COMPUTATION OF A FEW SMALL EIGENVALUES OF A LARGE
MATRIX WITH APPLICATION TO LIQUID CRYSTAL MODELING

J. BAGLAMA*, D. CALVETTI!, L. REICHEL}, AND A. RUTTANS

Abstract. Equilibrium configurations of liquid crystals in a finite containment are minimizers
of the thermodynamic free energy of the system. It is important to be able to track an equilibrium
configuration as the temperature of the liquid crystals is decreased. The path of the minimal energy
configuration at a bifurcation point can be computed from the null space of a sparse symmetric
matrix, which typically is very large, e.g., of order 3-105. We describe an Implicitly Restarted Block
Lanczos method designed for the computation of a few extreme multiple or close eigenvalues and
associated eigenvectors of a large sparse symmetric matrix, and apply this method to determine the
desired null space. Our method generalizes the Implicitly Restarted Lanczos method introduced by
Sorensen [33]. The method requires that certain acceleration parameters, referred to as shifts, be
chosen. The storage requirement depends on the choice of shifts. We propose a new strategy for
choosing shifts. Numerical examples illustrate that the Implicitly Restarted Block Lanczos method
with shifts chosen in this manner gives rapid convergence, reliably detects extreme multiple or close
eigenvalues, and requires little computer storage in addition to the storage used for the desired eigen-
vectors. These features make the method well suited for the application of tracking an equilibrium
configuration of liquid crystals.
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1. Introduction. The computation of an equilibrium configuration of liquid
crystals, and the tracking of such a configuration as the temperature of the liquid
crystals decreases, are computationally challenging problems. Tracking of the equi-
librium configuration requires the determination of a few, say k, of the smallest eigen-
values and associated eigenvectors of a large sparse symmetric matrix A € R"*",
where n can be as large as 3 - 10° and k typically is 4. Some of the desired eigen-
values can be of multiplicity larger than one, or distinct and very close. It is the
purpose of the present paper to describe a new method for computing the desired
eigenvalue-eigenvector pairs.

We begin with a description of the liquid crystals problem. The problem under
consideration is to determine the minimum energy equilibrium configuration of liquid
crystals in a slab

(1.1) Q={(z1,22,23) : 0< 21 <a,0 <22 <b,0< 23 <c}

with surface 9€). Using the Landau-de Gennes formulation, the free energy can be
expressed in terms of a tensor order parameter field @; see Priestly et al. [27]. The
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free energy is given by
(]-2) F(Q; T) = Fvol(QaT) + Fsurf(Q) = / fvol(Q; T)dV + fsurf(Q)dS
Q a0

where @ = Q(p), p € Q, is a 3 x 3 symmetric traceless tensor, which is represented by

10 0 010
Qp) = a@| 0 0 0 |+@®| 1 00
0 0 -1 0 00
0 0 1 00 0
(1.3) +g®@) [ 0 0 0 |+a@® | 0 1 0
1 0 0 00 -1
0 0 0
+gs(p)| 0 0 1
010

and the ¢; are real-valued functions on 2. The ¢; are to be determined so that the
free energy (1.2) is minimal. The representation

fvol(QaT) = %‘ClQa,@,’yQa,@,'y + %£2Qa,@,ﬂQa’y,’y + %£3Qaﬁ,’yQa'y,,@

+3A trace(Q?) — 3B trace(Q?) + 1€ trace(Q?)?

(1.4)

uses the conventions that summation over repeated indices is implied and indices
separated by commas represent partial derivatives. For example,

0 K
QapyQar.g = Z Z Z Qla,B] 9Q|a, fy]

o oo Oz Oxp

The bulk parameter A is assumed to be of the form A = Ag(7 — 7o), where Ay and
To are constants and 7 is the normalized temperature of the liquid crystals. In this
paper we take 7o = 0 and A4y = 2, which gives 7 = %A. The quantities £, L2 and
L3 are elastic constants, and B and C are bulk constants. Moreover,

(1.5) faurt (Q) = W trace((Q — Qo)?),

where W is a constant and the tensor () is determined by the boundary conditions for
the functions ¢;. We consider two kinds of boundary conditions, which model strong
and weak anchoring of the liquid crystals on the surface 92, respectively. Strong
anchoring is obtained by imposing the condition

(1.6) Q(p) = Qo(p), pe o

This has the effect that
(17) Fsurf(Q) = 20 fsurf(Q)dS =0.

Weak anchoring of the liquid crystal molecules on the boundary is obtained by setting
the constant W in (1.5) to a finite value. Details can be found in [9, 12, 27, 35].
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The minimum energy equilibrium configuration of the liquid crystals is determined
by solving the Euler-Lagrange equations associated with (1.2). These equations yield
a boundary value problem for a system of nonlinear partial differential equations for
the g;. Discretization by finite differences gives rise to a system of nonlinear equations
of large order which we represent as

(1.8) G(Q,T) = 0.

We solve this system by Newton’s method. Each iteration by Newton’s method re-
quires the solution of a linear system of equations with the matrix of partial derivatives
Go(Q,T) obtained by the discretized Euler-Lagrange equations. We are interested
in tracking the minimal energy equilibrium configuration as the temperature 7 of
the liquid crystals is varied. This gives rise to a path following problem, which we
solve by using the Euler-Newton continuation method; see, e.g., [1, 17] for discussions
on continuation methods. Points on the solution path at which Gg(Q,7) is singu-
lar are referred to as singular points. We are interested in determining these points
because they may be bifurcation points for the minimal energy equilibrium configu-
ration. When the continuation method finds a point on a solution path close to a
singular point, we use the secant method to accurately determine the location of the
singular point. Thus, we use the secant method to determine a temperature 7y such
that the minimum eigenvalue A1 (Zp) of Gg(Q, 7o) vanishes. This is described in the
following algorithm.

ALcoRrITHM 1.1. Computation of a singular point:
Input: )\(10), 7O, 7MW tol; Output: To, M (Tp);
J=1
Minimize F(Q,T);
Compute the smallest eigenvalue )\gj) of the matriz Go(Q,T\Y);
if A\ | < tol then To == TWD; A\ (To) := AP} exit endif:

NI

i ; )76 _7G-1) . .
5. TUHY .= 70) - )\gj)%; ji=7+1;

6. go to 2; O

We use Algorithm 4.1 of Section 4 to compute the smallest eigenvalue of the matrix
of partial derivatives in step 3 of Algorithm 1.1. At the singular point the solution
path might bifurcate. One technique for switching paths at bifurcation points is to
determine the tangent vectors to the different branches of the solution path by solving
a nonlinear system of polynomial equations of small order. Specifically, one solves the
Algebraic Bifurcation Equations when the partial derivative G7(Q,7T) at 7 = Ty is
in the range of G (Q, 7o), and the Limit Point Bifurcation Equations otherwise; see,
e.g., [16, 17] and references therein for further discussions. We can follow the desired
solution path from a bifurcation point by taking a Newton step in the direction of an
appropriate tangent vector.

The eigenvectors associated with the zero eigenvalues of the matrix Go(Q, 7o) are
required in the Algebraic Bifurcation Equations for computing the tangent vectors of
the solution path at a bifurcation point. Therefore it is necessary to determine the
location of singular points and to compute the null space of Gg(Q, 7p) at these points.
In the application to liquid crystal modeling described in this paper, we also need to
compute the dimension of the null space of Gg(Q, 7o) at a singular point. Due to
symmetry this dimension is frequently a multiple of three. In view of the large order of
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Go(Q, 7o) in our application, it is highly desirable that the numerical method used for
computing the wanted eigenvalues and eigenvectors requires little computer storage
in addition to the storage needed for the computed eigenvectors. In fact, in order
to reduce the storage requirement, we do not store all nonzero entries of Gg(Q, 7o)
simultaneously, but instead calculate them as needed when evaluating matrix-vector
products with Gg(Q,7p). The FORTRAN code for evaluating these matrix-vector
products was generated by the symbolic formula manipulation language Maple V.

This paper describes the Implicitly Restarted Block Lanczos (IRBL) method for
the computation of a few extreme eigenvalues of a large sparse symmetric matrix, and
applies the method to the computation of a few of the smallest eigenvalues and associ-
ated eigenvectors of the matrix Gg(Q,T) introduced above. We denote the block size
by r and sometimes refer to our block scheme as the IRBL(7) method. This method
generalizes the Implicitly Restarted Lanczos (IRL) method introduced by Sorensen
[33], and more recently studied by Lehoucq and Sorensen [18, 20]. The IRBL method
is based on the recursions formula for the block Lanczos method, described, e.g., by
Chatelin [7], Golub and Underwood [14], Grimes et al. [15] and Ruhe [29]. Similarly
to the block Lanczos method, the IRBL method is well suited for the computation of
multiple or very close eigenvalues. The main advantage of the IRBL method, when
compared with the block Lanczos method, is its smaller storage requirement when
both eigenvalues and associated eigenvectors are required.

The IRBL method can be regarded as a curtailed block QR algorithm for the
symmetric eigenvalue problem; see, e.g., Bai and Demmel [4], and Dubrulle and Golub
[10] for discussions of the latter. Similarly as in the block QR algorithm, the choice
of shifts is important for the IRBL method. However, obvious generalizations of the
Rayleigh or Wilkinson shifts that can be used in a block QR algorithm cannot be
applied in the IRBL method, because the data required to compute these shifts is not
available. We therefore propose a new shift selection strategy.

We remark that shift selection in the IRL method, and the closely related Im-
plicitly Restarted Arnoldi (IRA) method, has received considerable attention and is
studied in [3, 6, 20, 23, 33]. ARPACK by Lehoucq et al. [21] implements the IRL
and TRA methods as described by Sorensen [33]. Computed examples in Section 5
illustrate that this implementation of the IRL method does not reliably detect mul-
tiple eigenvalues; neither does the IRL method described in [3]. A large number of
numerical experiments, some of which are reported in Section 5, indicate that the
IRBL method of the present paper reliably determines extreme eigenvalues with cor-
rect multiplicity and the associated eigenvectors. When the block size is chosen to be
one, the IRBL method reduces to the IRBL(1) method, which is an IRL method. In
our experience the IRBL(1) method also reliably determines extreme eigenvalues with
correct multiplicity. The IRBL(1) method differs from the previously described IRL
methods in the selection of Krylov subspace after an eigenvalue-eigenvector pair has
been found and in the choice of shifts. The main advantage of the IRBL(1) method
over the IRBL(r) methods for r > 1 is that it requires less computer storage. How-
ever, the IRBL(1) method may require more arithmetic operations to determine the
desired eigenvalue-eigenvector pairs. This is illustrated in Section 5.

For any block size r > 1, the IRBL(7) method is a polynomial acceleration method
with a special choice of accelerating polynomial. Polynomial acceleration for eigen-
value computation was first used by Flanders and Shortley [13], who applied Cheby-
shev polynomials. More recent applications of Chebyshev polynomials as accelerating
polynomials are described by Chatelin [7] and Saad [30].
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We note that when a suitable preconditioner for A is known, the Davidson method
and extensions thereof can be competitive for the computation of a few eigenvalues;
see Davidson [8], Morgan and Scott [24], Murray et al. [25] and Sleijpen and van
der Vorst [32]. The determination of a suitable preconditioner for the liquid crystal
problem that we focus on in this paper requires further study, and we therefore only
consider methods that just require the matrix A.

This paper is organized as follows. In Section 2 we review the block Lanczos
method and develop the recursion formulas for the IRBL method. Section 3 describes
our strategies for subspace and shift selections, and Section 4 presents our new IRBL
algorithm. Numerical examples are displayed in Section 5, and concluding remarks
can be found in Section 6.

2. The IRBL method. Let {v;}}_; be a given set of orthonormal n-vectors,
and introduce the matrix V,. = [v1, va,...,v.]. An application of m steps of the block
Lanczos method with initial matrix V. reduces the n x n symmetric matrix A to
a symmetric block tridiagonal matrix 7;,, with r x r blocks and upper triangular
subdiagonal blocks, such that

(2.1) AVinr = Vo Trnr + FLET,

where Vi € R™™ Vo Lnexr = Vi, V2 Vinr = I, and F, € R™¥7 satisfies
VI F. =0. As usual I,,,, denotes the mr x mr identity matrix, and I, € R™™%"
consists of the first » columns of I,,,,. The matrix E, € R™"*" consists of the last r
columns of I,,,.. We refer to (2.1) as a block Lanczos decomposition, and the space
K., := range V,,,, as a Krylov subspace.

Let 6 be an eigenvalue of the matrix T;,,, and let y be an associated eigenvector.
Then 6 is an approximate eigenvalue of A, and is commonly referred to as a Ritz value
of A. The vector x = V,,,,-y is an approximate eigenvector of A and is referred to as
a Ritz vector of A. It follows from (2.1) that the residual error Az — 26 associated
with the Ritz pair {0, z} satisfies

(2.2) Az — 28] = |(AVinr = Vinr T )yl = |1 E- 7 -

Throughout this paper ||-|| denotes the Euclidean vector norm as well as the associated
induced matrix norm. Thus, the norm of the residual error can be determined without
explicitly computing the Ritz vector z by evaluating the right-hand side of (2.2).
When the norm (2.2) is small, the Ritz value € is an accurate approximation of an
eigenvalue of A. The determination of how well z approximates an eigenvector of A
requires further spectral information of A. In the basic block Lanczos method, one
fixes the block size r and increases m until the right-hand side of (2.2) is sufficiently
small. Then one computes the Ritz pair {6, z}. When the order of the matrix A and
the number of Lanczos steps m are large, secondary computer storage may have to
be used to store V. This can slow down the computations significantly. The use of
secondary computer storage can be avoided by restarting the block Lanczos process
periodically, and the IRBL method provides recursion formulas for this purpose.

The IRBL method generalizes the IRL method by Sorensen [33]. Assume for defi-
niteness that we are interested in computing the k smallest eigenvalues and associated
eigenvectors of the matrix A, where k is a fixed and fairly small number. Let m steps
of the block Lanczos method produce the block Lanczos decomposition (2.1).

Let z € R and determine the QR factorization 7., — 2L, = QR, where Q, R €
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R™>mr QTQ = I,,, and R is upper triangular. We obtain

(2.3.1) (A - 2D)Vinr — Vinr Ty — 2Imy) = F,ET,
(2.3.2) (A - 2)Vir — VinrQR = F,ET,

(23.3) (A=2D)(VnrQ) = (VimrQ)(RQ) = FETQ,
(2.34) A(VirQ) = (VinrQ)(RQ + 2Imy) = FLE[Q.

Let T;f. = RQ + zI,. Then T, is a symmetric block tridiagonal matrix with the
same band width as T),,,. The matrix @) in the QR factorization of T,,, — zI,,, is a
generalized upper Hessenberg matrix, whose lower triangular part has band width r.

The formulas (2.3) are similar to recursion formulas for the explicitly shifted block

QR method, and in analogy with the terminology for the latter method, we refer to

z as a shift. After applying the m — 1 shifts 21, 2o,..., 2,1, We obtain
(24) AV’IT—il_T = V7;|1—T'T11—|1_7' + FTETTQ—i—’
where

Vr;al—r = [vi{—ﬂ};—a .. ,U;I;T = erQ+7 Q+ = QlQ? e mela Ty-lrzr = (Q+)TTmrQ+

and @; denotes the orthogonal matrix associated with the shift z;. Introduce the
partitioning

T} BY 0 0
B,
(2.5) Th =0 . :
Tmr—'r
0

where T;t € R"™*", B, € R"*" is upper triangular, and T,-. . € R(mr—r)x(mr—r)
Equate the first r columns on the right-hand side and left-hand side of (2.4). We then
obtain

(2.6) AV = VFTF 1 FF,

where V' = [vf,0f,...,vf] and FF = [vf,... v ]B, + F,EFQ*I,,,. The mth
shift z,, is applied according to

(2.7) Vr++ = Ffj— + Vr+ (Tr+ = zm1y).

Introduce R = (RT.Rr._;...R7)™!, where R is the first r columns and 7 rows of the

upper triangular matrix R; in the QR factorization of 17,, — z;1. Then
(2.8) Vit = ¢ (A)V, R,

where 1, is a polynomial of degree m with zeros 21, 2, ..., 2my,. Formula (2.8) shows
that we can multiply the initial matrix V,. for the Lanczos method by an accelerating
polynomial in A of degree m without evaluating any matrix-vector products with the
matrix A, in addition to those matrix-vector products that were computed during m
steps of the block Lanczos method. The choice of accelerating polynomial ¥,,, i.e.,
the choice of the shifts 21, 22, ..., 2m, is discussed in Section 3. Here we only note that
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we wish to choose the z; so that range V;F* is in, or close to, an invariant subspace
of A associated with all or a subset of the k desired eigenvalues of A.

Having computed V,** in the manner outlined, we orthonormalize the columns
of V,**, and denote the orthonormal matrix so obtained by V,.. The block Lanc-
z0s process is now restarted with the initial matrix V.. If the number of desired
eigenvalues k is not larger than the block size r, then the computations proceed by
periodically applying m steps of the block Lanczos process and m shifts until the
desired k eigenvalue-eigenvector pairs have been found. After having applied m shifts
g times, the relation (2.8) is replaced by

(2-9) ‘7!’++ = Ymg (A)VrRa

where 1, is a polynomial of degree mgq with zeros 21, 2, . .., Zmq, and R is an upper
triangular matrix.

In view of that the eigenvalues of a block tridiagonal matrix T, € R™"*™" with
block size r and of rank larger than or equal to mr — r are of multiplicity less than
or equal to r, see, e.g., [7, Lemma 6.4.1, p. 268], the block Lanczos method with
block size r can determine eigenvalues of multiplicity at most r. If ¥ > r, we therefore
proceeds as follows in order to be able to compute all the k£ smallest eigenvalues
and associated eigenvectors. Carry out the computations as described above until r
desired eigenvalue-eigenvector pairs have been found. We then generate r random
vectors, orthogonalize them against the orthogonal eigenvectors already computed,
as well as against each other, by the modified Gram-Schmidt method. This gives
the matrix V,, = [v1,v2,...,v,], which we use to restart the block Lanczos method.
This selection of matrix V,. after r eigenvalues have converged makes it possible to
determine eigenvalues of multiplicity larger than r and associated eigenvectors. We
also use this choice of starting vector for the Lanczos process when r = 1.

We remark that when » = 1 the selection of initial vector for the Lanczos method
differs from the choice of initial vector proposed in [3]. The choice advocated in [3]
typically yields faster convergence to k small eigenvalues and associated eigenvectors,
however, when there are multiple or very close eigenvalues the eigenvalues found are
not always the k smallest ones. The initial vector should be selected as proposed in
the present paper when it is important that the computed eigenvalues are the very
smallest ones.

The computations in our present implementation of the block Lanczos method
are organized as proposed by Ruhe [29]. In this implementation the vectors in the
Krylov subspace bases generated are orthogonalized sequentially. Orthogonality of
the basis vectors is secured by reorthogonalization when necessary. Results in [5, 28]
show that at most one reorthogonalization is required.

We note that on some computers and for certain matrices A, it may be possible
to simultaneously evaluate r matrix-vector products with the matrix A faster than
to evaluate r matrix-vector products with A sequentially. This depends on that
simultaneous evaluation may require less data movement. For such computers and
matrices, it can be attractive to consider variants of the block Lanczos method that
allow simultaneous evaluation of r matrix-vector products. It is straightforward to
modify our code for the IRBL method accordingly.

The recurrence formulas (2.3) are related to the explicitly shifted block QR algo-
rithm. However, for reason of numerical stability, we use an implementation based on
recurrence formulas associated with an implicitly shifted block QR algorithm. These
recursions can be modified to allow double shifts. The latter is attractive when A is a
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general real matrix. A code for a restarted block Arnoldi method for the computation
of a few eigenvalues and associated eigenvectors of a general real matrix A is presently
being developed by Lehoucq and Maschhoff [19].

Assume that we already have determined jr < k eigenvalue-eigenvector pairs, and
are to apply the block Lanczos method to the matrix V,. € R™*" with orthonormal
columns. The eigenvectors already found require njr storage locations. In order not
to increase the demand of computer storage, we only apply m — j steps of the block
Lanczos algorithm, which are followed by m — j shifts.

3. Shift selection. The rate of convergence of the IRBL method depends on
the choice of accelerating polynomial 9,4 in (2.9). We determine ),, by prescribing
its zeros. The description of our selection of zeros requires some notation. Let K be a
closed and bounded interval on the real axis, and let w(z) be a nonnegative continuous
function on K. We refer to w(z) as a weight function. Define a sequence {z;}52, of
points in K as follows. Let z; be a point such that

(3.1) w(z1)|21| = maxw(z)|z|, 21 €K,
zeK

and let z;, for j =2,3,... , satisfy

Jj—1 Jj—1
2 : = - EK.
(3.2) w(z])ll:[1 |z — 2z rzneali( w(z)ll:[l |z — z], zj €

The points z; determined by (3.1)-(3.2) might not be unique. We call any sequence of
points {z;}32, that satisfies (3.1)-(3.2) a sequence of weighted Leja points for K, or
sometimes briefly Leja points for K. When w(z) = 1, the weighted Leja points agree
with the “classical” Leja points studied by Leja [22].

We choose the zeros of 9,4 to be Leja points for certain intervals K, that do not
contain any of the desired k smallest eigenvalues of A. Because we use these zeros as
shifts in our algorithm, we also refer to them as Leja shifts. The purpose of the Leja
shifts is to dampen eigenvector components associated with undesired eigenvalues in
the columns of the matrix V. in (2.9).

We now describe how intervals K that do not contain any of the k smallest
eigenvalues of A can be determined from the eigenvalues of the matrices T}, generated
by the IRBL method. We may assume that the subdiagonal r x r blocks of the
block tridiagonal matrix T;,, defined by (2.1) are nonsingular, which implies that
rank(T,,,) > rm — r, because otherwise we have found an invariant subspace.

PROPOSITION 3.1. Let

(3.3) M <AL <\,
denote the eigenvalues of A, and let

(3.4) 1 <0< ... <O

be the eigenvalues of the symmetric block tridiagonal matriz T,,,, with nonsingular
subdiagonal 7 x v blocks, in a block Lanczos decomposition (2.1). Then

(3.5) Aj
(3.6) An

b; 1<j<mr,
(7

IV IA
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Moreover,

(3.7) Aj <Ojr,  1<j<(m—1)r

Proof. We obtain from (2.1) that T, = V.1 AV, and, therefore,

. 2T Az . xT Ax
A = max min—rk— < max min —
S,dim(S)=k zeS T T S,dim(S)=k z€Snspan{Vyn-} T T

z#0 z#0

T
.Y Try
= max —min=—sy— = 0.
S, dim(S)=k yeS Y'Y

y#0

This shows (3.5). The inequality (3.6) can be shown similarly. Finally, (3.7) follows
from the fact that the eigenvalues of Ty, have multiplicity at most r. O
Assume that (m — 1)r > k and let the integer p satisfy

(3.8) 0<p<(m-1)r—k.

Then, by (3.7), the interval K = [fg4rtp,Oms] does not contain any of the k smallest
eigenvalues of the matrix A. This suggests the following choice of intervals K during
the computation with the IRBL method. For now, we let p be an arbitrary integer
that satisfies (3.8). We discuss different choices of p at the end of this section.

Let V., € R™*" be the initial matrix with orthonormal columns for the block
Lanczos method, compute the decomposition (2.1), determine the eigenvalues 6; of
the matrix Tp,r in (2.1), and order them according to (3.4). Define the endpoints of
the interval K = [a, b] by

(39) a = 0k+’r+p; b= Hmr.

We let the m first shifts {z;}72; be Leja points for K. Application of the m shifts
as described in Section 2 yields a new matrix V,** € R"*" defined by (2.7). We
orthonormalize its columns and this gives a new matrix, which we also refer to as V.
We now apply m steps of the block Lanczos method with initial matrix V. in order to
obtain a new block Lanczos decomposition (2.1), with a new block tridiagonal matrix
Trr- Compute its eigenvalues §; and order them according to (3.4). The endpoints
of K = [a, ] are updated by the formulas

(310) a = 0k+7‘+p7 b= max{b, 9mr}
We then select m shifts 2,41, Zm+2, - - -, 22m as Leja points for this new interval K =
[a,b] in the presence of the points 21, 29, ..., z,. More precisely, assume that we al-

ready have determined the points {z; };-":(il_l). The next set of m points {z; };n:q(m—l)q-l—l

then is defined by the following algorithm. The weight function in the algorithm is
chosen to be

(3.11) w(2) = |2 = i,

where p satisfies (3.8).

ALGORITHM 3.2. Compute m shifts as Leja points for K, given m(q — 1) shifts:
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Input: endpoints of K, q, m, {zj}m(q D Output: {2}
1. j:=m(g—1)+1;
2. if j =1 then
20 := point of largest magnitude of K
else
Determine z; € K, such that

j=m(g— 1)+1’

j—1
w(z; H |z1—z,|—maxw H |z —
i=1
where w(z) is defined by (3.11)
endif;
3. ji=j+1;

4. if j <mgq then go to 2 else stop; O

The computation of the Leja points z;, j > 1, by Algorithm 3.2 requires the
maximization of a product over K. In order to reduce the computational effort nec-
essary to determine Leja points, we discretize each updated interval K using zeros of
a Chebyshev polynomial of the first kind of degree £ for the interval K, where £ is
sufficiently large.

We turn to the selection of integer p in (3.9)-(3.11). In [3] we described an algo-
rithm that corresponds to the case when r = 1, and considered eigenvalue problems
in which the desired eigenvalues were fairly well separated from the undesired ones.
We found p = 0 to be appropriate. This corresponds to a = 641 in (3.9)-(3.10).
However, when the largest desired eigenvalues of A are close to the smallest undesired
eigenvalues of A and m is small, e.g., m < 5, faster convergence can be achieved with
a larger value of p. Increasing p moves the left endpoint of the interval K = [a, b]
away from the desired eigenvalues. For the examples of the present paper, we found

(3.12) p=(m—-1r—k—1

to give rapid convergence. This corresponds to a = 0r—1 in (3.9)-(3.10). This is the
largest value of p for which the interval K, in general, will be a proper interval that
does not contain the desired eigenvalues of A. Example 5.4 in Section 5 illustrates
the effect of different choices of p.

4. The IRBL algorithm. We describe our algorithm for computing the k£ small-
est eigenvalues {);}5_, and associated orthonormal eigenvectors {u;}%_, of a large
symmetric matrix A. If the k smallest eigenvalues form clusters of very close or mul-
tiple eigenvalues, and it is known that the largest cluster contains £ eigenvalues, then
block size r = /£ is appropriate, because the matrix T},, can then have as many mul-
tiple eigenvalues as there may be in the set {/\j}le. If all the k desired eigenvalues
form a cluster, then, if possible, r should be chosen to be equal to k. However, in
many applications the multiplicity of the desired eigenvalues is not known a priori,
and choosing r = k can be prohibitive due to the requirement of computer storage.
The use of various block sizes is illustrated in the examples of Section 5.

Let {0,,1/]} ; denote eigenvalue-eigenvector pairs of the symmetric block tridi-
agonal matrix Tmr defined by (2.1), and assume that the eigenvalues are ordered
according to (3.4). Let x; = Vi,ry; be a Ritz vector of the matrix A, associated with
the Ritz value 6;. Then, analogously with (2.2), we obtain that

||A$j - xjej” = |(AVinr — erTmr)yj” = ”FrErTyj”a 1<j5<mr.
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The stopping criterion

(41) max [|F By, | < el A,

where € is a user supplied positive constant, would secure that each computed Ritz
pair {6;,z;} would be an eigenpair of a matrix A + A, where A; € R™*" satisfies
1A;]] <

The evaluation of ||A|| is impractical for large matrices A, however, the IRBL
method furnishes good approximations of ||A||. Specifically, we approximate ||A|| by
the largest norm of all the matrices Ty, generated by the IRBL method. Thus, in
our algorithm we use the stopping criterion
(42) max [IFETy;| < emax [Ty,
where the maximum in the right-hand side is taken over all the block tridiagonal
matrices T;,, generated by the block Lanczos method.

In the following algorithm for computing the k smallest eigenvalues and associated
eigenvectors of the matrix A, we typically restart the block Lanczos method with r
random vectors when r eigenpairs have been found in order to be able to detect
all eigenpairs. This corresponds to setting the parameter “random” to true in the
algorithm. This choice is appropriate if we do not know how the k smallest eigenvalues
of A are distributed.

In the numerical examples of Section 5, we also illustrate the behavior of the
algorithm when the parameter random is set to false. In this case the most recently
available Krylov subspace basis is orthogonalized against all determined eigenvectors
and used as initial matrix when restarting the block Lanczos method. In our experi-
ence the latter approach reliably yields all the eigenvalues if the block size r is at least
as large as the number of eigenvalues in the largest cluster among the desired eigen-
values. In this case often all desired eigenpairs are determined faster when random is
set to false, than when random is true; see Example 5.1.

ALGORITHM 4.1. IRBL(r) method for computing k eigenpairs of A associated
with the smallest eigenvalues:
Input: A, k, m, 7, €, such that (m — 1)r > k;
random :=true, if restart with random vectors,
random :=false, otherwise;
Output: eigenvalues {)\j};?:l, orthonormal eigenvectors {uj};?:l;

1. iconv = 0;

2. Choose T random vectors v; and let V, = [v1,v2,...,0,];

3. dshiry == 0;

4. Orthogonalize the columns of V. against the icony converged eigenvectors.

Orthonormalize the columns of V,.;

5. Apply m steps of the block Lanczos method to the matriz A with initial orthonor-
mal matriz V,. in order to determine the matrices T, Vinr, and F,. in (2.1);
The vectors generated are reorthogonalized against already determined columns
of Vinr as well as against already converged eigenvectors;

6. Compute the eigenvalues (3.4) of Trr;

7. Check whether any new eigenpairs have converged:

Let |[F,Ely;|| < emax ||T,,.||' be satisfied for £ of the mr indices j;

1 max ||Tpmr|| denotes the maximum over all 1 + igpif;/m matrices T generated so far.
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if kK —icony < £ and not random then
Store £ converged eigenpairs; exit

endif;

if £ > r then
Store the eigenpairs associated with the r smallest of the £ newly
converged eigenvalues;
teonv = fecony +T; m:=m—1;
if random then go to 2

endif;

if isnite = 0 then define the interval K = [a,b] by (3.9) else by (3.10); .

9. Compute m Leja points {z; };;:t;ﬂl for K in the presence of the points {z; } 2"

by Algorithm 3.2;

10. Apply shifts {z;}; 58 4™  according to (2.8)-(2.7) and let V, := VI, where
V.t is defined by (2.7);

11. dsniy = snisg +m; go to 4; O

S

The design of Algorithm 4.1 is motivated by its performance in numerous numeri-
cal experiments. Theoretical results on the algorithm are still incomplete. Difficulties
in the analysis stem from that the interval K keeps changing during iterations. Our
selection of the interval K is based on extensive numerical experiments, some of which
are reported in Section 5. The choice of weight function (3.11) also is motivated by
numerical experiments; this weight function gave faster convergence than w(z) = 1.

Algorithm 4.1 can be enhanced. For instance, it is quite straightforward to im-
plement a change of block size during the iterations. It may be attractive to reduce
the block size when .o,y eigenpairs have been computed and k — icony < 7-

5. Numerical examples. This section presents some computed examples that
illustrate the performance of Algorithm 4.1. The algorithm was implemented in both
MATLAB and FORTRAN. In Examples 5.5 — 5.8 we tracked the equilibrium configu-
ration of the liquid crystals. Due to the large size of the matrices used in tracking the
equilibrium configuration the FORTRAN code was used; the MATLAB code was used
for all other examples. All numerical experiments were carried out on HP work sta-
tions using double precision arithmetic, i.e., with approximately 16 significant digits.
Unless stated otherwise, the parameter p in (3.9) and (3.10) is defined by (3.12). We
compare Algorithm 4.1 with subroutines in ARPACK by Lehoucq et al. [21] and with
the subroutine DNLASO of the package LASO2 by Scott [31]. ARPACK implements
the IRL method with “exact shifts” as described by Sorensen [33]. Thus, in order
to compute the k smallest eigenvalues of A, ARPACK applies, say, mr steps of the
Lanczos method to build up an orthogonal basis of a Krylov subspace of dimension
mr, and to determine a Lanczos decomposition with a symmetric tridiagonal matrix
T € R™*™" Then ARPACK applies the mr — k largest eigenvalues of T € R™"*™"
as shifts z;. Now a new Lanczos decomposition is computed, and the largest eigen-
values of a new symmetric tridiagonal matrix 7' are used as shifts, and so on. The
use of exact shifts often requires mr to be chosen substantially larger than k; see the
computed examples in [3, 6] for the case r = 1.

The subroutine DNLASO implements the Lanczos method with selective re-
orthogonalization, see [26], and allows the user to specify the amount of computer
storage available for the code to use. Typically, the more storage available, the fewer
restarts necessary and the faster convergence to the desired eigenvalues and associ-
ated eigenvectors. The subroutine allows the user to select block-size for the Lanczos
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TABLE 5.1
Ezample 5.1. IRBL method

block | consecutive | # Lanczos # matrix-vector products maximum

size r shifts m vectors mr | A A2 A3 A4 As total error
1 10 10 169 | 161 | 183 | 174 | 186 | 873 | 8.33-10°'°
2 5 10 - | 298| - | 318|300 916 | 1.78-10"1%°
3 5 15 - - | 312 - |324 | 636 | 4.44-10716
4 5 20 - - - | 396 | 320 | 716 | 3.89-10"'¢
5 4 20 - - - - | 400 | 400 | 5.55-107"'¢

| 4 ] 5 | 20 | random=false in Alg. 41 | 380 [ 2.83-10 '° |

method. If the block-size, denoted by NBLOCK, is larger than one, then DNLASO
implements a block Lanczos algorithm. The parameter MAXJ of DNLASO speci-
fies the order of the largest symmetric block-tridiagonal Lanczos matrix generated
by the algorithm before restart and MAXJ is required to be larger than or equal
to 6:-NBLOCK. The storage requirement for the block Lanczos vectors generated by
DNLASO is n-MAXJ storage locations. The total storage requirement for DNLASO
is larger than n - (MAXJ + NBLOCK), in addition to the storage needed to represent
the matrix A. DNLASO and ARPACK are more sophisticated than our experimental
code for Algorithm 4.1 and have multiple stopping criteria. This makes a comparison
between DNLASO, ARPACK and Algorithm 4.1 difficult. The subroutine DNLASO
allows the specification of a parameter NFIG, the number of desired correct decimal
digits in the computed eigenvalue approximations. In all examples, we chose NFIG
S0 as to give the same accuracy as Algorithm 4.1. ARPACK is designed to terminate
the computations when |)\; — )\g-c)| < TOL|/\§0)| for 1 < j < k, where )\gc) denotes a
computed approximation of A;. The parameter TOL is chosen by the user; a large
value of TOL led ARPACK to fail to detect some multiple eigenvalues. In all exam-
ples we chose the largest value of TOL for which ARPACK gave the same accuracy as
Algorithm 4.1 without missing any desired eigenvalues. The iterations with our code
for Algorithm 4.1 were terminated when condition (4.2) was satisfied.

In all computed examples with block size one we determined the first initial
Lanczos vector by generating an n-vector with normally distributed random numbers
N(0,1) as entries, and then normalized the vector to have unit length. In experiments
with block sizes larger than one, the first vector in the initial block is the initial vector
used in experiments with block-size one. The entries of the other vectors in the initial
block are generated analogously. The advantage of using normally distributed random
numbers instead of uniformly distributed ones has been pointed out by Ericsson and
Ruhe [11]. The initial vector used in DNLASO, ARPACK and our code is the same
for each particular example, but may differ for different examples.

Several tables have a column labeled “maximum error”. Let /\gc) denote the com-
puted approximation of A;. This column displays lrgagckp\gc) —A;j|. The column labeled
i<

“# matrix-vector products” reports the number of matrix-vector product evaluations
with the matrix A required to satisfy the stopping criterion. The evaluation of the
product of A with an n X r matrix counts as r matrix-vector products.
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TABLE 5.2
Ezample 5.1. ARPACK

# Lanczos | # matrix-vector | maximum
vectors products error

10 2868 9.99.1071°

15 946* 2.00-10714

20 786* 9.99-10° 15

25 978 1.40-1074

30 1017 1.66-10714

*

not all of the multiple eigenvalues found

TABLE 5.3
Ezample 5.1. DNLASO

block size | # Lanczos vectors | # matrix-vector | maximum
NBLOCK MAX]J products error
1 20 1439* 1.47-107°
2 20 1509 5.27-10710
3 20 1910* 7.49 10711
4 30 2069 1.61-10~1
5 30 2630 2.55 10712

*

not all of the multiple eigenvalues found

Example 5.1. Let A = diag(ai1,a22,.-.,a100,100) have entries

1-10710) if1<i <4,
Qg = N
100 if 5 <4 <100.
We wish to compute the 5 smallest eigenvalues and associated eigenvectors of A, and
used Algorithm 4.1 with € = 1-107°, block sizes 1 < r < 5 and several values of
m. Unless explicitly stated otherwise, the parameter random in Algorithm 4.1 is set
to true. The algorithm determines the eigenvalues in increasing order. Results are
displayed in Table 5.1, which shows the number of matrix-vector products required
for the computation of every set of r eigenpairs for different block sizes r, as well as
the number of matrix-vector products required for the computation of the remain-
ing 5 mod r eigenpairs associated with the largest of the k desired eigenvalues. For
instance, with block size r = 2, the computation of the first 2 eigenpairs to desired
accuracy required the evaluation of 298 matrix-vector products, and the computation
of the next 2 eigenpairs required the evaluation of 318 additional matrix-vector prod-
ucts. The determination of the 5th eigenpair required the computation of 300 further
matrix-vector products.

The last row of Table 5.1 shows the number of matrix-vector product evaluations
required by Algorithm 4.1 when r = 4 and random is set to false. These choices
of r and random are appropriate if we a priori know that there is a cluster of 4
eigenvalues that is well separated from the 5th eigenvalue. Table 5.1 shows that
r = 4 and random=false yields the fastest convergence. This depends on that the
matrix V,. used in the restart after 4 eigenpairs have been found, contains more useful
information about the 5th desired eigenpair than a random matrix. We note that
Algorithm 4.1 was able to compute all the desired eigenpairs for all choices of  and
random.
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TABLE 5.4
Ezample 5.2. IRBL method with zeros of Chebyshev polynomials as shifts

block | consecutive | # Lanczos # matrix-vector products maximum

size r shifts m vectors mr | A A2 A3 A4 As total error
1 10 10 199 | 188 | 199 | 195 | 258 | 1039 | 6.49-10"
2 5 10 - | 38| - | 550|792 | 1700 | 1.19-10"
3 5 15 - - | 432 | - | 444 | 876 | 3.44-1071'6
4 5 20 - - - | 436 | 384 | 820 | 1.55-10""°
5 4 20 - - - - | 580 | 580 | 9.43-.107'¢

| 4 ] 5 | 20 | random=false in Alg. 41 | 484 [2.22-10 "]

In ARPACK we set TOL=1-10"16 in order not to miss any of the multiple eigen-
values. Table 5.2 shows the number of matrix-vector products required by ARPACK
and the largest error in any one of the the computed eigenvalues. ARPACK failed to
detect one of the multiple eigenvalues when the number of Lanczos vectors used was
15 and 20. We remark that a locking-and-purging strategy for ARPACK, suggested
by Lehoucq and Sorensen [20], may enable this method to detect more multiple eigen-
values. However, this strategy is not implemented in the available code for ARPACK.

Table 5.3 shows the number of matrix-vector products required and the largest
error in any one of computed the eigenvalues that were computed by the subroutine
DNLASO for block sizes 1 <NBLOCK< 5, and NFIG=10. For 1 <NBLOCK< 3, we
let MAXJ=20, and for NBLOCK equal to 4 or 5, we use MAXJ=30. These values
of MAXJ satisfy MAXJ> 6-NBLOCK, as required by DNLASO. The subroutine
DNLASO failed to detect all the multiple eigenvalues for block sizes 1 and 3. In
this example Algorithm 4.1 required the least computer storage and matrix-vector
evaluations, and accurately determined all desired eigenpairs.

We emphasize that the purpose of the computed examples of this section is to
show the performance of the algorithms when only few vectors can be stored in fast
computer memory. An increase in m would reduce the matrix-vector products re-
quired to determine the desired eigenpairs. Related computed examples can be found
in [3]. O

Example 5.2. This example is identical with Example 5.1, except for the selection
of shifts. In particular, we used the same matrix A, initial matrix V,. and value of e.
Instead of Leja shifts, we used the zeros of the mth degree Chebyshev polynomials of
the first kind for the intervals K = [a, b] generated by Algorithm 4.1 as shifts. Thus,
for each interval K = [a, b], we applied the shifts

b— 25 -1 b+ .
(5.1) zj = 2acos(J2m 7r)+ 2a, 1<j<m.

This choice of shifts is quite natural, because among all monic polynomials of degree
m, the monic mth degree Chebyshev polynomial is of smallest magnitude on K.
Thus, the polynomial ¥, in (2.9) is a product of Chebyshev polynomials of degree
m for different intervals K. Table 5.4 displays the results of the computations, and
is analogous to Table 5.1. The results are typical for many numerical examples; Leja
shifts yield faster convergence than Chebyshev shifts (5.1). This depends on that the
Chebyshev shifts for a given interval only depend on the endpoints of that interval,
while Leja shifts also depend on the location of previously applied shifts. O
Example 5.3. Let A be the 900 x 900 matrix obtained by discretizing the 2-
dimensional negative Laplace operator on the unit square by the standard 5-point
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TABLE 5.5
Ezample 5.4. IRBL method: m =5, r =4

# matrix-vector products
k=1 k=2 | k=3 | k=4
900 760 620 560
680 640 580 600
600 540 540 500
540 500 480 440
460 460 480 420
440 420 400 340
400 340 340 360
11 | 340 340 360 340
12 | 340 360 340
13 | 360 340
14 | 340

= =
S OO O

stencil with Dirichlet boundary conditions. We wish to determine the eigenpairs
associated with the 6 smallest eigenvalues of A. It is well known that the largest
multiplicity of the desired eigenvalues is 2. Specifically,

)\1<)\2:)\3<)\4</\5:)\6<---;

see, e.g., [34, Section 8.4]. We choose block size r = 2 and set random to false.
Letting m = 5 yields a subspace of dimension mr = 10. For € = 1-107%, Algorithm
4.1 required the evaluation of 232 matrix-vector products with the matrix A, and gave
a maximum error over all computed eigenvalues of 5.82- 107,

When using ARPACK to compute these eigenpairs, we had to set TOL to 1-10~'0;
a larger value of TOL resulted in that ARPACK missed multiple eigenvalues. When
allowing 10 Lanczos vector, i.e., mr = 10, ARPACK required the evaluation of 1329
matrix-vector products with the matrix A, and the largest error in a computed eigen-
values was 9.37 - 10~!2. Increasing the number of Lanczos vectors to 20 reduced the
number of matrix-vector products required by ARPACK to 334 and gave a maximum
error in the computed eigenvalues of 1.88 - 10712,

An application of DNLASO with block size 2, MAXJ=20 and NFIG=10 required
the evaluation of 1094 matrix-vector products, and gave a maximum error in the
computed eigenvalues of 1.11-10710. Thus, Algorithm 4.1 required the fewest matrix-
vector product evaluations with A, and the least computer storage. O

Example 5.4. Let A = diag(all, asa,. .., aloo,loo) with entries

1-101, if1<d <4,
Qi = Y

Sy if 5 < i < 100.

We seek to compute the k smallest eigenvalues and associated eigenvectors, for 1 <
k < 4, and use Algorithm 4.1 with m = 5, 7 = 4, e = 1- 10~® and random=false.
We wish to illustrate the performance of the algorithm for different choices of the
parameter p in (3.9) and (3.10).

Table 5.5 displays the results achieved with Algorithm 4.1. The largest error in
any one of the computed eigenvalues was 4.71 - 10~ 4. We allowed the evaluation of
at most 5000 matrix-vector products with the matrix A, and the computations were
terminated when this number was exceeded before the desired k eigenpairs had been
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found. Table 5.5 illustrates the effect of the choice of p, i.e., the effect of the choice
of left endpoint of the interval K = [a,b]. If this endpoint is close to the desired
eigenvalues, then we get poor or no convergence. Faster convergence is achieved when
the left endpoint is moved away from the desired eigenvalues.

ARPACK required the evaluation of 570 matrix-vector products in order to find
the smallest eigenvalue of A with a Krylov subspace of size 20 and TOL=1-10"". The
error in the computed eigenvalue was 3.45-10~!4. The computation of the 4 smallest
eigenvalues by ARPACK required the evaluation of 889 matrix-vector products, with
a maximum error over the computed eigenvalues of 2.31 - 10714,

When we tried to compute only the 2 smallest eigenvalues of A and associated
eigenvectors with ARPACK, the scheme failed to converge. More precisely, setting
TOL=1-10"7, and allowing a Krylov subspace with at most 20 Lanczos vectors and
180020 matrix-vector products with the matrix A gave no convergence to the desired
eigenpairs. Increasing the Krylov subspace to dimension 50 and allowing the evalua-
tion of 480050 matrix-vector products still did not produce the desired eigenpairs. Our
experience was similar when we instead tried to determine the eigenpairs associated
with the 3 smallest eigenvalues.

DNLASO with NFIG=10, MAXJ=30 and NBLOCK=4 determined the 3 smallest
eigenvalues using 3487 evaluations of matrix-vector products with A, and the com-
putation of the 4 smallest eigenvalues required the evaluation of 1304 matrix-vector
product. However, DNLASO was not able to compute only the smallest or only the 2
smallest eigenvalues and associated eigenvectors before the computations were termi-
nated because 16000 matrix-vector products had been evaluated. Convergence could
be achieved by reducing NFIG, but then the computed eigenvalues were inaccurate.
O

The remaining examples of this section are concerned with liquid crystal modeling.
We used the values £1 = 555, L2 = 155 and L3 = 35 for the elastic constants,
and B = 2 and C = % for the bulk constants in (1.4); see [36] for a discussion
on the determination and relationship between these constants. We do not report
details about the computational work required; such details have been provided in the
previous examples already. Instead, we focus on how Algorithm 4.1 can be applied in
the context of liquid crystal modeling.

Example 5.5. We track the equilibrium configuration of the liquid crystals in the
two-dimensional slab

(52) QZ{(IL'l,.'Ez):OSIIJlSl,OSZ‘QSI},

which is discretized by a 41 x 41 grid. Discretization of the Euler-Lagrange equations
by finite differences on this grid, with the boundary condition determined by strong
surface anchoring (1.6) with Qo = 3vv? — I, yields a matrix Go(Q,7) of order
n = 5-392 = 7605. The initial tensors Q = Q(p), p € €, are defined by Q(p) =
3v(p)v(p)T — I, where v(p) is the unit vector directed toward the center of €.

We let the initial normalized temperature 7 of the liquid crystals be 7, = 0.375
and track the equilibrium configuration for decreasing temperature until 7, = 0.280.
Figure 5.1 displays the smallest eigenvalue of the matrix Gg(Q,7T) and the minimum
energy of the liquid crystals versus 7. For temperatures larger than 1/3 the model
presented here is not physically realistic as can be seen from the fact that the minimum
energy of the system is a decreasing function of 7 for 7 > 1/3; see Figure 5.1 (b).

Four solution paths, path (1) - path (4), are determined. We followed path (1) to
path (2). This was done with Algorithm 4.1 with input parameters r = 1, e = 1-1079,



18 J. Baglama et al.

m = 10 and £k = 1. These parameter values are used during path following in
Examples 5.7 and 5.8 as well. The initial temperature on path (1) is 7, = 0.375 and
the final temperature on path (2) is 7, = 0.280. We found a singular point (Qo, 7o)
for 7o = 0.3012 with Algorithm 1.1. A vector in the null space of Gg(Qo, 7o) is
determined by Algorithm 4.1 simultaneously. We then used Algorithm 4.1 with input
parameters r = 3, € = 1-107% m = 9 and k = 3 to compute the dimension and an
orthonormal basis of the null space of Gg(Qo, 7). For these computations, we chose
an initial matrix V3 € R™*3 with random orthonormal columns, that moreover are
orthogonal to the vector in the null space already known. Null space computations
with Algorithm 4.1 are carried out similarly in Examples 5.6-5.8. In the present
example, we found the dimension of the null space to be one. The null space is
orthogonal to G7(Qq, 7o), and therefore the singular point is a bifurcation point.

We followed the intersecting paths through the point (Q,,7,), paths (3) and (4)
in Figure 5.1, by taking a step in the tangent direction along each path. Note that
paths (3) and (4) are represented by the same curve. This is a consequence of the
symmetry of the problem.

When traversing the intersecting curves, we passed another singular point (Q1,7;)
for 77 = 0.3232; see Figure 5.1. We used Algorithm 4.1 to compute the null space of
the matrix Gg(Q1,71). The null space is of dimension one, and it is not orthogonal
to G7(Q1,7T1). Therefore the singular point is a limit point. O

Example 5.6. We track the equilibrium configuration of the liquid crystals in the
two-dimensional slab (5.2) and model weak surface anchoring of the liquid crystal
molecules with YW = 10 in (1.5). We use a symmetric finite difference discretization of
the Euler-Lagrange equations described in [2] on a 41 x41 grid and obtain a symmetric
matrix Gg(Q,7T) of order n = 5 - 412 = 8405.

Let the initial temperature and tensors be Q¢ and 7y of Example 5.5, and minimize
the free energy by using the Euler-Lagrange equations. The matrix Gg(Qo, 7o) so
obtained has three negative eigenvalues. We follow the largest negative eigenvalue of
Go(Qo,Tp) with Algorithm 1.1 as we increase 7. This is the eigenvalue of smallest
magnitude of Gg(Q,7), and this eigenvalue vanishes at the singular points (Q,7) of
this matrix. We obtain the singular point (Q2,72) for 7 = 0.3013 and a vector in the
null space of the matrix Gg(Q2,72). Algorithm 4.1 withe =1-10 % m=5k=r=4
and random=false is applied to determine the entire null space of Go(Q2,72). It is
found to be of dimension one, and is orthogonal to G7(Q2,72). Therefore, the singular
point is a bifurcation point.

Similarly as in Example 5.5, we tracked four different solution paths between
the temperatures 7, = 0.37 and 7, = 0.28. Figure 5.2 shows the largest negative
eigenvalue of the matrix Gg(Q,7) and the minimum energy of the liquid crystals
versus the temperature. The model with weak surface anchoring of the liquid crystals
displays physically reasonable behavior also for 7 > 1/3.

Figures 5.3 (a)-(f) display the orientation of the liquid crystal molecules in the
slab (5.2). Let A(p) be an eigenvalue of largest magnitude of the tensor @(p), and
let w(p) be an associated normalized eigenvector. The figures show the directors
Ap)w(p) for p € Q. The lengths of the lines in the figures are proportional to the
length of the directors. No line indicates random orientation of the molecules. Areas
with liquid crystal molecules in random directions are often referred to as the defect
of the equilibrium configuration.

Figure 5.3 (a) shows the directors at the bifurcation point for 75 = 0.3013. Figures
5.3 (b)-(f) are obtained when following path (3) as indicated in Figure 5.2 (a). The



Eigenvalue computations in liquid crystal modeling 19

defect of the equilibrium configuration splits and the two areas move towards the
corners of . The images obtained when following path (4) instead are the images for
path (3) rotated 90°. O

Example 5.7. The equilibrium configuration of the liquid crystals is tracked for
the three-dimensional slab (1.1) with a = b = ¢ = 1. We discretize the slab by finite
differences on a 21 x 21 x 21 grid. Strong surface anchoring (1.6) of the liquid crystals
is imposed, and we obtain a matrix Gg(Q,7) of order n = 5-19% = 34295. The
initial tensors are given by Q(p) = 3v(p)v(p)T — I, p € Q, where v(p) is the unit
vector directed toward the center of €2, analogously with Example 5.5.

The initial and final temperatures used were 7, = 0.1 and 7, = 0.0, respectively.
Figure 5.4 shows the smallest eigenvalue of the matrix Gg(Q,7) and the minimum
energy of the liquid crystals versus the temperature. We followed 16 solution paths,
but Figure 5.4(a) only shows five distinct paths. This is due to the symmetry of the
problem.

We first followed path (1) starting with 7, = 0.1 to path (2) ending with 7, = 0.0.
A singular point (Q3,73) was found on the path for at 73 = 0.0344; see Figure 5.4(a).
Using Algorithm 4.1, we found that the dimension of the null space of Go(Qs,73)
is three, as well as an orthonormal basis of the null space. Since the null space is
orthogonal to Gr(Q3,73), the singular point is a bifurcation point.

We followed the intersecting curves, paths (3-16) in Figure 5.4(a), by taking a
step in the tangent directions along these curves. No other singular points were found
along these curves for temperatures between 7, = 0.1 and 7 = 0.0.

Figure 5.4(b) displays the minimum energy for the different paths. The graph
shows that, starting from the bifurcation point, the minimum energy increases as we
follow the paths (1,7-16) and the temperature increases. When we follow the paths
(2-6) the minimum energy decreases as temperature decreases.

This three-dimensional problem illustrates symmetric properties of the field of
() tensors on different solution paths; see Table 5.6. The solution paths belong to
equivalence classes. For example, the paths (4,5,6) are in the same equivalence class
because these paths yield the same smallest eigenvalue graph; see Figure 5.4(a). These
paths yield the same field of @) tensors up to a relabeling of the coordinate axes. The
different equivalence classes are shown in the last column of Table 5.6. O

Example 5.8. The slab and boundary conditions for this example are the same as
for Example 5.7, but we discretize the Euler-Lagrange equations on a finer mesh; the
slab is discretized by a 41 x 41 x 41 grid and this yields a matrix Ggo(Q,7T) of order
n =5-39% = 296595. We started with the same initial temperature and tensor field
as in Example 5.7, and found a singular point (Q4,73) for 7 = 0.0356 and a vector in
the null space of Gg(Q4,7s). We applied Algorithm 4.1 to determine an orthonormal
basis of the null space of Gg(Q4,71) and its dimension. The latter is three. Since the
null space is orthogonal to G7(Q4,74), the singular point is a bifurcation point. O

6. Conclusion and extension. The paper describes a new algorithm for com-
puting multiple or very close eigenvalues of a large sparse symmetric matrix. A
comparison shows Algorithm 4.1 to be competitive with the subroutine DNLASO in
the LASO2 package and with ARPACK. In particular, Algorithm 4.1 has been used
successfully to determine the smallest eigenvalues and associated eigenvectors of large
and sparse Jacobian matrices that arise in liquid crystal modeling. The low storage
requirement of Algorithm 4.1 is essential for this application due to the large size of
the Jacobian matrices.

Algorithm 4.1 is designed for the computation of eigenpairs associated with the
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TABLE 5.6
Ezample 5.7: symmetry properties and equivalence classes for the different paths in Figure

(5-4)(a).

Symmetry of the field Equivalence
Path of the () tensors classes
T1Z2 L1X3 | T2d3
1 N4 path 1
2 Vv Vv path 2
3 Vv v Vv path 3
4 Vv paths 4,5,6
5 Vv paths 4,5,6
6 v paths 4,5,6
7 V4 paths 7 —12
8 4 paths 7 —12
9 Vv paths 7 —12
10 V4 paths 7 — 12
11 Vv paths 7 — 12
12 i paths 7 —12
13 v v v path 13
14 4 paths 14,15,16
15 v/ | paths 14,15,16
16 Vi paths 14,15,16

smallest eigenvalues of a matrix A. The algorithm can be used to compute the largest
eigenvalues of A by applying it to the matrix —A. A restarted Lanczos method for
computing a few non-extreme eigenvalues of a large sparse matrix has been described
in [3], and it would appear possible to modify the IRBL method of the present paper
so that it can be used to compute a few non-extreme eigenvalues as well.

Acknowledgment. We would like to thank Richard Lehoucq and Axel Ruhe for
comments and reference [16].
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(a) Smallest eigenvalue of the ma-
trix Go(Q,T) vs. temperature 7 .
Paths (3) and (4) are represented
by the same curve.
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(b) Minimum energy vs. temper-
ature 7. The model is unrealistic
for T >1/3.

Fic. 5.1. Example 5.5: two-dimensional slab with strong surface anchoring of the liquid crystals.
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(a) Eigenvalue of smallest magni-
tude of the matrix Gg(Q,T) vs.
temperature 7.
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(b) Minimum energy vs. tempera-
ture 7.

F1G. 5.2. Ezample 5.6: two-dimensional slab with weak surface anchoring of the liquid crystals.
The points in the graphs labeled (a)-(f) correspond to the images (a)-(f) in Fig. 5.3
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F1G. 5.3. Ezample 5.6: images of the equilibrium configurations of the liquid crystals for several

temperatures.
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F1G. 5.4. Ezample 5.7: three-dimensional ezample with strong surface anchoring of the liquid



