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Abstract. Computing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix
arises in many applications and can be a very computationally challenging problem. In this paper we
propose the Augmented Block Householder Arnoldi (ABHA) method that combines the advantages
of a block routine with an augmented Krylov routine. A public domain MATLAB code ahbeigs has
been developed and numerical experiments indicate that the code is competitive with other publicly
available codes.
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1. Introduction. Finding the extreme eigenvalues and associated eigenvectors
of a large-scale eigenvalue problem

Ax = λx A ∈ Rn×n(1.1)

is one of the most computationally challenging and commonly occurring problems to
date. Applications can be found in almost all scientific disciplines, e.g. computational
fluid dynamics, electrical engineering, oceanography, and quantum chemistry. See Bai
et al [13] for a description of some applications, references, and collection of matrices.

Many algorithms are based on the Arnoldi process [2]. For a given starting vector
x, the Arnoldi process builds an orthonormal basis for the Krylov subspace

Km(A, x) = span{x,Ax, A2x, . . . , Am−1x}.(1.2)

The orthonormal basis yields a projection matrix and a relationship that is often
referred to as the Arnoldi decomposition. The eigenvalues and eigenvectors of the
projection matrix are then used as an approximation to the eigenvalues and eigenvec-
tors of A. However, in order to get an acceptable approximation to the eigenpairs, m
must typically be large. This is not always possible because of storage constraints and
orthogonality issues. To overcome these difficulties a restarted Arnoldi method can be
used. A restarted method maintains a modest value for m << n where each restart
either implicitly or explicitly modifies the starting vector x for the next iteration so
that a better approximation is obtained. This creates a sequence of Krylov subspaces
that hopefully converge to an invariant subspace containing the desired eigenvectors.

In a seminal paper, Sorensen [52] proposed the Implicitly Restarted Arnoldi (IRA)
method for the computation of a few eigenpairs of a large sparse nonsymmetric matrix.
This restarted method implicitly modifies the starting vector on each iteration via a
shifted curtailed QR-algorithm. This successful method is the foundation for the
very popular eigenvalue software package ARPACK [35]. Lehoucq and Scott [34]
provided a comparison of softwares and concluded that ARPACK was generally the
fastest and most dependable. However, there are numerical examples that have shown
that if care is not taken during the implemenation, propagated round-off errors can
delay or prevent convergence of desired eigenvalues and eigenvectors, [34, 56]. This
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forward numerical instability is due to the underlying QR-algorithm, see Lehoucq
and Sorensen [34] for remedies. Morgan [41] showed the IRA method of Sorensen [52]
can be implemented by augmenting the sequence of Krylov subspace basis by certain
Ritz vectors. This mathematically equivalent implementation can be less sensitive to
propagated round-off errors than the implementation in [52]. This relationship has
been recently exploited by Wu and Simon [61] for symmetric eigenvalue problems,
by Morgan [42, 43] for linear systems and nonsymmetric eigenvalue problems, and
by Baglama and Reichel [11] for singular value problems. The extension of this idea
to block Krylov subspaces (1.3) has been implemented by Morgan [44] and Gu and
Ciao [26] for linear systems, by Möller [40] for nonsymmetric eigenvalue problems,
and by Baglama and Reichel [12] for singular value problems. These extensions to
block methods have many favorable attributes, see the discussion below, eventhought
they are no longer mathematically equivalent to the block form of the IRA method,
see Möller [40] for details. The main focus of this paper is on creating an augmented
block Krylov subspace method for the eigenvalue problem (1.1).

The block Arnoldi method only differs from the Arnoldi method in that it uses
a set of starting vectors X = [x1, x2, . . . , xr] and builds an orthonormal basis for the
block Krylov subspace

Kmr(A,X) = span{X, AX, A2X, . . . , Am−1X}.(1.3)

A block routine typically requires more computational effort and larger subspaces
for acceptable approximations. However, the benefits of a block routine include the
ability to compute multiple or clustered eigenvalues more efficiently than an un-
blocked routine, [8, 9, 32], the use of Level 3 BLAS [18] matrix-matrix products
for faster algorithms [17, Section 2.6], and the ability to compute matrix-vector
products with a block of vectors. These advantages of the block routines have re-
sulted in a considerable number of algorithms/software in recent years; see, e.g,
[9, 12, 3, 26, 25, 32, 40, 37, 39, 44, 50, 51, 28, 62] and references therein. In par-
ticular, Lehoucq and Maschhoff [32] created an implicitly restarted block Arnoldi
(bIRAM) method which is a straightforward generalization of the IRA method to
block form.

Currently, ARPACK does not include the bIRAM method. This may be due
to several difficulties in implementation, e.g. shift strategy. In the IRA method,
during the implicit modification of the starting vector, a shift is applied, followed
by a reduction in the number of vectors in the Arnoldi decomposition. There is a
one-to-one correspondence between the reduction of the Arnoldi decomposition and
the number of shifts applied, i.e. reducing m to m − 1 in (1.2) after one shift is
applied. However, in the generalization to block form there is no longer a one-to-one
correspondence. The ratio becomes one-to-block size, i.e. reducing mr to mr − r in
(1.3) after one shift is applied. The current shift strategy in ARPACK is “exact”
shifts which are the unwanted Ritz values [52]. Applying “exact” shifts in the bIRAM
method may cause a significant number of unwanted Ritz values not being applied as
shifts. This can slow down the convergence drastically. One solution may be to use an
alternate shift strategy, e.g., the zeros of Chebyshev polynomials [48], Leja points [7],
harmonic Ritz values [45], or refined Ritz values [29]. The computer code irbleigs,1

which is based on the implicitly restarted block Lanczos method, uses Leja points as
shifts for solving the symmetric eigenvalue problem, see [9, 10] for details. However,

1Computer code is available at http://www.math.uri.edu/∼jbaglama
or http://math.nist.gov/toms/
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the focus of this paper is not on shift strategies, but rather on circumventing the use
of shifts by implementing an augmented block routine.

We have developed an augmented block Householder Arnoldi (ABHA) method
that combines the advantages of a block routine and an augmented routine. The
development of an augmented block Arnoldi method is not new, Morgan presents an
augmented Arnoldi block routine in [44] to solve linear systems of equations and Möller
in [40] for solving nonsymmetric eigenvalue problems. However, this paper presents a
new implementation, along with a public domain MATLAB code, ahbeigs2.

This paper is organized as follows. Section 2 introduces notation and presents the
block Householder Arnoldi algorithm and in Section 3 we outline the ABHA method
and provide algorithms. The MATLAB code ahbeigs is presented in Section 4 and a
few numerical examples are presented in Section 5. Concluding remarks are contained
in Section 6.

2. Block Householder Arnoldi. The foundation of our ABHA method is the
use of the Householder process to create an orthonormal basis for the block Krylov
subspace (1.3). Algorithm 2.1 extends the Householder Arnoldi method developed
by Walker [60] to block form. Although the Householder process for creating an
orthonormal basis for the Krylov subspace is more expensive than the Modified Gram-
Schmidt (MGS) process with partial reorthogonalization, it is less expensive than the
MGS process with full reorthogonalization [47].

Our method uses the compact WY representation of the Householder product
[49]. The Q matrix in the Householder QR-decomposition is formed from a product
of Householder matrices, [47]. The compact WY representation of Q replaces the
product with the form, I + Y TY T , where Y is a lower trapezoidal matrix and T is
a square upper triangular matrix. See [14, 59] for details on block reflectors. The
advantage of this representation is the heavy use of Level 3 BLAS matrix-matrix
operations.

Algorithm 2.1. Block Arnoldi Householder Algorithm

Input: A ∈ Rn×n;
Output: Y ∈ Rn×mr+r, T ∈ Rmr+r×mr+r,

H(i,j) ∈ Rr×r, j = 0, . . . m, i = 1, . . . , j + 1;
1.) Choose r random vectors xi and set X := [x1, . . . , xr] ∈ Rn×r;
2.) for j = 0, 1, . . . ,m

3.) Compute the Householder QR-decomposition where

X(jr + 1 : n, 1 : r) = QR and Q = (I + WSWT )
[

I
0

]
} ∈ Rr×r

} ∈ R(n−r)×r

4.) if j = 0

a.) Set

 Y := W
T := S
H(1,0) := R

else

b.) Set



 H(1,j)

...
H(j,j)

 :=

 X(1 : jr, 1 : r)


}
∈ Rjr×r

[
H(j+1,j)

]
[ R ]

}
∈ Rr×r

2Computer code can be downloaded from http://www.math.uri.edu/∼jbaglama
or http://www.mathworks.com/matlabcentral/fileexchange
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c.) Set



W :=
[

0
W

] }
∈ Rjr×r}
∈ Rn−jr×r

T :=
[

T TY T WS
0 S

]
∈ R(j+1)r×(j+1)r

Y :=
[

Y W
]
∈ Rn×(j+1)r

end
5.) if j < m

6.) Compute X := (I + Y TT Y T )A(I + Y TY T )

 0
I
0

 } ∈ Rjr×r

} ∈ Rr×r

} ∈ R(n−jr−r)×r7.) end
8.) end

Consider the following orthonormal matrix,

Vmr+r = [V(1), V(2), . . . , V(m+1)] = (I + Y TY T )Imr+r, V(i) ∈ Rn×r,(2.1)

that is created from output of Algorithm 2.1. It is easy to see that Algorithm 2.1
computes a truncated QR decomposition of the matrix [X, AV(1), . . . , AV(m)] such
that

(I + Y T T Y T ) [X, AV(1), . . . , AV(m)] =


H(1,0)

[
H(1,1)

H(2,1)

]
. . .

 H(1,m)

...
H(m+1,m)



0 0 · · · 0


where H(i,j) ∈ Rr×r, i = 1, . . . , j, j = 1, . . . ,m are r × r blocks, and H(j+1,j) ∈ Rr×r

are upper triangular blocks, that are obtained from step 4 of Algorithm 2.1.
Let

Hmr+r =



H(1,1) . . . H(1,m)

H(2,1) H(2,2)

. . .
...

. . . . . .
H(m,m−1) H(m,m)

0 H(m+1,m)


∈ Rmr+r×mr,(2.2)

be the upper block Hessenberg matrix then the following is a block Arnoldi decom-
position

AVmr = Vmr+rHmr+r

or
AVmr = VmrHmr + V(m+1)H(m+1,m)E

T
r .

(2.3)

During the iteration of the block Arnoldi method a sub-diagonal block H(j+1,j)

of the blocked Hessenberg matrix (2.2) may become singular, implying that a set
of vectors in (1.3) have become linearly dependent on previously generated vectors.
Unlike the single vector Arnoldi method, this occurrence of linearly dependent vectors
may not imply an invariant subspace has been computed unless H(j+1,j) ≡ 0. This
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“breakdown” rarely occurs, but still needs to be addressed in the development of a
robust software. See [5] for details on the implication of the breakdown when using
the MGS process in the implicitly restarted block Lanczos method and for a solution.
The Householder block Arnoldi method handles this in step 3 of Algorithm 2.1 via the
underlying LAPACK’s QR algorithm with no additional steps required, i.e. a random
vector is introduced at step 3 so that a valid QR factorization is computed.

3. Restarting with Schur vectors. Following the approach by Stewart [56]
and more recently by Möller [40] we now outline our block restarted method.

Assume the block Arnoldi decomposition (2.3) is available and compute the real
Schur decompostion of Hmr such that,

HmrQ
(Hmr)

mr = Q
(Hmr)

mr U
(Hmr)

mr(3.1)

where U
(Hmr)

mr is a quasi-triangular matrix with the eigenvalues of Hmr occurring
on the diagonal as either a real 1 × 1 matrix or a real 2 × 2 matrix. The latter
case constitutes complex conjugate pairs and Q

(Hmr)

mr = [q
(Hmr)

1 , q
(Hmr)

2 , . . . , q
(Hmr)

mr ] is
an orthogonal matrix. The real Schur decomposition can be reordered so that the
desired eigenvalues occur in the upper left part, U

(Hmr)

k of the matrix U
(Hmr)

mr . This
can be accomplished via LAPACK’s subroutine dtrsen [1]. See Bai and Demmel [4]
for details on reordering the real Schur decomposition.

Let k be the number of desired eigenvalues and we assume for ease of presentation
that k does not split a conjugate pair. In practice, if k does split a conjugate pair
it is replaced with k + 1. After reordering the real Schur decomposition of Hmr and
truncating the last mr − k columns we have,

HmrQ
(Hmr)

k = Q
(Hmr)

k U
(Hmr)

k .(3.2)

For the given matrix A we determine the approximate real partial Schur decom-
position AQ

(A)

k = Q
(A)

k U
(A)

k from (3.1), where

Q
(A)

k = [q
(A)

1 , q
(A)

2 , . . . , q
(A)

k ] = VmrQ
(Hmr)

k and U
(A)

k = U
(Hmr)

k .(3.3)

The partial eigenvalue decomposition of A is easily obtained by computing the eigen-
value decomposition U

(Hmr)

k Sk = SkD
(Hmr)

k and setting

V
(A)

k = VmrQ
(Hmr)

k Sk, D
(A)

k = D
(Hmr)

k to get AV
(A)

k = V
(A)

k D
(A)

k .(3.4)

Using (2.3), (3.1), and (3.4) we have the following

AV
(A)

k − V
(A)

k D
(A)

k = V(m+1)H(m+1,m)E
T
r Q

(Hmr)

k Sk.(3.5)

We see from (3.5) that we have an acceptable approximate partial eigenvalue decom-
position of A when

‖H(m+1,m)E
T
r Q

(Hmr)

k Sk‖ ≤ α · tol(3.6)

where tol is a user input tolerance value and α is chosen to assure a small backward
error, see ARPACK user guide [36] for a discussion on choosing α.

Rearranging (3.5) we have the following relationship,

AQ
(A)

k = [Q
(A)

k V(m+1)]

[
U

(A)

k

H(m+1,m)E
T
r Q

(Hmr)

k

]
.(3.7)
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Möller [40] showed via orthogonal transformations that (3.7) can be transformed into
a k block Arnoldi decomposition. Therefore, the block Arnoldi algorithm can be
restarted or continued with the matrix V(m+1). In order to continue our block Arnoldi
Householder Algorithm 2.1 the orthogonal matrix [Q

(A)

k V(m+1)] must be placed into
the compact WY representation of the Householder product. This is accomplished in
Algorithm 3.1. The Algorithm makes use of the fact that the matrix [Q

(A)

k V(m+1)] is
orthogonal, see step 3 of Algorithm 3.1. Then Algorithm 3.1 computes the product
Q

(A)

k := VmrQ
(Hmr)

k in steps 1 and 6, while placing the matrix [Q
(A)

k V(m+1)] into
WY representation. Notice when n is large the dominating computational expense
of Algorithm 3.1 occurs at step 6a, which parallels the computational cost that is
encountered when updating the block Arnoldi decomposition in the bIRAM [32].

Algorithm 3.1. Algorithm orthogonal

Input: Householder WY-compact matrices: Y ∈ Rn×`+r and T ∈ R`+r×`+r

Orthogonal matrix: Q
(Hmr)

k ∈ R`×k

Output: Householder WY-compact matrices: Ȳ ∈ Rn×k+r and T̄ ∈ Rk+r×k+r

Diagonal matrix of ±1s, R ∈ Rk+r×k+r such that

(I + Ȳ T̄ Ȳ T )Ik+r = (I + Y TY T )I`+r

[
Q

(Hmr)

k 0
0 Ir×r

]
R

1. Compute first k + r rows and columns: T̄1 := IT
k+r(I +Y TY T )I`+r

[
Q

(Hmr)

k 0
0 Ir×r

]
2. Set Ȳ (1 : k + r, 1 : k + r) = T̄1

3. Compute Householder vectors for Ȳ (1 : k + r, 1 : k + r)
a.) for i = 1, . . . , k + r

b.) R(i, i) = sign(Ȳ (i, i))
c.) α = 1 + R(i, i)Ȳ (i, i)
d.) Ȳ (i, i) = Ȳ (i, i) + R(i, i)
e.) D(i, i) = 1/Ȳ (i, i)
f.) Ȳ (1 : k + r, i + 1 : k + r) = Ȳ (1 : k + r, i + 1 : k + r)−

R(i,i)
α

Ȳ (1 : k + r, i)Ȳ (i, i + 1 : k + r)
g.) end

4. Set Ȳ (1 : k + r, 1 : k + r) = Ȳ (1 : k + r, 1 : k + r)D and R = −R

5. Compute T̄ = Ȳ (1 : k + r, 1 : k + r)−1(T̄1R− I)Ȳ (1 : k + r, 1 : k + r)−T

6. Set U =

[
Q

(Hmr)

k 0
0 Ir×r

]
R(T̄ Ȳ (1 : k + r, 1 : k + r))−1

a.) Ȳ (k + r +1 : n, 1 : k + r) = Y (k + r +1 : n, 1 : m1 + r)TY (1 : m1 + r, 1 : m1 + r)U
b.) Ȳ (k+r+1 : k+r, 1 : k+r) = U(k+r+1 : k+r, 1 : k+r)+Ȳ (k+r+1 : k+r, 1 : k+r)

Using Algorithm 3.1 we have,

(I + Ȳ T̄ Ȳ T )Ik+r = [Q
(A)

k V(m+1)]R(3.8)

where the R matrix is a diagonal matrix of ±1s created in step 3 of Algorithm 3.1 to
avoid numerical cancellation.

Multiplying (3.7) by R̂ := R(k,k) ∈ Rk×k, the first k columns and rows of R, from
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the right and using (3.8) we have,

AQ
(A)

k R̂ = [Q
(A)

k V(m+1)]RR

[
U

(A)

k

H(m+1,m)E
T
r Q

(Hmr)

k

]
R̂

= (I + Ȳ T̄ Ȳ T )Ik+r

[
R

[
U

(A)

k

H(m+1,m)E
T
r Q

(Hmr)

k

]
R̂

]

= (I + Ȳ T̄ Ȳ T )Ik+rH̄k+r

(3.9)

where

H̄k+r =

[
R

[
U

(A)
k

H(m+1,m)E
T
r Q

(Hmr)

k

]
R̂

]
.(3.10)

Let Q
(A)

k R̂ = [q1, q2, . . . , qk]. The block Householder Algorithm can now be con-
tinued with the next set of r vectors

V(m+1) := (I + Ȳ T̄ Ȳ T )

 0
I
0

 } ∈ Rk×r

} ∈ Rr×r

} ∈ R(n−(k+r)×r

such that

(I + Ȳ T̄ T Ȳ T ) [Aq1, Aq2, . . . , Aqk, AVm+1] =



 H̄k+r


H̄(1,k+r+1)

...
H̄(k+r+1,k+r+1)

H̄(k+r+2,k+r+1)

0 0


where we have computed the Householder QR-decomposition of X(k + r + 1 : n, 1 :

r) := QR for X := (I + Ȳ T̄T Ȳ T )AV(m+1) to get

Q = (I + WSWT )
[

I
0

]
} ∈ Rr×r

} ∈ R(n−r)×r(3.11)

and  H̄(1,k+r+1)

...
H̄(k+r+1,k+r+1)

 :=

 X(1 : k + r, 1 : r)


}
∈ Rk+r+1×r

[
H̄(k+r+2,k+r+1)

]
[ R ]

}
∈ Rr×r.

(3.12)

Matrices Ȳ and T̄ are updated with W and S from (3.11) to get the next set of
vectors and the restarted method is continued. Algorithm 3.2 illustrates the restarting
process.

Algorithm 3.2. Block Arnoldi Householder Algorithm, cont
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Input: A ∈ Rn×n;
Ȳ ∈ Rn×k+r, T̄ ∈ Rk+r×k+r, H̄k+r, and m1

Output: Ȳ ∈ Rn×k+r+m1r+r, T̄ ∈ Rk+r+m1r+r×k+r+m1r+r,
H̄k+r+m1r+r; H̄(k+r+i,k+r+j) ∈ Rr×r, j = 1, . . . m1, i = 1, . . . , j + 1;

1.) for j = 1, 2, . . . ,m1

2.) Compute X := (I + Ȳ T̄T Ȳ T )A(I + Ȳ T̄ Ȳ T )

 0
I
0

 } ∈ Rk+(j−1)r×r

} ∈ Rr×r

} ∈ R(n−jr−k)×r

3.) Compute the Householder QR-decomposition where

X(k + jr + 1 : n, 1 : r) = QR and Q = (I + WSWT )
[

I
0

]
} ∈ Rr×r

} ∈ R(n−r)×r

4.) a.) Set



 H̄(1,k+r+j)

...
H̄(k+r+j,k+r+j)

 :=

 X(1 : k + jr, 1 : r)


}
∈ Rk+jr×r

[
H̄(k+r+j+1,k+r+j)

]
[ R ]

}
∈ Rr×r

b.) Set



W :=
[

0
W

] }
∈ Rk+jr×r}
∈ Rn−jr−k×r

T :=
[

T TY T WS
0 S

]
∈ Rk+(j+1)r×k+(j+1)r

Y :=
[

Y W
]
∈ Rn×k+(j+1)r

5.) end

After m1 steps where m1 is chosen so that k+r+m1r ≤ mr we have the following
relationship analogous to (2.1) - (2.3),

V̄k+r+m1r+r = [q1, . . . , qk, V(m+1), V̄(1), . . . , V̄(m1+1)] = (I + Ȳ T̄ Ȳ T )Ik+r+m1r+r(3.13)

and

AV̄k+r+m1r = V̄k+r+m1r+rH̄k+r+m1r+r

or
AV̄k+r+m1r = V̄k+r+m1rH̄k+r+m1r + V̄(m1+1)H̄(k+r+m1+1,k+r+m1)E

T
r .

(3.14)

where

H̄k+r+m1r+r =



H̄(1,k+r+1) . . . H̄(1,k+r+m1)

H̄(2,k+r+1) H̄k+r

 ... . . .
...

H̄(k+r+1,k+r+1)

H̄(k+r+2,k+r+1)

. . . H̄(k+r+m1,k+r+m1)

0 H̄(k+r+m1+1,k+r+m1)


.
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Algorithm 3.3 combines the results and outlines our restarted method.

Algorithm 3.3. Augmented Block Arnoldi Householder Algorithm
Input: A ∈ Rn×n, k, m, r, tol, such that (m− 1)r ≥ k;
Output: eigenvalues {λj}k

j=1 and eigenvectors {xj}k
j=1 of A;

1. Perform m steps of the block Arnoldi Householder Algorithm 2.1 to get the block
Arnoldi decomposition (2.3);

2. Compute and sort the Real Schur decomposition (3.1) of the matrix Hmr or
H̄k+r+m1r+r;

3. Check convergence of the k desired eigenvalues using (3.6);
a.) if all k values converge then

compute {λj}k
j=1 and {xj}k

j=1 using (3.4) and exit;
4. Compute restarting vectors (3.8) using Algorithm 3.1;
5. Compute matrix H̄k+r,k, (3.10);
6. Perform m1 steps of the block Arnoldi Householder Algorithm 3.2 to get the block

Arnoldi decomposition (3.14);
7. Go to step 2;

During the iterations of the algorithm desired Schur vectors converge at different
rates. Once a Schur vector converges, it can either be computed and stored, hard lock-
ing, or simply left alone, soft locking. Hard locking requires the algorithm to store the
converged Schur vectors and orthogonalize them against all future generated Krylov
subspaces. Soft locking, which is not locking the Schur vectors, refers to continuously
updating the Schur vectors regardless of residual values. Hard locking has the benefit
of reducing the overall computational cost, however if the space spanned by converged
Schur vectors is not computed accuratly enough then orthognalizing against it could
slow down convergence, see Stathopoulos [54] for some details. The MATLAB code
irbleigs [10] implements hard locking and often has difficulty in computing a large
number of desired eigenvalues, e.g. [62] and Example 1 in Section 5. For this reason
we have decided to use soft locking (i.e. nonlocking) in our computer code ahbeigs
even though it is more computational expensive than hard locking.

4. Software ahbeigs. The algorithms presented in this paper are implemented
in the MATLAB program ahbeigs3. The program was written in MATLAB because
of its portability and ease of use. The drawback to a program written entirely in
MATLAB is that it can be significantly slower (cpu time) than the same program
written in FORTRAN. MATLAB is a gateway to the FORTRAN subroutines in LA-
PACK [1] and whenever possible we use MATLAB’s built-in internal functions, e.g.
MATLAB’s qr function is used to get the Householder vectors in step 3 of Algorithm
2.1. However, not all routines that are needed in the algorithms in this paper are
accessible via built-in internal functions, e.g. the Schur reordering routine dtrsen is
not accessible via a built-in internal function. A link to the LAPACK routines can
be created with MATLAB using MEX files; see [38]. This would maintain a fast cpu
time but decreases the portability and ease of use of the program. Therefore, we use
only MATLAB syntax and any built-in internal functions whenever possible.

The actual implementation of the algorithms presented in the paper have been
implemented with a small adjustment that exploits the approaches recently advocated
in Lehoucq [31] and Baglama and Reichel [11, 12] for faster convergence. The tech-
nique, which is not new, is to have the number of augmenting vectors ` used at each

3Computer code can be downloaded from http://www.math.uri.edu/∼jbaglama
or http://www.mathworks.com/matlabcentral/fileexchange
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restart to be larger than the number of desired eigenpairs k. For example, if an user
wants k eigenpairs, the program ahbeigs will search for ` = k + adjust eigenpairs.
The value adjust is automatically increased by the number of converged desired eigen-
vectors during the iterations. However, the maximum storage requirement remains
fixed, that is the maximum number of vectors of length n is always ≤ blsz · (nbls+1).
Convergence is determined by setting tol in (3.6) to be the machine epsilon. The
initial value of adjust is set at 3, see Table 4.1.

The computer code ahbeigs can also solve the generalized eigenvalue problem

Ax = λBx A, B ∈ Rn×n(4.1)

and find eigenvalues located near an input numeric value NVAL, see sigma in Table
4.1. If the user inputs a numeric value NVAL or wishes to solve the generalized
eigenvalue problem (4.1) the computer code ahbeigs will use the transformation

(A− (NV AL) B)−1Bx = θx(4.2)

where θ = 1/(λ − (NV AL)), see [21] for details. The matrix (A − (NV AL) B)−1 is
factored using MATLAB’s built-in internal function lu. If the matrix B is positive
definite and sigma is nonnumeric then MATLAB’s built-in Cholesky factorization
chol is used to compute the upper triangular Cholesky factor R to get B = RT R. The
generalized eigenvalue problem (4.1) can be a transformed into a standard eigenvalue
problem by setting, A := R−T AR−1. If the standard eigenvalue problem (1.1) is to
be solved where sigma is a nonnumeric input value then no factorization is required
and only matrix-vector products with A are used.

The MATLAB function ahbeigs requires certain user-specified parameters to be
set. Table 4.1 describes these parameters, their possible values, as well as their default
values. The function will use the default values unless a user specifies otherwise.

The input sequence of ahbeigs is given as

ahbeigs(A, OPTS) or ahbeigs(’Afunc’, n, OPTS) or ahbeigs(A, B, OPTS)

where the first input argument must be the matrix A which can be passed as a numeric
matrix or as a M-file (’Afunc’) that computes the product A ·X where X is a n× r
matrix. If A is passed as a M-file then the second input argument n is the size of the
matrix A. For the generalized eigenvalue problem (4.1) the matrices A and B must
be numeric. The last input value OPTS is a structure array with the field values as
parameter names. The input parameters can be given in any order and the structure
OPTS may contain some or all of the input parameters. The string for the input
parameters can contain upper or lower case characters.

The output options are given as:
ahbeigs(...)
Displays the desired eigenvalues.

D = ahbeigs(...)
Returns the desired eigenvalues in the vector D.

[X,D] = ahbeigs(...)
D is a diagonal matrix that contains the desired eigenvalues along the diagonal and
the matrix X contains the corresponding eigenvectors, such that AX = XD or AX =
BXD.

[X,D,FLAG] = ahbeigs(...)

10



Table 4.1
Parameters for ahbeigs.m.

adjust Initial number of vectors added to the k restart vectors to speed up
convergence. Default value: adjust = 3.

blsz Block-size of block Arnoldi Hessenberg matrix, Hmr. The parameter
specifies the value of r in (2.2)-(2.3). Default value: blsz = 3.

cholb Indicates if the Cholesky factorization of the matrix B is available. If
the Cholesky factorization matrix R is available then set cholb = 1 and
replace the input matrix B with R where B = RT R. Default value:
cholb = 0

dispr When dispr > 0, available approximations of the k desired eigenvalues
and norms of associated residual errors are displayed each iteration;
dispr = 0 inhibits display of these quantities. Default value: dispr = 0.

permB Permutation vector for the Cholesky factorization of
B(permB, permB). When the input matrix B is replaced with
R where B(permB, permB) = RT R then the vector permB is the
permutation vector. Default value: permB = 1 : N

k Number of desired eigenvalues. Default value: k = 6.
maxit Maximum number of restarts. Default value: maxit = 100.
nbls Number of blocks in the block Arnoldi Hessenberg matrix, Hmr. This

parameter specifies the largest value of m in (2.2)-(2.3). If value of nbls
is not sufficiently large enough then ahbeigs will not converge or miss
some desired eigenvalues. Default value: m = 10.

sigma Two letter string or numeric value specifying the location of the desired
eigenvalues.
’LM’ or ’SM’ Largest or Smallest magnitude
’LR’ or ’SR’ Largest or Smallest real part
’LI’ or ’SI’ Largest or Smallest imaginary part
’LA’ or ’SA’ Largest or Smallest algebraic (Symmetric problems only)
NVAL A numeric value. The program searches for the k closest eigen-
values to the numeric value NVAL. (ahbeigs will factor the matrix A,
see (4.2).) Default value: sigma =’LM’.

tol Tolerance used for convergence, (3.6). Default value: tol = 10−6.
V0 Initial matrix of r columns for the block Arnoldi Method, Algorithm

2.1. Default value: V0 = randn

Returns the same as the above option plus a two dimensional array FLAG that
reports if the algorithm converges and the number of matrix vector products. If
FLAG(1) = 0, this implies normal return and all eigenvalues have converged. If
FLAG(1) = 1, then the maximum number of iterations have been reached before all
desired eigenvalues have converged. FLAG(2) contains the number of matrix vector
products used by the code. If the maximum number of iterations are reached then the
matrices X and D contain any eigenpairs that have converged plus the computed Ritz
pair approximations from the last iteration for the eigenpairs that have not converged.

The following are the MATLAB commands used to determine the 4 eigenvalues
of smallest magnitude and corresponding eigenvectors of a matrix A using a block
size 4 and tolerance of 10−12,
>> OPTS.sigma=’SM’;
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>> OPTS.k = 4;
>> OPTS.blsz = 4;
>> OPTS.tol = 1d-12;
>> [X,D] = ahbeigs(A,OPTS);

5. Numerical Examples. In this section we provide examples to illustrate the
performance of the code ahbeigs. We will make direct comparisons with irbleigs4

[10], eigifp 5 [23], jdqr6 [22], jdqz7 [22] and MATLAB’s internal function eigs.
The codes irbleigs and eigifp are only for symmetric eigenvalue problems and
will only be used in Example 1. We will also make indirect comparisons with the
number of matrix-vector products reported in the block papers [28, 32, 40]. We will
refer to the two methods presented in [40] by Möller(S) and Möller(L). The method
presented in [32] as bIRAM and the method in [28] as Jia. Currently, there are no
public domain computer codes available for these methods. We will not compare cpu
times when refering to results from the block papers, [28, 32, 40]. Both methods jdqr
and jdqz are designed to be used with a preconditioner. When a good preconditioner
is known these methods are highly competitive. However, we will assume no good
preconditioner is known for the examples presented in this paper and use the methods
jdqr and jdqz unpreconditioned.

The MATLAB function eigs, which uses ARPACK, is a FORTRAN code ex-
cept for a small amount of MATLAB syntax for parsing input/output and handling
matrix-vector products via the reverse communication feature of ARPACK. Since the
majority of the code for eigs is written in FORTRAN it yields the shortest total cpu
times when compared with other similar methods written entirely in MATLAB. Note
that the cpu times on average for the matrix-vector products in the examples is less
for ahbeigs even though the number of matrix-vector products is often more. This
is due to the fact that multiplying a matrix by a group of vectors is often faster than
multiplying by only one vector at a time, an adavantage of a block routine.

The methods behind the codes eigs and ahbeigs (with block size r = 1) are
mathematically equivalent, however the codes will rarely yield similar number of
matrix-vector products for a given matrix even with the same input vector and com-
mon parameters set equal. This is due in part to how the author(s) of the code
implements the method, e.g. orthogonalization of the Arnoldi vectors (Householder,
Gram-Schmidt with full or partial re-orthogonalization), what tolerance to use to re-
orthogonalize the Arnoldi vectors, which method of deflation to use and when to de-
flate, when and how to adjust the number of augmenting vectors (adjust) for ahbeigs
or the number of shifts for eigs to avoid stagnation or increase convergence, and what
criteria to use for convergence.

We remark that in order to achieve the least total CPU-time for a block method
depends on the combination of the block size and number of blocks, the problem at
hand, and on the architecture of the computer used. For many problems, the main
advantage of using block-size r > 1 is increased reliability, see Example 1.

In the computed examples, we determine the initial block V0 by orthonormalizing
the columns of an n× r matrix with normally distributed random entries. The initial
vector for the non-block routines jdqr, eigifp, jdqz, and eigs was chosen to be the

4Computer code is available at http://www.math.uri.edu/∼jbaglama
or http://math.nist.gov/toms/

5Computer code is available at http://www.ms.uky.edu/∼qye/eigifp.html
6Computer code is available at http://www.math.uu.nl/people/sleijpen/index.html.
7Computer code is available at http://www.math.uu.nl/people/sleijpen/index.html
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first column of V0. There are numerous choices and combinations of parameter values
for each of the methods. Some choices and combinations yield faster convergence than
others. For the direct comparisions we will use the default values and only change
block size, location of eigenvalues desired, tolerance, and storage requirements.

In all examples, except example 6, the matrix A was accessed only by calls to a
function with input X ∈ Rn×blsz and output AX. This approach is “matrix-free” in
the sense that the matrix A does not have to be stored.

All computations for direct comparisons were carried out using MATLAB version
7.3.0.267 (R2006b) on a Dell 530 workstation with two 2.4 GHz (512k cache) Xeon
processors and 2 GB (400 MHz) of memory running under the Windows XP operating
system. Machine epsilon is ε = 2.2 · 10−16.

Example 1. Let A ∈ R1600×1600 be obtained by discretizing the 2-dimensional
negative Laplace operator on the unit square by the standard 5-point stencil with
Dirichlet boundary conditions. The MATLAB command

A = delsq(numgrid(′S′, 42))(5.1)

determines this matrix. We will compare the MATLAB programs ahbeigs, jdqr,
eigifp, eigs, and irbleigs for the computation of the 3 smallest eigenvalues and
again for the 100 smallest eigenvalues. The eigenvalues of the matrix A are well-known
[58, Section 8.4] and the largest multiplicity of the 100 smallest eigenvalues is two.
We would like the computed Ritz values to satisfy (3.6) with tol = 10−12. Non-block
methods require a smaller tolerance in order to compute the desired eigenvalues with
proper multiplicity, see e.g. [3, 8, 9, 32, 33]. This requirement of a smaller tolerance
for a non-block method is demonstrated with ahbeigs with block size 1. In Table 4.1
we set the parameters blsz = 1, nbls = 20, k = 3, sigma =’SA’, tol = 10−12, and left
all other parameters at the default value. The smallest eigenvalue of A has multiplicity
one, however the second and third smallest eigenvalues of A coincide. The graphs in
Figure 5.1 show the convergence of the three smallest Ritz values. The top graph
is the convergence of the smallest Ritz value and the bottom graph illustrates the
convergence of the next two smallest Ritz values. Notice Ritz(3) does not converge to
the multiple eigenvalue until the residual is small≈ 10−12. The big spike in the bottom
graph for Ritz(3) is the introduction of the new poorly approximated Ritz vector for
the multiple eigenvalue. Experiments showed that the methods jdqr, eigifp, and
eigs all occasionally missed multiple eigenvalues with tolerance settings above 10−12.
Therefore, to ensure proper calculation of the multiplicity for the nonblock methods
(jdqr, eigifp, eigs) we set the tolerance for all methods to be tol = 10−12. We set
the appropriate parameters in all methods such that maximum storage requirement
is 20 vectors and that the program searches for the 3 smallest eigenvalues of A. All
other parameters were left at the default values. Table 5.1 shows the number of
matrix-vector products, cpu time for the matrix-vector products, total cpu time, and
the error. Setting the parameters for the number of desired eigenvalues to be 100
and the maximum storage requirement to 120 vectors, Table 5.2 shows the number of
matrix-vector products, cpu time for the matrix-vector products, total cpu time, and
the error. This example shows that the MATLAB program ahbeigs is competitive
with other available software and can compute multiple eigenvalues efficiently. 2
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Fig. 5.1. Example 1: The residuals calculated via (3.6) of the 3 smallest Ritz values for the
matrix (5.1). The bottom graphs shows that the program ahbeigs with block size 1 has difficulty
approximating a multiple eigenvalue.

Table 5.1
Example 1: (k = 3) 2-dimensional negative Laplace operator. The advantage of using ahbeigs

allows for a lower tolerance without missing a multiple eigenvalue. tol = 10−12 was used for all
other routines.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 20 472 0.233s 1.53s O(10−14)
tol = 10−12 2 10 932 0.295s 2.39s O(10−14)
ahbeigs 2 10 762 0.141s 1.94s O(10−12)

tol = 10−10 2 20 516 0.078s 1.95s O(10−12)
ahbeigs 2 10 636 0.095s 1.78s O(10−10)
tol = 10−8 2 20 448 0.096s 1.78s O(10−10)
irbleigs 2 10 1040 0.234s 2.03s O(10−8)
eigifp 1 20 907 0.41s 1.69s O(10−13)
jdqr 1 20 637 0.186s 1.48s O(10−13)
eigs 1 20 585 0.31s 0.86s O(10−14)
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Table 5.2
Example 1: (k = 100) 2-dimensional negative Laplace operator.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 120 1180 0.563s 88.1s O(10−13)
tol = 10−12 2 60 914 0.21s 42.2s O(10−13)
ahbeigs 2 60 860 0.248s 38.7s O(10−11)

tol = 10−10 2 120 896 0.203s 31.9s O(10−14)
ahbeigs 2 60 824 0.219s 36.1s O(10−9)
tol = 10−8 2 120 772 0.235s 26.8s O(10−8)
irbleigs 2 60 44066 12.45s 320.2s O(10−8)
eigifp 1 120 22244 10.89s 150.5s O(10−13)
jdqr 1 120 9737 3.70s 203.0s O(10−13)
eigs 1 120 887 0.231s 10.9s O(10−13)
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Example 2. We consider the matrix CK6568 from the Non-Hermitian Eigenvalue
Problem (NEP) Collection [13]. This is a 656 × 656 real nonsymmetric matrix with
3884 nonzero entries. It is known to have eigenvalues of multiplicity two. According
to [13] the goal is to compute the eigenvalues with magnitude greater than one. There
are 22 eigenvalues of CK656 with magnitude greater than one. As in Example 1, we
must set the tolerance low so that non-block methods, jdqr and eigs will compute the
desired eigenvalues with the proper multiplicity. We set the tolerance for all methods
to be 10−12. We set the appropriate parameters in all methods such that maximum
storage requirement is 72 vectors and that the program searches for the 22 eigenvalues
of A with largest magnitude. All other parameters were left at the default values. We
also recorded the matrix-vector products for the methods Möller(S) and Möller(L)
[40]. Table 5.3 displays the results. 2

Table 5.3
Example 2: Finding the 22 eigenvalues of largest magnitude for the matrix CK656 with tolerance

set at 10−12.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 72 435 0.020s 2.64s O(10−14)
2 36 460 0.016s 1.76s O(10−13)
3 24 663 0.047s 2.16s O(10−13)
4 18 876 0.078s 2.31s O(10−13)

jdqr 1 72 1440 0.298s 25.3s O(10−13)
eigs 1 72 433 0.022s 0.83s O(10−14)

Möller(S) 1 72 408
2 36 456
4 18 840

Möller(L) 1 72 428
2 36 478
3 24 669
4 18 814

Example 3. We consider the matrix HOR1319 from the from Harwell-Boeing
Sparse Matrix Collection [19]. This is a 434×434 real nonsymmetric matrix with 4710
nonzero entries. Goal is to compute the 8 eigenvalues of largest real part. We set the
appropriate parameters in all methods such that maximum storage requirement is 24
vectors and that the programs search for the 8 eigenvalues of A with largest real part.
We set the tolerance for all methods to be 10−12. We also recorded the matrix-vector
products for the methods Möller(S) and Möller(L) [40] and bIRAM [32]. Table 5.4
displays the results. The cpu time for matrix-vector products for all methods except
jdqr was less than 10−3 and hence is displayed as 0 in Table 5.4. 2

Example 4. We consider the matrix TOLS200010 from the Non-Hermitian Eigen-
value Problem (NEP) Collection [13]. This is a 2000×2000 real nonsymmetric matrix
with 5184 nonzero entries. The matrix arises in the stability analysis of a model of
an airplane in flight. The goal is to compute the eigenvalues with largest imaginary
parts. The Tolosa matrix is highly nonnormal and finding the eigenvalues is very

8Matrix available at http://math.nist.gov/MatrixMarket/
9Matrix available at http://math.nist.gov/MatrixMarket/

10Matrix available at http://math.nist.gov/MatrixMarket/
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Table 5.4
Example 3: Finding the 8 eigenvalues of largest real part for the matrix HOR131 with tolerance

set at 10−12.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 24 67 0.00s 0.407s O(10−15)
2 12 96 0.00s 0.160s O(10−13)
3 8 168 0.00s 0.183s O(10−14)
4 6 288 0.00s 0.306s O(10−13)

jdqr 1 24 175 0.03s 1.172s O(10−13)
eigs 1 24 74 0.00s 0.353s O(10−15)
bIRAM 1 24 77

2 12 84
3 8 99
4 6 108

Möller(S) 1 24 88
2 12 136
4 6 264

Möller(L) 1 24 79
2 12 93
4 6 105

difficult numerically. We compare our results with Jia, [28]. The goal is to compute
the 3 eigenvalues of largest imaginary part. We fixed the number of vectors to be 30
and set the tolerance to be 10−9 in all methods. Table 5.5 displays the results. jdqr
did not converge with 30, tolerance set at 30, and all other settings at the default
values. 2

Table 5.5
Example 4: Finding the 3 eigenvalues of largest imaginary part for the matrix TOLS2000 with

tolerance set at 10−9.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 30 510 0.031s 2.43s O(10−7)
2 30 1410 0.188s 7.76s O(10−7)
3 30 1854 0.203s 11.59s O(10−9)

eigs 1 30 766 0.078s 1.52s O(10−7)
Jia 2 30 1980

3 30 1800

Example 5. We consider the matrix AF2356011 from the NonHermitian Eigen-
value Problem (NEP) Collection [13]. This is a 23560 × 23560 real nonsymmetric
matrix with 484256 nonzero entries and is the largest real nonsymmetric matrix in
the collection. The goal is to compute 10 eigenvalues of largest magnitude. We set
the tolerance for all methods to be machine precision, i.e ≈ 2.2 · 10−16. We set the
appropriate parameters in all methods such that maximum storage requirement is
30 vectors and that the program searches for the 10 eigenvalues of A with largest

11Matrix available at http://math.nist.gov/MatrixMarket/
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magnitude. We also recorded the matrix-vector products for the methods Möller(S)
and Möller(L) [40]. Table 5.6 displays the results. 2

Table 5.6
Example 5: Finding the 10 eigenvalues of largest magnitude for the matrix AF23560 with

tolerance set at 2.2 · 10−16.

block # of CPU time
Method size blocks # mvps mvps Total ‖AQ

(A)

k −Q
(A)

k U
(A)

k ‖2

ahbeigs 1 24 134 0.800s 8.68s O(10−12)
2 12 268 0.875s 11.78s O(10−11)
3 8 444 1.22s 18.45s O(10−10)
4 6 592 1.73s 21.33s O(10−10)

eigs 1 24 136 0.61s 2.48s O(10−10)
Möller(S) 1 24 136

2 12 264
4 6 600

Möller(L) 1 24 140
2 12 156
4 6 300

Example 6 We consider the matrices BFW782A and BFW782B12 from the Non-
Hermitian Eigenvalue Problem (NEP) Collection [13]. We will solve the generalized
eigenproblem . The eigenvalues and corresponding eigenvectors of interest are the ones
with positive real parts, which correspond to the propagation modes of a waveguide.
The matrix A is nonsymmetric and B is symmetric indefinite. We set the appropri-
ate parameters in all methods such that maximum storage requirement is 48 vectors
and that the program searches for the 4 eigenvalues of A with largest real part. We
only can make a comparison with jdqz. The program eigs requires B to be positive
definite or for the user to input a matrix-vector product routine to compute B−1Ax.
Tolerance for ahbeigs was set at 10−6 and tolerance for jdqz had to be set to 10−12

in order to get the same accuracy. Table 5.7 displays the results.

Table 5.7
Example 6: Finding the 4 eigenvalues of largest real part for the generalized eigenvalue problem

with matrices BFW782A and BFW782B.

block # of Total
Method size blocks CPU time ‖AQ

(A)

k −BQ
(A)

k U
(A)

k ‖2

ahbeigs 1 48 5.77s O(10−10)
2 24 6.97s O(10−10)
3 16 10.78s O(10−9)
4 12 14.00s O(10−9)

jdqz 1 48 10.56s O(10−10)

6. Conclusion. This paper presents a block form of the Arnoldi Householder
algorithm and shows how to implement an augmented block Krylov method by uti-
lizing a block form of the Householder vectors. Computed examples illustrate that
the MATLAB function ahbeigs is a competitive software that can compute multiple

12Matrices available at http://math.nist.gov/MatrixMarket/
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eigenvalues more reliably than a single vector method and in certain examples may
determine desired eigenvalues to specified accuracy faster than other public domain
MATLAB functions.
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