMRES” is obtained by
applying GMRES(m) to the solution of (1.1) for increasing values of m in order to
improve the initial approximate solution xzg until an approximate solution z,, with
a sufficiently small residual error ||r,,|| has been determined. Figure 4.2 shows the
10-logarithm of the relative residual error ||ry||/||7of| for all 0 < k <m. O

Example 4.2. Consider the 200 x 200 block bidiagonal matrix

L1 Y1
-y xrr 2
L2 Y2
—Ya xz 2
A= ,
2
L100 Y100
—Y100 <100 |

where z; = y; = 2j—1. Its eigenvalues are given by Ag;_1 = z;+1y; and Ay; = x;—2y;,
1 < j <100, where i = /—1.

Figures 4.3 and 4.4 are analogous to Figures 4.1 and 4.2, respectively, and Table
4.2 is analogous to Table 4.1. The distribution of eigenvalues of M ~'A in Figure
4.3 indicates that the tolerance €supspace = 1 - 10~ used in the computations is too
large to determine an accurate approximate invariant subspace of A. Nevertheless,
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the eigenvalues of A closest to the origin were removed, and Algorithms 3.5 and 3.6
yield faster convergence than the restarted GMRES(60) algorithm; see Figure 4.4. O

Example 4.3. Let A = A’ 4+1-10*I, where A’ is the Pores3 matrix of the Harwell-
Boeing matrix collection. The matrix A’ is nonsymmetric, of order n = 532 and with
3474 non-zero entries. The purpose of the shift 1-10* was to obtain a matrix with
some positive eigenvalues. Figures 4.5 and 4.6 are analogous to Figures 4.1 and 4.2,
respectively, and Table 4.3 is analogous to Table 4.1. We can see that some eigenvalues
of the matrix A are very close to the origin and others are of large magnitude. Figure
4.5 illustrates how the the preconditioner moves eigenvalues of A away from the origin
to approximately sign(Re(A,))|An|, which is negative. Figure 4.6 shows the rate of
convergence. U

Example 4.4. Let A be a diagonal matrix of order 200 with diagonal entries

_J
100n’

@, for 26 < j < 200.
n

for 1 < j5 <25,

ajj =

Figures 4.7 and 4.9 are analogous to Figures 4.1 and 4.2, respectively, and Table 4.4
is analogous to Table 4.1. Figure 4.8 illustrates that the preconditioner moved all the
smallest eigenvalues of A, except for one, away from the origin. Figure 4.9 shows the
rate of convergence. O

Example 4.5. In all examples above, we chose the shifts according to (2.10),
i.e., we determined approximations of subspaces associated with a few eigenvalues
of smallest magnitude. The present example illustrates that the Algorithms 3.5 and
3.6 easily can be modified to determine approximations of other invariant subspaces.
Specifically, we used Algorithm 3.6 to solve the same linear system of equations as in
Example 4.1, and chose as shifts the m — k eigenvalues with largest real part of the
matrices Hp, generated during the iterations. Thus, we sought to determine invariant
subspaces associated with a few of the eigenvalues with smallest real part. Figure
4.10 is analogous to Figure 4.1 and shows A(A4) (dots) and A(M~1A) (stars). All 30
eigenvalues of A on the circle were removed, and the number of matrix-vector products
required before the stopping criterion was satisfied was 311, which is less than the
numbers of matrix-vector products reported in Table 4.1. O

5. Conclusion. This paper describes new preconditioning methods that are well
suited for use with the restarted GMRES(m) algorithm. Numerous computed exam-
ples indicate that iterates generated by our methods can converge significantly faster
than iterates determined by a restarted GMRES algorithm that requires more com-
puter storage. Algorithms 3.5 and 3.6 describe versions of our preconditioning method
in which the eigenvalues A; of smallest magnitude of the matrix A are mapped to ap-
proximately sign(Re(A;))|An|. Example 4.5 illustrates that it is easy to modify our
preconditioners so that other eigenvalues are mapped.
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Fic. 4.1. Eigenvalues of A (1) and M~YA (x) for Ezample 4.1 using Algorithm 3.5 with shifts

(2.10).
8 ‘\ \ GMRES(60) |
10l " Ful GURES \\ |
Mg as 936
1 i i i i i
100 200 300 400 500 600
number of matrix-vector products
Fic. 4.2. Convergence for Example 4.1.
TABLE 4.1
Ezample 4.1.
method size of Krylov | # matrix-vector | # precon- | # vectors in each total #
subspace products ditioners preconditioner vectors used
Algorithm 3.5 20 331 3 10 54
Algorithm 3.6 20 442 3 10 54
GMRES(60) 60 600 0 0 62
Full GMRES 96 96 0 0 96
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Fic. 4.4. Convergence for Example 4.2.

TABLE 4.2
Ezample 4.2.
method size of Krylov | # matrix-vector | # precon- | # vectors in each total #
subspace products ditioners preconditioner vectors used
Algorithm 3.5 20 294 3 10 54
Algorithm 3.6 20 406 3 10 54
GMRES(60) 60 1080 0 0 62
Full GMRES 200 200 0 0 203
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Fic. 4.5. Eigenvalues of A () and M~YA (x) for Ezample 4.3 using Algorithm 3.5 with shifts

(2.10).
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Fic. 4.6. Convergence for Example 4.3.
TABLE 4.3
Ezample 4.3.
method size of Krylov | # matrix-vector | # precon- | # vectors in each total #
subspace products ditioners preconditioner vectors used
Algorithm 3.5 20 304 3 10 54
Algorithm 3.6 20 519 3 10 54
GMRES(60) 60 1560 0 0 62
Full GMRES 108 108 0 0 111




22 J. Baglama et al.

60 T

40

201

imaginary part of eigenvalues
R
*

-60 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

real part of eigenvalues

Fic. 4.7. Eigenvalues of A (1) and M~YA () for Ezample 4.4 using Algorithm 3.5 with shifts

(2.10).
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Fic. 4.8. The smallest cigenvalues of A () and M~1A (%) for Ezample 4.4 using Algorithm
3.5 with shifts (2.10).

TABLE 4.4
Ezample 4.4.
method size of Krylov | # matrix-vector | # precon- | # vectors in each total #
subspace products ditioners preconditioner vectors used
Algorithm 3.5 20 430 3 10 54
Algorithm 3.6 20 414 3 10 54
GMRES(60) 60 960 0 0 62
Full GMRES 200 200 0 0 203
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Fic. 4.9. Convergence for Example 4.4.
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Fic. 4.10. FEigenvalues of A (-) and M~YA (x) for Ezample 4.5 using Algorithm 2.6 with
etgenvalues of Hy with largest real part chosen as shifts.



