
Random dispersal in a predator-prey-parasite model

Abstract.

1 Introduction

An intermediate host is a host that harbors the parasite only for a short
transition period of time, during which some developmental stage may be
completed. On the other hand, a definitive host is a host in which the
parasite reaches maturity and reproduces within the host.

2 A deterministic predator-prey-parasite model

Similar to the model studied in [11], it is assumed that the parasite under
consideration is a microparasite so that the parasite population is not ex-
plicitly modeled in the interaction. There are only two interacting species
prey and predator in the model. Individuals in each species are classified
as either infected or uninfected. Let x1 and x2 denote the uninfected and
infected prey populations respectively, and y1 and y2 be the corresponding
predators. The prey population in the absence of the predator and the par-
asite is modeled by a simple logistic equation with per capita growth rate
r and carrying capacity 1/q. It is assumed that the infected prey does not
reproduce.

We use a simple Holling type I functional response, and let e denote
the predator conversion rate. Since infected prey may increase its likelihood
of being preyed upon due to the disease, we let θ1 denote the factor that
affects the predator-prey interaction. The predator preys on both infected
and uninfected prey indiscriminately when θ1 = 1. If θ1 < 1, then the
infected prey has a less chance of being captured. The infected prey will
be more likely to be preyed upon if θ1 > 1. The natural death rates of
the infected prey and predator are denoted by d1 and d2 respectively. The
disease related mortality rates of the prey and predator populations are
denoted by α1 and α2, respectively. These parameters are assumed to be
constants.

Disease can be transmitted in two ways. An uninfected prey will be-
come infected if it makes contact with an infected predator. Similarly, an
uninfected predator will become infected if it contacts with an infected prey.
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A simple mass action is used to model the force of infection between unin-
fected prey and infected predator with β > 0 being the contact rate. In this
model, we also assume that the infected predator may be less competitive
in catching the prey and let θ2, 0 < θ2 ≤ 1, denote the fraction of com-
petitiveness. The infected predator has the same efficiency as an uninfected
predator in catching the prey if θ2 = 1. Otherwise, the infected predator is
less competitive. Under these biological assumptions, the model takes the
following form:





dx1

dt
= rx1(1− qx1)− δx1(y1 + θ2y2)− βx1y2

dx2

dt
= βx1y2 − (d1 + α1)x2 − δθ1x2(y1 + θ2y2)

dy1

dt
= eδx1y1 − δθ1x2y1 − d2y1

dy2

dt
= δθ1x2y1 − (d2 + α2)y2

xi(0) ≥ 0, yi(0) ≥ 0, i = 1, 2,

(2.1)

where all the parameters are positive with 0 < e ≤ 1 and 0 < θ2 ≤ 1. For
simplicity, we let

γ = d1 + α1 and γ̂ = d2 + α2. (2.2)

System (2.1) along with a parallel continuous-time Markov chain model were
studied in [11] when θ2 = 1. It is illustrated in [11] via numerical simulations
that the system with θ2 = 1 has a unique positive periodic solution when
the interior steady state of the deterministic model loses its stability. There
are no complicated dynamical behavior such as quasi-periodic solutions or
chaos exhibited in the system when θ2 = 1.

Let R+ = {x ∈ R : x ≥ 0} and R4
+ = {(x1, x2, y1, y2) ∈ R4 : xi ≥ 0, yi ≥

0, i = 1, 2}. The following standard analysis (c.f. [14]) shows that model
(2.1) is biologically sound.

Lemma 2.1 Solutions of (2.1) exist for t > 0, remain nonnegative, and are
bounded.

Proof. Since x′1|x1=0 = y′1|y1=0 = 0 and x′2|x2=0 ≥ 0 and y′2|y2=0 ≥ 0,
solutions of (2.1) remain nonnegative on the domain for which they are
defined. Let (x1(t), x2(t), y1(t), y2(t)) be a solution of (2.1). Suppose that
the solution exists on [0, t0), where t0 < ∞. Since x′1 ≤ rx1(1− qx1), there
exists M > 0 such that rx1(t)(2 − qx1(t)) ≤ M for t ∈ [0, t0). Let X =
x1 + x2 + y1/e + y2. Then X ′ ≤ M −m0X, where m0 = min {r, γ, d2} > 0.
It follows that X(t) is bounded on [0, t0) and thus the solution is bounded

2



on [0, t0). Therefore, the solution can be extended to be defined on [0,∞)

with lim supt→∞X(t) ≤ M

m0
.

In the absence of the parasite, system (2.1) reduces to the following
classical Lotka-Volterra predator-prey model with logistic growth in the prey

{
x′1 = rx1(1− qx1)− δx1y1

y′1 = (eδx1 − d2)y1.
(2.3)

It is known that the interior steady state (x̄1, ȳ1) exists if eδ > qd2, where

x̄1 =
d2

eδ
and ȳ1 =

r

δ
(1− qx̄1), (2.4)

and (x̄1, ȳ1) is globally asymptotically stable in {(x1, y1) ∈ R2
+ : x1, y1 > 0}.

Therefore, in the absence of the parasite, the predator and prey populations
can coexist as a stable interior equilibrium if eδ > qd2. On the other hand
if eδ < qd2, then the predator population y1 goes extinct and the prey
population x1 will stabilize at the carrying capacity level 1/q if x1(0) > 0.

System (2.1) always has two steady states E0 = (0, 0, 0, 0) and E1 =
(1/q, 0, 0, 0) which are independent of the parameters θi, i = 1, 2. The
Jacobian matrix of system (2.1) evaluated at E0 and E1 are given by

J(E0) =




r 0 0 0
0 −γ 0 0
0 0 −d2 0
0 0 0 −(d2 + α2)


 (2.5)

and

J(E1) =




−r 0 −δ/q −(δθ2 + β)/q
0 −γ 0 β/q

0 0
eδ

q
− d2 0

0 0 0 −(d2 + α2)




, (2.6)

respectively. We see that E0 is always unstable and E1 is locally asymptoti-
cally stable if eδ < d2q and unstable if eδ > d2q. It can be easily shown that
E1 is globally asymptotically stable whenever it is locally asymptotically
stable. The proof of the following lemma is similar to [11, Lemma 2.2] and
is omitted.

Lemma 2.2 If eδ < d2q, then E1 = (1/q, 0, 0, 0) is globally asymptotically
stable in {(x1, x2, y1, y2) ∈ R4

+ : x1 > 0}.
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We now assume eδ > d2q for the remaining discussion. Then E1 is
unstable and (2.1) has another boundary steady state E2 = (x̄1, 0, ȳ1, 0),
where (x̄1, ȳ1) is given in (2.4). The Jacobian matrix evaluated at E2 has
the form

J(E2) =




−rqx̄1 0 −δx̄1 −(δθ2 + β)x̄1

0 −γ − δθ1ȳ1 0 βx̄1

eδȳ1 −δθ1ȳ1 0 0
0 δθ1ȳ1 0 −(d2 + α2)


 , (2.7)

which is similar to the following matrix:



−rqx̄1 −δx̄1 0 −(δθ2 + β)x̄1

eδȳ1 0 −δθ1ȳ1 0
0 0 −γ − δθ1ȳ1 βx̄1

0 0 δθ1ȳ1 −(d2 + α2)


 .

Let J1 and J2 denote the upper-left and lower-right 2 × 2 submatrices of
the above matrix, respectively. It follows that E2 is locally asymptotically
stable if detJ2 > 0, i.e., if

(γ + δθ1ȳ1)(d2 + α2)− βθ1

e
d2ȳ1 > 0. (2.8)

Since (2.8) holds if ȳ1 > 0 is small, E2 is locally asymptotically stable when
E1 just losses its stability. Define

R0 =
βθ1d2ȳ1

e(γ + δθ1ȳ1)(d2 + α2)
. (2.9)

Then (2.8) is equivalent to R0 < 1. The following result provides a sufficient
condition for E2 to be globally asymptotically stable. The proof is similar
to the proof of Lemma 2.3 in [11] and is therefore omitted.

Lemma 2.3 Let eδ > qd2. Then E2 = (x̄1, 0, ȳ1, 0) is globally asymptotically

stable in {(x1, x2, y1, y2) ∈ R4
+ : x1 > 0, y1 > 0} if d2 + α2 >

β

q
.

Observe that the sufficient condition d2 + α2 >
β

q
given in Lemma 2.3

holds if the disease induced mortality α2 of the infected predator is large.
In this case the infection is too lethal and the disease cannot persist in the
populations.

Since tr2(J2) − 4det(J2) = (γ + δθ1ȳ1 − (d2 + α2))2 + 4
θ1βd2

e
ȳ1 > 0,

E2 cannot lose its stability through a Hopf bifurcation. We shall study the
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existence of a coexisting steady state. Let (x1, x2, y1, y2) denote a positive
equilibrium. A straightforward calculation shows that the x1-component
must satisfy

d2

eδ
< x1 < 1/q (2.10)

and
Ax2

1 + Bx1 + C = 0, (2.11)

where

A = θ1rq(β − θ2eδ)
B = θ1rq (θ2d2 − (d2 + α2)) + γe(δθ2 + β)− θ1r(β − θ2eδ)
C = γ(d2 + α2)− γ(δθ2 + β)d2/δ − θ1r(θ2d2 − (d2 + α2)).

If x∗1 satisfies (2.10) and (2.11), then the other components of the steady
states are given by

x∗2 =
eδx∗1 − d2

δθ1

y∗2 =
θ1rx

∗
2(1− qx∗1)

d2 + α2 + δθ1θ2x∗2 + θ1βx∗2

y∗1 =
(d2 + α2)y∗2

δθ1x∗2
,

which are positive by (2.10). Consequently, the number of interior steady
states of (2.1) and the number of solutions of (2.11) that satisfying (2.10)
are the same.

Let f(x) = Ax2+Bx+C. The following theorem shows that the system is
uniformly persistent and has a unique interior steady state if E2 is unstable,
and system (2.1) has no interior steady state if E2 is locally asymptotically
stable.

Theorem 2.4 Let eδ > qd2. Then (2.1) has no interior steady state if
R0 < 1 and (2.1) has a unique interior steady state E∗ = (x∗1, x

∗
2, y

∗
1, y

∗
2) if

R0 > 1. Moreover, system (2.1) is uniformly persistent if R0 > 1.

Proof. Observe that

f(1/q) = γ(d2 + α2)− γ(δθ2 + β)(d2/δ − e/q) > 0

and

f(
d2

eδ
) = γ(d2 + α2) + θ1r(d2 + α2)− θ1rqd2(d2 + α2)

eδ
− θ1rβd2

eδ
+

θ1rqβd2
2

e2δ2
.
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Substituting the expression of ȳ1 in (2.4) into the left hand side of (2.8), it

can be shown that the left hand side of (2.8) is f(
d2

eδ
) given above. Thus

R0 < 1 if and only if f(
d2

eδ
) > 0.

Suppose R0 < 1. Then f(1/q) > 0 and f(
d2

eδ
) > 0. If f is concave

down, then it is clear that f(x) = 0 has no solutions satisfying (2.10).
Suppose f is concave up, i.e., A > 0. We fix A and B. Then there is no
solution satisfying (2.10) if C < 0. If C = 0, then f(x) = 0 has a unique

nonzero solution −B

A
which is positive if B < 0. It is clear that this unique

positive solution is less than
d2

eδ
and thus (2.1) has no interior steady states.

If C > 0, then f(x) = 0 has two positive real solutions if B < 0 and

B2 − 4AC > 0. In this case we have
−B −√B2 − 4AC

2A
< − B

2A
<

d2

2eδ
and

−B +
√

B2 − 4AC

2A
< −B

A
<

d2

eδ
. Therefore, system (2.1) has no interior

steady state.

On the other hand, if R0 > 1, then f(
d2

eδ
) < 0. It is easy to see that

A ≤ 0 is impossible to occur. Indeed, if A ≤ 0, then since 0 < θ2 ≤
1 and β ≤ θ2eδ, the left hand side of (2.8) is greater than or equal to
(γ+δθ1ȳ1)(d2+α2)−θ1θ2δd2ȳ1 > 0 and we obtain a contradiction. Therefore
A > 0 and f is concave up. It is then clear that (2.11) has a unique solution
satisfying (2.10). It remains to prove uniform persistence of (2.1). This
is done by looking at the boundary dynamics of (2.1). From the Jacobian
matrix J(E0) given in (2.5) we see that the stable manifold of E0 lies on the
x2y1y2-hyperplane and the unstable manifold of E0 lies on the x1-axis. The
stable manifold of E1 from J(E1) given in (2.6) can be seen to be spanned
by the vectors (1, 0, 0, 0)T , (0, 1, 0, 0)T and (x1, x2, y1, y2)T , where T denotes
the transpose and (x1, x2, y1, y2)T is an eigenvector of J(E1) with respect to
−(d2 + α2). A direct calculation shows that we can choose y1 = 0. Hence
the stable manifold of E1 lies on the x1x2y2-hyperplane. On the other hand,

an eigenvector (x1, x2, y1, y2)T of J(E1) with respect to
eδ

q
− d2 > 0 can be

chosen as x2 = y2 = 0, y1 = 1 and x1 =
δ

q(d2 − r − eδ
q )

< 0. Therefore, the

unstable manifold of E1 lies outside of the interior of R4
+.

We proceed to study the stable and unstable manifolds of E2. The
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eigenvalues of J(E2) are λ±i =
trJi ±

√
tr2Ji − 4detJi

2
, i = 1, 2, where λ+

2 >

0. An eigenvector (x1, x2, y1, y2)T associated with λ+
2 can be chosen so that

y1 < 0 and thus the unstable manifold of E2 lies outside of R4
+. Furthermore,

a straightforward calculation shows that an eigenvector (x1, x2, y1, y2)T of
λ−2 < 0 can be chosen with y2 < 0, i.e., the stable manifold of E2 also lies
outside of R4

+. Therefore the boundary dynamics of (2.1) is acyclic with
acyclic covering {E0, E1, E2}. Since each of the stable set of Ei does not
intersect with the interior of R4

+, the system is uniformly persistent by [3].

Notice x∗1 > x̄1 by (2.10), and y∗1 =
r(1− qx∗1)

δ
−βy∗2

δ
−θ2y

∗
2 <

r(1− qx̄1)
δ

=
ȳ1. Therefore, the uninfected predator has a smaller population size and the
uninfected prey has a larger population size in the coexisting steady state
where infected populations are present. This is probably because infection
causes prey to be easier to be preyed upon so that the predator concentrates
more on the infected prey and the uninfected prey can thus survive better.
The linearization of (2.1) at E∗ yields the following Jacobian matrix

J(E∗) =




−rqx∗1 0 −δx∗1 −δθ2x
∗
1 − βx∗1

βy∗2 −γ − δθ1(y∗1 + θ2y
∗
2) −δθ1x

∗
2 βx∗1 − δθ1θ2x

∗
2

eδy∗1 −δθ1y
∗
1 0 0

0 δθ1y
∗
1 δθ1x

∗
2 −γ̂


 .(2.12)

The characteristic polynomial P (λ) of J(E∗) is

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4, (2.13)

where

a1 = rqx1 + δθ1(y1 + θ2y2) + γ

a2 = δ(eδ − βθ1 + rqθ1)x1y1 + rqδθ1θ2x1y2 + δ2θ2
1(θ2 − 1)x2y1

+ rq(γ + γ̂)x1 + δθ1γ̂y1 + δθ1θ2γy2 + γγ̂

a3 = −δ3θ3
1θ2x

2
2y1 + eδ3θ1x1y

2
1 + δ2θ1 (θ1β + eβ − θ1rq(1− θ2))x1x2y1

+ −rqδθ1βx2
1y1 +

(
βδθ1(β + δ(θ2 − 1)) + eδ3θ1θ2

)
x1y1y2

+
(
eδ2γ̂ + δ(eδγ + rqθ1d2)

)
x1y1 − δ2θ2

1γx2y1 + rqδθ1θ2γ̂x1y2 + rγqd2 + α2x1

a4 = (rqδ2θ2
1y1x2β − eδ3y1

2θ1β)x1
2

+ (−rqδ3θ3
1y1x2

2θ2 + (eδ4y1
2θ2

1θ2 + ((−β2δ2θ2
1 − βδ3θ2

1θ2

+ eδ3θ2
1θ2β + eδ4θ2

1θ
2
2)y2 − rqδ2θ2

1γ + eδ3γθ1θ2)y1)x2 + eδ3θ1γy1
2

+ ((−βδ2θ1d2 − βδ2θ1α2 + eδ3θ1θ2γy2 + eδ2γd2eδ
2γα2y1)x1
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with x∗i dented by xi and y∗i denoted by yi, 1 ≤ i ≤ 2, for simplicity. Since
coefficients of P (λ) involve complex expressions, it is not easy to study local
stability of E∗ analytically using linearization technique. In the following
we first use the center manifold theory as described in [?, Theorem 4.1] to
prove local stability of E∗ when R0 > 1 is close to 1. For the convenience
of the reader, [?, Theorem 4.1] is presented in Appendix A.

Denote y1 by x3 and y2 by x4 and let fi(x1, x2, x3, x4), i = 1, · · · , 4, be
the right hand side of (2.1). The Jacobian matrix of (2.1) evaluated at E2,
J(E2), is given in (2.7). Let θ1c > 0 denote the value of θ1 for which R0 = 1,
i.e.,

θ1c =
eγ(d2 + α2)

ȳ1(βd2 − eδ(d2 + α2))
, (2.14)

where it is implicitly assumed that βd2 > eδ(d2 + α2). At θ1 = θ1c, we have
R0 = 1 and det(J2) = 0. Therefore, J(E2) has 0 as a simple eigenvalue and
the rest of the eigenvalues have negative real parts when θ1 = θ1c. Within
scalar multiplications, the right eigenvector w = (w1 w2 w3 w4)T of J(E2)
with respect to 0 has components

w1 = 1, w2 =
e

θ1c
, w3 =

−rq − (δθ2 + β)w4

δ
, w4 =

(γ + δθ1cȳ1)w2

βx̄1

while the components of the left eigenvector v = (v1 v2 v3 v4) needed to be
chosen so that v ·w = 1, v2 > 0, and v4 > 0 [15]. A simple calculation yields

v1 = 0, v2 =
−(d2 + α2)

∆
, v3 = 0, v4 =

−βx̄1

∆
,

where
∆ = − ((d2 + α2) + (γ + δθ1cȳ1))w2 < 0.

The local bifurcation of E2 at θ1 = θ1c depends on the signs of a and b,
where

a =
4∑

i,j,k=1

vkwiwj
∂2fk

∂xi∂xj
(E2)

and

b =
4∑

i,k=1

vkwi
∂2fk

∂xi∂θ1
(E2),

with θ1 evaluated at θ1c. The bifurcation is to the right and the interior
steady state E∗ is locally asymptotically stable for θ1 > θ1c and close to θ1c

if a < 0 and b > 0 [?, Theorem 4.1].
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Toward this end, the nonzero partial derivatives of fi with respect to the
state variables and the parameter θ1 evaluated at E2 with θ = θ1c are given
by

∂2f1

∂x2
1

= −2rq,
∂2f1

∂x1∂x3
= −δ,

∂2f1

∂x1∂x4
= −δθ2 − β,

∂2f2

∂x1∂x4
= β,

∂2f2

∂x2∂x3
= −δθ1c,

∂2f2

∂x2∂x4
= −δθ1cθ2,

∂2f3

∂x1∂x3
= eδ,

∂2f3

∂x2∂x3
= −δθ1c,

∂2f4

∂x2∂x3
= δθ1c,

∂2f2

∂x2∂θ1
= −δȳ1,

∂2f3

∂x2∂θ1
= −δȳ1,

∂2f4

∂x2∂θ1
= δȳ1.

By continuity,
∂2fi

∂xj∂xk
=

∂2fi

∂xk∂xj
for all 1 ≤ i, j, k ≤ 4. As a consequence,

b = v2w2
∂2f2

∂x2∂θ1
+ v4w2

∂2f4

∂x2∂θ1

= δȳ1w2(v4 − v2)

= − δȳ1

eδ∆
w2(βd2 − eδ(d2 + α2)) > 0,

and

a = 2(v2w1w4
∂2f2

∂x1∂x4
+ v2w2w3

∂2f2

∂x2∂x3
+ v2w2w4

∂2f2

∂x2∂x4
+ v4w2w3

∂2f4

∂x2∂x3
)

=
2
∆

(
θ2δȳ1(β − eδ) + (βx̄1 − (d2 + α2))(rq +

eδ(δθ2 + β)ȳ1

d2 + α2
)
)

< 0

since βd2 > eδ(d2 + α2). We conclude from the center manifold theory that
the bifurcation at θ1 = θ1c is to the right and hence the interior steady
state E∗ is locally asymptotically stable when θ1 > θ1c is close to θ1c. We
summarize below.

Lemma 2.5 Let eδ > d2q and R0 > 1. Then (2.1) has a unique interior
steady state E∗. Moreover, E∗ is locally asymptotically stable if R0 > 1 is
sufficiently close to 1.

Notice that θ1c given in (2.14) is independent of θ2. To study (2.1)
further, we choose parameter values so that eδ > qd2 and R0 > 1:

q = 0.2, β = 2.0, γ = 0.7, δ = 0.38, α2 = 0.5, d2 = 0.3, e = 1, r = 0.7.
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Then θ1c = 1.21959. When θ1 = θ2 = 1, there is no interior steady state
by Theorem 2.4 and our simulations suggest that the boundary steady state
E2 is globally asymptotically stable. We then increase θ1 to θ1 = 1.5 >
θ1c = 1.21959 and keep θ2 = 1. We have R0 = 1.189165 > 1 so that E2

is unstable and there exists a unique interior steady state E∗ by Theorem
2.4. Simulations using several randomly chosen positive initial conditions all
converge to E∗ for this set of parameter values. We then increase θ1 to θ1 =
1.8 and use θ2 = 1. In this case, simulations with randomly chosen positive
initial conditions converge to the interior steady state E∗ = (x∗1, x

∗
2, y

∗
1, y

∗
2)

with x∗2 = 0.3618 and y∗2 = 0.1381. When θ2 decreases to θ2 = 0.01, then E∗

becomes unstable and there exists a positive periodic solution which seems
to be locally asymptotically attracting according to the simulations. Figure
1(a) plots x2-y2 components of the periodic solution. The same dynamical
behavior occurs as we decrease θ2 further to θ2 = 0.001 and also increase θ1

to θ1 = 2.8. The x2y2 projection of the positive periodic solution is given
in Figure 1(b). From this numerical study we see that a decrease of the
parameter value θ2 can make the population interaction more unstable.

Although not present in this study, simulations of many different ran-
domly chosen positive initial conditions with different values of θ1 and θ2 do
seem converge to the positive periodic solution. Moreover, as we increase θ1,
the values of θ2 for which a positive periodic solution appears seem become
larger. We conclude from this numerical study that system (2.1) also has
no complicated dynamical behavior as in the case when θ2 = 1. This is
expected if θ2 remains close to 1 by the previous study in [11] along with
continuous dependence of solutions on parameters. However, we tested the
system for small θ2.

3 A predator-prey-parasite model with diffusion

In this section we will study the impact of dispersal upon the interaction of
infected and uninfected prey and predator. We assume that individuals of
both infected and uninfected populations of prey and predator can disperse
randomly. For simplicity, the spatial domain is one dimensional with 0 ≤
x ≤ l, and the diffusion coefficients for the uninfected and infected prey and
predator are denoted by Di, 1 ≤ i ≤ 4, respectively. These parameters are
assumed to be independent of time, space and populations. Since we can
always re-scale our independent and dependent variables, we will assume
l = 1 for convenience. Let Ni(x, t) and Pi(x, t), i = 1, 2, be the population
densities of uninfected and infected prey and predator at time t and location
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Figure 1: The plots provide the x2 and y2 components of the positive pe-
riodic solution when θ1 = 1.8, θ2 = 0.01 in (a) and θ1 = 2.8, θ2 = 0.001 in
(b).

x, respectively. The model is given below:

∂N1

∂t
= rN1(1− qN1)− δN1(P1 + θ2P2)− βN1P2 + D1

∂2N1

∂x2

∂N2

∂t
= βN1P2 − (d1 + α1)N2 − δθ1N2(P1 + θ2P2) + D2

∂2N2

∂x2

∂P1

∂t
= eδN1P1 − δθ1N2P1 − d2N1 + D3

∂2P1

∂x2
(3.1)

∂P2

∂t
= δθ1N2P1 − (d2 + α2)P2 + D4

∂2P2

∂x2

Ni(x, 0) = ψi(x), Pi(x, 0) = ϕi(x), 0 < x < 1, 1 ≤ i ≤ 2,

where parameters r, q, δ, β, θ1, θ2, γ, d2, α2 have the same biological meanings
as in the previous model (2.1), Di > 0, and ψi and ϕi are bounded continuous
functions on [0, 1], 1 ≤ i ≤ 2.

We shall study the effects of diffusion upon stability of the homogeneous
steady state solutions. In particular, we assume eδ > qd2 and R0 > 1 so that
the spatially homogeneous system (2.1) has a unique interior steady state
E∗ = (x∗1, P

∗
2 , y∗1, y

∗
2). Let D denote the diagonal matrix diag(D1, D2, D3, D4).

Let φ1 = N1 − x∗1, φ2 = N2 − x∗2, φ3 = P1 − y∗1, φ4 = P2 − y∗2 and
Φ = (φ1, φ2, φ3, φ4)T . The linearization of the reaction-diffusion system
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(3.1) about E∗ yields the following linear system

Φt = DΦxx + J(E∗)Φ, (3.2)

where J(E∗) is given by (2.11). Suppose a solution of (3.2) is of the form

Φ = (v1, v2, v3, v4)T eikx+λt,

where i =
√−1, λ is an eigenvalue, and k is a wave number. A simple

calculation yields
(
J(E∗)− k2D − λI

)
(v1, v2, v3, v4)T = 0.

In order for a nontrivial solution to exist, it is necessary that

det(J(E∗)− k2D− λI) = 0.

The resulting characteristic equation has the form

Q(λ) = λ4 + b1(k2)λ3 + b2(k2)λ2 + b3(k2)λ + b4(k2) = 0, (3.3)

where coefficients bi, i = 1, · · · , 4, are much more complicated than those
ai, i = 1, · · · , 4, given in P (λ) for the spatial homogeneous model (2.1).
However, bi(0) = ai for 1 ≤ i ≤ 4.

We next study (3.1) numerically. We choose the same parameter values
as in the homogeneous system (2.1):

q = 0.2, β = 2.0, γ = 0.7, δ = 0.38, α2 = 0.5, d2 = 0.3, e = 1, r = 0.7.

Then θ1c = 1.21959. Let
We plot the maximum real parts of the zeros of Q(λ) against k2 in

Figure 3(a), where it can be seen that the maximum real part of the eigen-
values remain below −0.03 for k2 large. Although it is not presented in this
manuscript, the simulation was run for k2 up to 10000. We then increase D1

and D2 to 10 and 50 respectively and even larger to test for diffusion driven
instability. The same numerical result is obtained. Therefore for these pa-
rameter values where the homogeneous steady state is locally asymptotically
stable, there is no Turing instability observed in (3.1). We now change θ1

to 60 and θ2 = 0.003. Notice from Figure 1 we see that the homogeneous
steady state is unstable. When D1 = 20 and D2 = 80, the maximum real
part of the eigenvalues is about 0.0203 when k2 = 0 as can be seen from
Figure 1. However, as we increase k2 up to 1 then the maximum real part
of the eigenvalue decreases to negative and then increases when k2 is larger
than 1. However, the maximum real part of the eigenvalues remains neg-
ative. The same numerical result is obtained if we increase D1 and D2 up
to few hundreds. We conclude that diffusion can stabilize the homogeneous
steady state.

12



4 Discussion

A Appendix
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