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SUMMARY

GMRES is a popular iterative method for the solution of large linear systems of equations with a square
nonsymmetric matrix. The method generates a Krylov subspace in which an approximate solution is
determined. We present modifications of the GMRES and the closely related RRGMRES methods
that allow augmentation of the Krylov subspaces generated by these methods by a user-supplied
subspace. We choose this subspace to enable the representation of certain known nonsmooth features
of the desired solution, such as jumps, or to make it possible to represent certain smooth functions,
such as constants or linear functions. The latter choice of augmenting subspace appears to be new.
Applications to the solution of both well-posed and ill-posed problems are presented. Copyright c©
2006 John Wiley & Sons, Ltd.
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1. Introduction

The present paper is concerned with the iterative solution of large linear systems of equations

Ax = b′, A ∈ Rn×n, x, b′ ∈ Rn. (1)

GMRES [19, 20] is one of the most popular iterative solution methods for such systems. Let
the initial approximate solution be x0 = 0. Then the jth iterate, xj , determined by GMRES
is characterized by

‖Axj − b′‖ = min
x∈Kj(A,b′)

‖Ax− b′‖, xj ∈ Kj(A, b′), (2)
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AUGMENTED GMRES-TYPE METHODS 1

where
Kj(A, b′) = span{b′, Ab′, . . . , Aj−1b′} (3)

is a Krylov subspace. Here and throughout this paper ‖ · ‖ denotes the Euclidean vector
norm or the associated induced matrix norm. We assume that j is sufficiently small so that
dimKj(A, b′) = j.

Let x′ denote the solution of (1), let d1, d2 ∈ R, d1 6= 0, w ∈ Rn\{0}, and introduce the
vectors

x′′ = d1x
′ + d2w, b′′ = d1b

′ + d2Aw. (4)

Then
Ax′′ = b′′. (5)

The vectors x′′ and b′′ are related to x′ and b′, respectively, by simple linear transformations;
however, the application of j steps of GMRES with initial approximate solution x0 = 0 to
the two systems (1) and (5) can give approximate solutions of significantly different quality.
Transformations of the form (4) may arise when changing units in a mathematical model. For
instance, if x′ and x′′ represent temperatures in degrees Fahrenheit and Kelvin, respectively,
then d1 = 5/9, d2 = 255.37, and w = [1, 1, . . . , 1]T in (4).

The lack of invariance of GMRES under the simple transformations (4) can be addressed
in several ways. For instance, we may carry out an initial transformation of the form (4) of
the variables with the constants d1 and d2 chosen to yield high accuracy of the approximate
solutions determined by GMRES, or we may augment the Krylov subspaces (3) generated by
GMRES by span{w}. This paper pursues the latter approach and describes how to augment
the Krylov subspaces determined by GMRES by an arbitrary linear space of low dimension.
We remark that differently from discussions on augmented iterative methods available in the
literature, we do not seek to augment by a space close to an invariant subspace of A.

The Range Restricted GMRES (RRGMRES) method differs from GMRES only in that the
minimization problem (2) is replaced by

‖Axj − b′‖ = min
x∈Kj(A,Ab′)

‖Ax− b′‖, xj ∈ Kj(A,Ab′), (6)

where Kj(A,Ab′) = AKj(A, b′). RRGMRES was introduced in [3] and the method was shown
in [4] to often give higher accuracy than GMRES when applied to the solution of linear discrete
ill-posed problems with a contaminated right-hand side; see also [17] for a recent discussion of
the method.

Section 2 describes implementations of the augmented GMRES and RRGMRES methods
based on the Arnoldi process and modified Gram-Schmidt orthogonalization, and discusses
a few properties of these methods. Section 3 is concerned with the application of augmented
GMRES and RRGMRES to the solution of large linear discrete ill-posed problems with a right-
hand side that is contaminated by an error. Computed examples are presented in Section 4,
and concluding comments can be found in Section 5.

We remark that Chapman and Saad [8] and Morgan [14, 15] proposed augmentation of
Krylov subspaces generated by restarted GMRES by spaces spanned by certain eigenvectors or
Ritz vectors. Morgan [16] recently presented an elegant implementation of the latter approach.
Convergence properties of Krylov subspace methods augmented by spaces close to invariant
subspaces are discussed by Saad [18], who also considers block methods. This paper proposes
augmentation by low-dimensional subspaces, determined by vectors that represent smooth
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2 J. BAGLAMA AND L. REICHEL

functions, such as constants, linear functions or quadratics, or by vectors that are able
to represent known nonsmooth features of the solution, such as jumps. We would like the
augmenting subspace to contain a rough approximation of the desired solution, such that the
difference between this approximation and the desired solution can be approximated well by
an element of the Krylov subspace generated.

An augmented CGLS method is described by Calvetti et al. [7], who show that augmentation
of the solution subspaces generated by standard CGLS by the linear space spanned by the right-
hand side can give significantly improved accuracy in the computed approximate solution of
linear discrete ill-posed problems with a right-hand side that is contaminated by an error.
However, augmentation of the solution subspaces determined by RRGMRES by this subspace
is not meaningful, since the method so obtained is GMRES; instead of augmenting RRGMRES
by the linear space spanned by the right-hand side one should apply GMRES. We found that
GMRES and RRGMRES can yield higher accuracy when the solution subspaces generated
by these methods are augmented by spaces that allow the representation of simple functions,
such as constants and linear functions. Augmentation of CGLS by such spaces is also likely
to be beneficial, but this will not be pursued in the present paper. Yet another approach to
augmentation methods, based on decomposing the solution, is presented in [2].

2. Augmented GMRES and RRGMRES

This section describes implementations of the augmented GMRES and RRGMRES methods
used in the computed examples in Section 4. The augmented methods are obtained by
modifying the standard implementations of GMRES and RRGMRES based on the Arnoldi
process. Let the columns of the matrix W ∈ Rn×p form a basis of the space W. The jth
iterate, xj , determined by GMRES augmented by W with initial approximate solution x0 = 0
satisfies

‖Axj − b′‖ = min
x∈Kj(A,b′)∪W

‖Ax− b′‖, xj ∈ Kj(A, b′) ∪W, (7)

and, analogously, the jth iterate determined by augmented RRGMRES satisfies

‖Axj − b′‖ = min
x∈Kj(A,Ab′)∪W

‖Ax− b′‖, xj ∈ Kj(A,Ab′) ∪W. (8)

Augmentation by W is carried out by first computing the QR-factorization

AW = VpR, (9)

where Vp ∈ Rn×p has orthonormal columns and R ∈ Rp×p is upper triangular. We then
append columns to Vp, which are determined by a modified Arnoldi process. This process
yields orthonormal vectors that also are orthogonal to the columns of Vp. The initial vector
for the modified Arnoldi process is chosen to be (I − VpV

T
p )b′ for augmented GMRES and

(I −VpV
T
p )Ab′ for augmented RRGMRES. The generated vectors are appended to the matrix

Vp as they become available. After j steps of this modified Arnoldi process, we obtain the
modified Arnoldi decomposition

A[W Vp+1:p+j ] = Vp+j+1H, (10)

where Vp+j+1 = [Vp Vp+1:p+j+1] ∈ Rn×(p+j+1) has orthonormal columns, and the first column
of the trailing n × (j + 1) submatrix Vp+1:p+j+1 of Vp+j+1 is (I − VpV

T
p )b′/‖(I − VpV

T
p )b′‖
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AUGMENTED GMRES-TYPE METHODS 3

for augmented GMRES and (I−VpV
T
p )Ab′/‖(I−VpV

T
p )Ab′‖ for augmented RRGMRES. The

remaining columns of Vp+1:p+j+1 are determined by the j steps of the modified Arnoldi process.
The leading principal p × p submatrix of the upper Hessenberg matrix H ∈ R(p+j+1)×(p+j)

is the upper triangular matrix R in the QR-factorization (9). The entries of the trailing j
columns of H are determined by the modified Arnoldi process; see Algorithm 2.1 below for
details.

Substituting (10) into (7) and (8) shows that the iterate xj determined by augmented
GMRES or RRGMRES can be expressed as

xj = [W Vp+1:p+j ]yj , (11)

where yj solves the least-squares problem

min
y∈Rp+j

‖V T
p+j+1b

′ −Hy‖. (12)

We remark that Saad [18] describes a related but different augmented Arnoldi process. In
the following algorithm the entries of H are denoted by hjk. Entries of H that are not explicitly
defined are assumed to be zero.

Algorithm 2.1. Augmented GMRES and RRGMRES

Input: A ∈ Rn×n, b′ ∈ Rn, W ∈ Rn×p, j;
Output: Computed approximate solution xj;

1. vp+1 := b′;

2. if RRGMRES then vp+1 := Ab′; endif;

3. if p > 0 then

4. Compute QR-factorization AW = VpH, where Vp := [v1, . . . , vp];

5. for i=1,2 do vp+1 := vp+1 − Vp(V T
p vp+1); endfor;

6. endif;

7. vp+1 := vp+1
‖vp+1‖ and Vp+1 := [Vp vp+1];

8. for k = p + 1, . . . , p + j do

9. vk+1 := Avk;

10. for i = 1, . . . , k do

11. hik := vT
i vk+1; vk+1 := vk+1 − hikvi;

12. endfor;

13. for i = 1, . . . , k do (reorthogonalization)

14. α := vT
i vk+1; vk+1 := vk+1 − αvi; hik := hik + α;

15. endfor;

16. hk+1,k := ‖vk+1‖;
17. vk+1 := vk+1

hk+1,k
and Vk+1 := [Vk vk+1];

18. endfor;
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4 J. BAGLAMA AND L. REICHEL

19. Compute the solution yj of the least-squares problem (12) and determine xj from
(11);

The computation of xj by GMRES augmented by W = range W using Algorithm 2.1
requires the evaluation of p+j matrix-vector products with A; when RRGMRES is used instead
of GMRES one additional matrix-vector product with A has to be evaluated. Lines 5 and 13-
15 of the algorithm implement reorthogonalization because this can reduce the number of
iterations required to determine an approximate solution of desired accuracy when the matrix
A is very ill-conditioned, which is the case for the linear systems of equations considered in
Section 3.

Algorithm 2.1 is used for the numerical examples of Section 4; however, we remark that a
black-box implementation of our method has to allow the k-loop (lines 8-19) to be exited as
soon as the range of [W Vp+1:p+k] contains a vector x, such that the associated residual error
‖Ax− b′‖ is sufficiently small. The norm of this residual error can be evaluated inexpensively
just as in standard GMRES and RRGMRES. A black-box algorithm also has to be able to
handle break-down, i.e., the situation when vp+1 = 0 in line 7 or vk+1 = 0 in line 17 of
Algorithm 2.1; see Theorem 2.2 below for further details on break-down.

The input parameter j in Algorithm 2.1 generally is chosen fairly small, say j ≤ 30, in
order to limit the requirement of computer memory for the storage of the matrices W and
Vj+p+1. If a larger value of j is required in order to determine an approximate solution of
(1) of sufficient accuracy, the algorithm can be restarted instead of increasing the value of
j, similarly to standard GMRES and RRGMRES. We first show that augmented GMRES is
invariant under transformation of the solution by W .

Theorem 2.1. Assume that A ∈ Rn×n is nonsingular, and let W ∈ Rn×p and y ∈ Rp. Let
x′ solve (1). Then x′′ = x′ + Wy solves (5) with b′′ = b′ + AWy. Apply j steps of GMRES
augmented by W = range W with initial approximate solution x0 = 0 to (1) and (5), and
denote the computed iterates by x′j and x′′j , respectively. Then

x′ − x′j = x′′ − x′′j . (13)

Proof: The iterates can be expressed as x′j = [W Vp+1:p+j ]y′j and
x′′j = [W Vp+1:p+j ]y′′j , where y′j and y′′j solve

min
y∈Rp+j

‖A[W Vp+1:p+j ]y − b′‖ and min
y∈Rp+j

‖A[W Vp+1:p+j ]y − b′′‖,

respectively. Therefore
Ax′j − b′ = Ax′′j − b′′,

which shows (13).

We remark that Theorem 2.1 remains valid if GMRES is replaced by RRGMRES. This
replacement changes the matrix Vp+1:p+j in the above proof; see Algorithm 2.1 for how this
matrix has to be modified.

Break-down of standard GMRES implies that the solution of the linear system of equations
(1) lives in the Krylov subspace already generated. The following theorem shows the analogous
result for augmented GMRES.
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AUGMENTED GMRES-TYPE METHODS 5

Theorem 2.2. Let A ∈ Rn×n be nonsingular and assume that Algorithm 2.1 for augmented
GMRES breaks down, i.e., vk+1 = 0 for some integer k with p ≤ k ≤ p + j ≤ n. If the matrix
[W Vp+1:k] ∈ Rn×k determined by the algorithm is of full rank, then its range contains the
solution of the linear system of equations (1).

Proof: Algorithm 2.1 can break down at lines 7 and 17. We consider the former break-down
first. Then k = p, vp+1 = 0, and the matrix [W Vp+1:k] simplifies to W . The fact that both A
and W are of full rank shows that the upper triangular matrix R in the QR-factorization (9)
is nonsingular. It follows from b′ ∈ range Vp and the factorization (9) that WR−1V T

p b′ solves
(1).

We turn to the break-down at line 17. Then vk+1 = 0 for some k > p, and the Arnoldi
decomposition (10) can be expressed as

A[W Vp+1:k] = VkH, (14)

where H ∈ Rk×k is of upper Hessenberg form. The entries of H are the elements hij determined
so far by the algorithm, except for hk+1,k. By assumption the matrix on the left-hand side of
(14) is of full rank and, therefore, so is H. The break-down signals that b′ ∈ range Vk and we
can use (14) to express the solution of (1) as [W Vp+1:k]H−1V T

k b′.

The following theorem shows that just as for standard GMRES, break-down for standard
RRGMRES is benign, i.e., at break-down the solution of (1) lives in the Krylov subspace
already generated.

Theorem 2.3. Assume that A ∈ Rn×n is nonsingular. If Algorithm 2.1 breaks down for
standard RRGMRES, then the Krylov subspace available at break-down contains the solution
of the linear system of equations (1).

Proof: Since A is nonsingular, the linear system of equations

Ax = Ab′ (15)

has the unique solution x = b′. We may assume that b′ 6= 0. Then, for standard RRGMRES,
Algorithm 2.1 only can break down at line 17, in which case vk+1 = 0 and

AVk = VkH, (16)

where H ∈ Rk×k is of upper Hessenberg form and nonsingular. Since Ab′ ∈ range Vk, it
follows from (16) that the solution of (15) can be expressed as x = VkH−1V T

k Ab′. This
implies b′ ∈ range Vk and it now follows from (16) that the solution of (1) can be expressed as
VkH−1V T

k b′.

Break-down for augmented RRGMRES does not imply that the solution lives in the union
of the Krylov subspace generated so far and W. If vp+1 = 0 at line 7 of Algorithm 2.1, then
Ab′ ∈ range Vp. Using (9), we obtain

min
y∈Rp

‖AWy − b′‖ = min
y∈Rp

‖VpRy − b′‖ = ‖(I − VpV
T
p )b′‖, (17)

where the minimum is achieved for ỹ = R−1V T
p b′. The vector x̃ = W ỹ is an acceptable

approximate solution of (1) if the right-hand side of (17) is sufficiently small. If this is not the
case, then we let vp+1 := Avp+1 and resume the computations at line 5 of Algorithm 2.1. If
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6 J. BAGLAMA AND L. REICHEL

necessary, we repeat the multiplication of vp+1 by A until break-down does not occur at line
7. Break-down at line 17 can be handled analogously.

The following corollary shows that if we choose the columns of W to be orthogonal to b′,
then break-down for augmented RRGMRES is benign, i.e., at break-down the solution of (1)
lives in the solution subspace already generated. The proof is analogous to that of Theorem
2.3.

Corollary 2.4. Let A ∈ Rn×n be nonsingular, let W be of full rank, and such that WT b′ = 0.
Assume that Algorithm 2.1 for augmented RRGMRES breaks down. Then the solution of the
linear system (1) is in the union of W = range W and the available Krylov subspace at break-
down.

Proof: Assume first that Algorithm 2.1 breaks down at line 7. Then Ab′ ∈ range Vp, and
it follows from the nonsingularity of A that b′ ∈ W. This contradiction shows that break-
down cannot occur at line 7. Now assume that Algorithm 2.1 breaks down at line 17. Then
vk+1 = 0 and we have the decomposition (14) with H ∈ Rk×k nonsingular. Similarly as in the
proof of Theorem 2.3, consider the linear system (15). Since Ab′ ∈ range Vk, it follows that
x = [W Vp+1:k]H−1V T

k Ab′. Thus, x, and therefore b′, are in the range of [W Vp+1:k]. But the
range of W is orthogonal to b′, and therefore b′ ∈ range Vp+1:k ⊂ range Vk. It follows that the
solution of (1) can be expressed as [W Vp+1:k]H−1V T

k b′.

Break-down is a rare event. We therefore in the numerical experiments with augmented
RRGMRES reported in Section 4 do not require the range of W to be orthogonal to b′.

3. Linear discrete ill-posed problems

A matrix A ∈ Rn×n is said to be of ill-determined rank if it has many singular values of different
orders of magnitude close to the origin. Such matrices are severely ill-conditioned and may
be singular. They arise from the discretization of linear ill-posed problems, such as Fredholm
integral equations of the first kind with a smooth kernel. Linear systems of equations (1) with a
matrix of ill-determined rank are often referred to as linear discrete ill-posed problems. A nice
introduction to numerical methods for the solution of such problems is provided by Hansen
[12]. We will in this section assume that (1) is a linear discrete ill-posed problem.

The right-hand side b′ in linear discrete ill-posed problems that arise in applications typically
is contaminated by an error e ∈ Rn, which may stem from measurement or discretization errors.
Let b̂ ∈ Rn denote the unknown error-free vector associated with b′, i.e.,

b′ = b̂ + e, (18)

and assume that the linear system of equations with the unknown error-free right-hand side

Ax = b̂ (19)

is consistent. The available linear system (1) is not required to be consistent.
We would like to determine a solution x̂ of (19). If A is singular, then we may be interested

in computing the least-squares solution of minimal Euclidean norm. Since the right-hand side
b̂ is not available, we seek to determine an approximation of x̂ by computing an approximate
solution of the available linear system of equations (1). A popular approach to determining
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AUGMENTED GMRES-TYPE METHODS 7

an approximation of x̂ for large-scale linear discrete ill-posed problems is to apply a few, say
j, steps of an iterative method, such as GMRES or RRGMRES, to (1); see, e.g., [4, 5, 6]
for discussions of these iterative methods, and [7, 9, 10, 12] for discussions of several other
iterative methods applied to the solution of linear discrete ill-posed problems. As in Section 1,
we denote the jth iterate determined by any one of these iterative methods by xj . Since x̂ is
assumed not to satisfy (1), there typically is a fairly small nonnegative integer j∗ ¿ n, such
that

‖xj∗ − x̂‖ = min
j≥0

‖xj − x̂‖; (20)

see, e.g., the computed examples in Section 4 for illustrations. It is therefore important that
the low-dimensional subspaces which contain iterates xj with j small allow representation of
pertinent features of x̂. These features may be jumps, spikes, or just linear increase. This
suggests that if low-dimensional Krylov subspaces determined by GMRES or RRGMRES
do not allow representation of desirable features, then these spaces should be augmented by
subspaces that do. The following section illustrates that augmentation can enhance the quality
of computed approximations of x̂.

4. Numerical examples

This section presents a few computed examples which illustrate that augmentation of Krylov
subspaces may reduce the computational effort for the solution of well-conditioned problems.
We also show examples in which augmented Krylov subspace iterative methods applied to the
solution of linear discrete ill-posed problems with a contaminated right-hand side yield better
approximations of the desired solution x̂ of the associated unavailable linear discrete ill-posed
problem (19) with error-free right-hand side than standard Krylov subspace methods.

For large linear systems of equations, the dominating computational work when applying
GMRES or RRGMRES, with or without augmentation, is the evaluation of matrix-vector
products with the matrix A. We therefore report the number of matrix-vector product
evaluations as a measure of the computational effort required. All computations were carried
out in Matlab with machine epsilon 2 · 10−16. Throughout this section we let

W1 =




1
1
1
...
1




, W2 =




1 1
1 2
1 3
...

...
1 n




, W3 =




1 1 1
1 2 4
1 3 9
...

...
...

1 n n2




and define the linear spaces

Wk = range Wk, 1 ≤ k ≤ 3. (21)

We comment on the choice of these spaces in some of the example below. Here we only
note that augmentation by the space W1 is suitable for the temperature conversion example
of Section 1. This augmentation secures that the computed iterates, up to a scaling factor, are
independent of the temperature units chosen; cf. Theorem 2.1.

In all computed examples, we use the initial approximate solution x0 = 0. When solving
linear systems of equations (1) with an error-free right-hand side, it is desirable to choose
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8 J. BAGLAMA AND L. REICHEL

the augmented subspace W so that the component of the solution of (1) not in W can be
approximated well by an element in a low-dimensional Krylov subspace Kj(A, b′). When
instead solving linear discrete ill-posed problems with a contaminated right-hand side, we
would like the subspace W be such that the component of the desired solution x̂ of the
unavailable linear system (19) not in W can be approximated well by an element in a low-
dimensional Krylov subspace Kj(A, b′). The following examples illustrate the performance of
augmented GMRES and RRGMRES for several choices of augmenting subspaces.

5 10 15 20 25 30
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Figure 1. Example 4.1. Euclidean norm of the error in the computed iterates versus the number of
matrix-vector product evaluations for standard GMRES (solid curve with circles), GMRES augmented
by W1 (dash-dotted curve), GMRES augmented by W2 (dashed curve), and GMRES augmented by

W3 (solid curve).

Example 4.1. Let A ∈ R500×500 be a nonsymmetric Toeplitz matrix with first column
[1, 1/2, 1/3, . . . , 1/500]T and first row [1, 1/4, 1/9, . . . , 1/5002]. This matrix is well-conditioned;
it has condition number κ(A) = 1.2 · 101, where κ(A) = ‖A‖‖A−1‖. Define the solution
x′ = [x′1, x

′
2, . . . , x

′
500]

T with entries x′j = exp(−(j − 1)/500), and let b′ = Ax′.
Figure 1 displays the Euclidean norm of the error in the computed approximate solutions of

(1) obtained by standard and augmented GMRES versus the number of matrix-vector product
evaluations with the matrix A. For instance, when augmenting by W2, the computation of the
approximate solution x8 ∈ K8(A, b′)∪W2 requires the evaluation of 10 matrix-vector products
with A, and illustrates that augmentation can reduce the error significantly for a fixed number
of matrix-vector product evaluations. Figure 1 indicates that the augmentation does not affect
the asymptotic rate of convergence. 2

Example 4.2. This example illustrates that it can be expedient to augment GMRES by a
space that allows the representation of a jump discontinuity of the solution. Let A be the same
matrix as in Example 4.1 and let the entries of the solution x′ = [x′1, x

′
2, . . . , x

′
500]

T be given
by

x′k =
{

exp(−(k − 1)/500), 1 ≤ k ≤ 250,
exp(−(k − 1)/500) + 1, 251 ≤ k ≤ 500.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
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AUGMENTED GMRES-TYPE METHODS 9

augmentation j ‖x′ − xj‖ mat.-vec. prod.
- 10 5.0 · 10−2 10
W∆ 9 4.2 · 10−2 10
W3 7 9.3 · 10−2 10
W∆ ∪W3 6 8.5 · 10−4 10

Table I. Example 4.2. Comparison of standard and augmented GMRES.

augmentation ‖x̂− xj∗‖ j∗ mat.-vec. prod.
- 6.3 · 10−1 4 5
W1 5.0 · 10−2 2 4

Table II. Example 4.3. Comparison of standard and augmented RRGMRES applied to the solution of
(24).

Thus, x′ represents the discretization of the sum of an exponential function and a step function.
Define b′ = Ax′. We would like to solve the linear system of equations (1).

Let w = [w1, w2, . . . , w500]T be the discretization of a piece-wise constant function with a
jump where the solution x′ is discontinuous, specifically we let

wk =
{

0, 1 ≤ k ≤ 250,
1, 251 ≤ k ≤ 500,

(22)

and define W∆ = range w.
Table I summarizes the performance of standard and augmented GMRES, and compares

the errors in computed approximate solutions that all require the evaluation of 10 matrix-
vector products with A. The table illustrates that significant improvement in accuracy can be
achieved if vectors in the augmented space can represent known nonsmooth features of the
solution.

Augmented GMRES requires the approximate location of the discontinuity to be known in
order to deliver accurate approximate solutions. We are presently investigating the possibility
of combining augmented GMRES with schemes that locate discontinuities. A scheme for
locating discontinuities of small to medium-sized problems has been described by Hansen
and Mosegaard [13]. 2

The following examples are concerned with the approximate solution of linear discrete ill-
posed problems of the form (1) with a right-hand side (18) that has been contaminated by an
error e of relative norm ε, i.e.,

‖e‖
‖b̂‖ = ε. (23)

The entries of e are normally distributed with zero mean.
Example 4.3. Consider the Fredholm integral equation of the first kind,

∫ π

0

exp(s cos(t))x(t)dt = b(s), 0 ≤ s ≤ π

2
, (24)

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 0:0–0
Prepared using nlaauth.cls



10 J. BAGLAMA AND L. REICHEL

0 100 200 300 400 500 600 700 800 900 1000
99.92

99.94

99.96

99.98

100

100.02

100.04

100.06

100.08

Figure 2. Example 4.3. Iterate x2 determined by RRGMRES augmented by W1 (continuous curve),
iterate x4 determined by standard RRGMRES (dash-dotted curve), and exact solution x̂ (dashed

curve). The iterate x2 is seen to provide a more accurate approximation of x̂ than x4.

with

b(s) = 2
sinh(s)

s
+ 100

∫ π

0

exp(s cos(t))dt.

A related integral equation is discussed by Baart [1]. We modified the Matlab function baart
from the program package Regularization Tools by Hansen [11], which discretizes the integral
equation considered by Baart [1], to yield a discretization of (24). Specifically, we determined a
nonsymmetric numerically singular matrix A ∈ R1000×1000 and a scaled discrete approximation
x̂ of the solution

x(t) = 100 + sin(t) (25)

of (24). Let b̂ = Ax̂ and define the right-hand side of (1) by (18) with ε = 1 · 10−5 in (23).
For this and the following examples the standard and augmented RRGMRES methods

yield approximations of x̂ with a smaller error than the corresponding GMRES methods. We
therefore only report errors for standard and augmented RRGMRES.

Since the solution (25) of (24) is a fairly small relative perturbation of a constant, it is
natural to augment the Krylov subspaces generated by standard RRGMRES by the space W1

defined by (21). Table II displays the index j∗ defined by (20) and the norm of the error in the
computed approximation xj∗ of x̂ for standard and augmented RRGMRES. The computed
approximate solution xj∗ determined by augmented RRGMRES lives in Kj∗(A,Ab) ∪ W1

and its computation requires the evaluation of j∗ + 2 matrix-vector products with the matrix
A. The vector x̂ and the approximate solutions xj∗ computed by standard and augmented
RRGMRES are shown in Figure 2. Table II displays the error in the most accurate computed
iterates and shows augmentation by W1 to reduce this error by about a factor 1/13. 2

In the above example, as well as in the examples below, the index j∗ is assumed to be known,
and we display the smallest errors achieved by standard and augmented RRGMRES. For many
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augmentation ‖x̂− xj∗‖ j∗ mat.-vec. prod.
- 2.7 · 10−1 10 11
W1 2.1 · 10−1 10 12
W2 1.7 · 10−2 7 10
W3 4.4 · 10−3 2 6

Table III. Example 4.4. Comparison of standard and augmented RRGMRES.

linear discrete ill-posed problems that arise in applications, j∗ has to be estimated. Several
methods are available for this purpose, see, e.g., [6, 9, 12], and can be used in conjunction with
the iterative methods of the present paper.
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Figure 3. Example 4.4. (a) Approximate solution x10 computed by standard RRGMRES (continuous
curve) and exact solution x̂ (dashed curve). (b) Approximate solution x2 computed by RRGMRES

augmented by W3 (continuous curve) and exact solution x̂ (dashed curve).

Example 4.4. Consider the Fredholm integral equation of the first kind
∫ 1

0

k(s, t)x(t)dt = exp(s) + (1− e)s− 1, 0 ≤ s ≤ 1, (26)

where

k(s, t) =
{

s(t− 1), s < t,
t(s− 1), s ≥ t.

We discretize the integral equation by a Galerkin method with orthonormal box functions
as test and trial functions using the Matlab program deriv2 from [11]. The program yields a
symmetric indefinite matrix A ∈ R200×200 and a scaled discrete approximation x̂ ∈ R200 of
the solution x(t) = exp(t) of (26). The error-free right-hand side vector is given by b̂ = Ax̂,
and the right-hand side vector b′ in (1) is determined by (18) with ε = 1 · 10−3 in (23).

Table III displays the performance of standard and augmented RRGMRES, and Figure 3
shows the best approximations of x̂ computed by RRGMRES with and without augmentation.
Clearly augmentation reduces the error significantly.
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The success of augmentation depends on the augmenting spaces chosen. For some linear
discrete ill-posed problems, the approximate solution determined by standard GMRES or
RRGMRES may suggest a suitable augmenting space. In the present example, the computed
approximate solution x10 determined by standard RRGMRES is increasing if we ignore the
wiggles; see Figure 3(a). This suggests that RRGMRES augmented by W2 may yield a better
approximation of x̂ than standard RRGMRES, because linearly increasing functions can be
represented by elements in W2. Moreover, since when ignoring the wiggles, x10 increases
faster than linearly, augmentation by W3 may give an even better approximation of x̂ than
augmentation by W2. Table III shows this indeed to be the case.

We remark that augmented RRGMRES does not utilize the symmetry of the matrix A. It
is possible to develop a symmetry-exploiting method using the approach described in [7]. 2

Example 4.5. A standard test example for linear discrete ill-posed problems is the solution
of equation (26) with the right-hand side replaced by (s3 − s)/6. Then the solution is given
by x(t) = t. We determine the right-hand side b′ as in Example 4.4. Standard RRGMRES
yields j∗ = 10 and ‖x̂ − xj∗‖ = 9.0 · 10−2, and RRGMRES augmented by W2 gives j∗ = 1
and ‖x̂−xj∗‖ = 2.6 ·10−4. We remark that xj∗ 6= x̂ because of the error e in b′ and round-off
errors introduced during the computations. 2

5. Conclusion

The computed examples illustrate that it can be worthwhile to augment Krylov subspaces
generated by GMRES and RRGMRES by linear spaces that are not defined by Ritz vectors.
When the linear system of equations arises from the discretization of a well-posed problem,
augmentation can reduce the number of iterations required to determine an approximate
solution of desired accuracy. Augmented RRGMRES applied to the solution of linear discrete
ill-posed problems with a contaminated right-hand side can yield approximations of the desired
solution of the error-free linear system of higher accuracy than standard RRGMRES.
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