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Abstract. The problem of computing a few of the largest or smallest singular values and asso-
ciated singular vectors of a large matrix arises in many applications. This paper describes restarted
block Lanczos bidiagonalization methods based on augmentation of Ritz vectors or harmonic Ritz
vectors by block Krylov subspaces.
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1. Introduction. Many problems in Applied Mathematics and Engineering re-
quire the computation of a few of the largest or smallest singular values and associated
left and right singular vectors of a large matrix A ∈ R

`×n. These tasks arise, for in-
stance, when one is interested in determining a low-rank approximation of A or when
one wishes to compute the null space of A or of its transpose AT . We may assume
that ` ≥ n, because otherwise we replace A by AT . Let

σ
(A)
1 ≥ σ

(A)
2 ≥ . . . ≥ σ(A)

n ≥ 0

denote the singular values of A, and let u
(A)
j ∈ R

` and v
(A)
j ∈ R

n, 1 ≤ j ≤ n, be
associated left and right singular vectors, respectively. Hence,

Av
(A)
j = σ

(A)
j u

(A)
j , AT u

(A)
j = σ

(A)
j v

(A)
j , 1 ≤ j ≤ n,(1.1)

and

A =

n
∑

j=1

σ
(A)
j u

(A)
j (v

(A)
j )T .

The matrices U
(A)
n = [u

(A)
1 , u

(A)
2 , . . . , u

(A)
n ] and V

(A)
n = [v

(A)
1 , v

(A)
2 , . . . , v

(A)
n ] have or-

thonormal columns. We refer to {σ(A)
j , u

(A)
j , v

(A)
j } as a singular triplet of A. Singular

triplets associated with large (small) singular values are referred to as large (small)
singular triplets.

This paper presents new restarted partial block Lanczos bidiagonalization meth-
ods for the computation of a few of the largest or smallest singular triplets. The
methods determine sequences of partial block Lanczos bidiagonalizations of A associ-
ated with judiciously chosen initial blocks.

Application of m steps of block Lanczos bidiagonalization with block-size r to
the matrix A with the initial block Pr ∈ R

n×r with orthonormal columns yields the
decompositions

APmr = QmrBmr,(1.2)

AT Qmr = PmrB
T
mr + FrE

T
r ,(1.3)
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where Pmr ∈ R
n×mr, Qmr ∈ R

`×mr, P T
mrPmr = QT

mrQmr = Imr, and Imr denotes
the identity matrix of order mr. The matrix Pmr has the leading n× r submatrix Pr.
We refer to Fr ∈ R

n×r as the residual matrix. It satisfies

P T
mrFr = 0.(1.4)

The matrix

Bmr :=

























S(1) L(2) 0
S(2) L(3)

S(3)

. . .

. . . L(m)

0 S(m)

























∈ R
mr×mr(1.5)

is upper block-bidiagonal with upper triangular diagonal blocks S(j) ∈ R
r×r and

lower triangular superdiagonal blocks L(j) ∈ R
r×r. Thus, Bmr is upper triangular.

Throughout this paper, the matrix Er consists of the r last columns of an identity
matrix of appropriate order. We refer to the decompositions (1.2)-(1.3) as a partial
block Lanczos bidiagonalization of A. The number of block-bidiagonalization steps,
m, is assumed to be small enough so that the decompositions (1.2)-(1.3) with the
stated properties exist. The matrix (1.5) is assumed to be sufficiently small to allow

easy computation of its singular triplets {σ(Bmr)
j , u

(Bmr)
j , v

(Bmr)
j }mr

j=1. Note that when
the residual matrix Fr vanishes, the singular values of Bmr are singular values of A,
and the associated singular vectors of A can be determined from Pmr, Qmr, and the
singular vectors of Bmr. Moreover, when Fr is of small norm, the singular values

{σ(Bmr)
j }mr

j=1 are close to singular values of A; see Section 2 for further details.
For large matrices A, i.e., when `, and possibly also n, are large, the storage

requirement of the partial block Lanczos bidiagonalization (1.2)-(1.3) is large, unless
mr is small. However, when the number of block Lanczos steps m and the block-
size r are chosen so that mr is small, the singular values of Bmr may not furnish
sufficiently accurate approximations of the desired singular values of A. This difficulty
can be circumvented by letting mr be fairly small and computing a sequence of partial
block Lanczos bidiagonalizations (1.2)-(1.3) associated with judiciously chosen initial
blocks Pr. Methods based on this approach are known as restarted block Lanczos
bidiagonalization methods and will be discussed in the present paper.

The first restarted block Lanczos bidiagonalization method for computing a few of
the largest singular triplets of a large matrix is described by Golub et al. [6]. During
the last few years considerable progress has been made in the development of restarted
methods, based on the Lanczos and Arnoldi processes, for the computation of a few
eigenvalues and associated eigenvectors of a large sparse matrix; see, e.g., Lehoucq [12]
and Sorensen [20] for recent discussions of this type of methods. The latter methods
have spurred the development of new restarted Lanczos bidiagonalization methods
with block-size one; see, e.g., Björck et al. [5], Jia and Niu [10], Kokiopoulou et al.
[11], as well as [2].

The present paper extends the restarted Lanczos bidiagonalization methods in
[2] to block-methods. Our interest in block-methods stems from the fact that they
can detect and compute close singular values and associated singular vectors more
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reliably than the corresponding methods with block-size one. This property of block-
methods has been discussed by Parlett [18] in the context of eigenvalue computation
of large symmetric matrices. Numerical illustrations for singular value computation
are presented in Section 5.

We also remark that for some large problems, the computer time required to
evaluate products of the matrices A or AT with blocks of r vectors, while large, only
grows quite slowly with r. This situation arises, for instance, when the matrix A is
not explicitly stored and its entries are computed when required for the evaluation
of matrix-vector products with A and AT . Block-methods then are the methods
of choice. Moreover, block-size r > 1 makes it possible to describe much of the
arithmetic work in terms of sparse BLAS, which on many computers can be executed
quite efficiently; see Vudoc et al. [21] and Wijshoff [22].

This paper is organized as follows. Section 2 describes an algorithm for the
computation of the partial block Lanczos bidiagonalization (1.2)-(1.3) and introduces
notation used throughout the paper. A restarted block Lanczos bidiagonalization
method based on augmentation of Ritz vectors by a block Krylov subspace is presented
in Section 3, and Section 4 describes an analogous scheme based on augmentation of
harmonic Ritz vectors. These methods are block-generalizations of schemes discussed
in [2]. Computed examples can be found in Section 5 and concluding remarks in
Section 6.

When a good preconditioner is available for the solution of linear systems of
equations with the matrix A, methods of Jacobi-Davidson-type are attractive for the
computation of a few of the largest or smallest singular triplets; see Hochstenbach
[8, 9]. The methods of the present paper are suited for matrices for which no good
preconditioner is known.

2. Partial block Lanczos bidiagonalization. The following algorithm de-
termines the partial block Lanczos bidiagonalization (1.2)-(1.3) of A ∈ R

`×n. The
number of block Lanczos bidiagonalization steps m and the block-size r typically are
chosen so that mr � min{`, n}. The algorithm as stated requires that all the triangu-
lar r×r matrices L(j+1) and S(j+1) generated be nonsingular, however, the MATLAB
code used for the computed examples does not impose this restriction; see the discus-
sion below. The jth step of the algorithm determines sets of r new columns of the
matrices Pmr and Qmr. We refer to these sets as P (j+1) ∈ R

n×r and Q(j+1) ∈ R
`×r,

respectively. Thus,

Pmr = [P (1), P (2), . . . , P (m)], Qmr = [Q(1), Q(2), . . . , Q(m)].

Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the associated
induced matrix norm.

Algorithm 2.1. Block Lanczos Bidiagonalization

Input: matrix A ∈ R
`×n or functions for evaluating matrix-vector products with

A and AT ,
r : block-size ≥ 1,
Pr ∈ R

n×r : initial block with r orthonormal columns,
m : number of bidiagonalization steps.

Output: Pmr = [P (1), P (2), . . . , P (m)] ∈ R
n×mr : matrix with orthonormal columns,

Qmr = [Q(1), Q(2), . . . , Q(m)] ∈ R
`×mr : matrix with orthonormal columns,
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Bmr ∈ R
mr×mr : upper block-bidiagonal matrix (1.5),

Fr ∈ R
n×r : residual matrix.

1. P (1) := Pr; Wr := AP (1);
2. Compute QR-factorization: Wr =: Q(1)S(1) (S(1) is upper triangular);
3. for j = 1 : m

4. Fr := AT Q(j) − P (j)(S(j))T ;
5. Reorthogonalization: Fr := Fr − Pjr(P

T
jrFr);

6. if j < m then
7. Compute QR-factorization: Fr =: P (j+1)R(j+1); L(j+1) := (R(j+1))T ;
8. Wr := AP (j+1) − Q(j)L(j+1);
9. Reorthogonalization: Wr := Wr − Qjr(Q

T
jrWr);

10. Compute QR-factorization: Wr =: Q(j+1)S(j+1);
11. endif

12. endfor

The algorithm is formulated for matrices A with real-valued entries; however, the
MATLAB code used for the numerical examples reported in Section 5 can be applied
to matrices with complex-valued entries as well. In the latter case, transposition is
followed by complex conjugation.

When the computations with Algorithm 2.1 are carried out in finite precision
arithmetic and the matrices Fr and Wr are not reorthogonalized against the columns
of the available matrices Pjr = [P (1), P (2), . . . , P (j)] and Qjr = [Q(1), Q(2), . . . , Q(j)],
respectively, the computed columns of Pmr and Qmr might be far from orthogonal.
We therefore reorthogonalize in lines 5 and 9 of the algorithm.

Several reorthogonalization strategies for the columns of the matrices Pmr and
Qmr are discussed in the literature for the case when the block-size r is one; see
[2] for a recent review and references. Here we only note that Simon and Zha [19]
observed that when the matrix A is not very ill-conditioned, only the columns of one
of the matrices Pmr or Qmr need to be reorthogonalized. Reorthogonalization of the
columns of Pmr only can reduce the computational effort required to compute the
decompositions (1.2)-(1.3) considerably when ` � n. Algorithm 2.1 easily can be
modified to reorthogonalize only the columns of Pmr. Our MATLAB code allows a
user to choose between reorthogonalization of the columns of both Pmr and Qmr, and
reorthogonalization of the columns of Pmr only.

The QR-factorizations in Algorithm 2.1 and elsewhere in our MATLAB code are
computed by the MATLAB function qr with column pivoting. For instance, in step
2 of the algorithm, the function qr yields the factorization Wr = Q(1)S(1), where
Q(1) ∈ R

`×r has orthonormal columns and S(1) ∈ R
r×r is upper triangular up to

a column permutation. Such a factorization is computed also when the columns of
Wr are linearly dependent or nearly so. For simplicity, we will refer to the matrices
S(j+1) and L(j+1), j = 0, 1, . . . , m − 1, determined by Algorithm 2.1 as upper and
lower triangular, respectively, even if, due to possible column permutation, they might
not be. Thus, Algorithm 2.1 computes the desired output even for problems that give
rise to matrices Wr of less than full rank.

Let S(1) = [sjk ]rj,k=1 be the triangular matrix obtained by QR-factorization of

Wr with column pivoting, and assume for notational simplicity that S(1) really is
upper triangular. Then the diagonal entries satisfy |s11| ≥ |s22| ≥ . . . ≥ |srr|, and
they can, for small block-sizes r, be used to compute fairly accurate bounds for the
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condition number κ(Wr) of Wr. Here κ(Wr) := ‖Wr‖ ‖W †
r ‖, where W †

r denotes the
Moore-Penrose pseudoinverse of Wr. It follows from Björck [4, Section 2.7.3] that

|s11|
|srr|

≤ κ(Wr) ≤ 2r−1
√

r
|s11|
|srr|

.(2.1)

We repeat steps 9 and 10 of Algorithm 2.1 when the left-hand side of (2.1) is large
in order to secure that the columns of Q(j+1), that may have been introduced by the
MATLAB function qr and are not in the range of Wr, are numerically orthogonal to
the range of Qjr. We remark that the occurrence of a large left-hand side in (2.1) is
rare.

It follows from Algorithm 2.1 that L(m+1), the last superdiagonal block of the
upper block-bidiagonal matrix B(m+1)r ∈ R

(m+1)r×(m+1)r, which is obtained by m+1
block Lanczos bidiagonalization steps, can be computed by QR-factorization of the
residual matrix Fr determined by the algorithm in step m, i.e.,

Fr =: P (m+1)R(m+1), L(m+1) := (R(m+1))T ,(2.2)

where P (m+1) ∈ R
n×r has orthonormal columns and R(m+1) ∈ R

r×r is upper triangu-
lar. Thus, the matrix P (m+1), which makes up the last r columns of P(m+1)r, can be
computed when the decompositions (1.2)-(1.3) are available. The relation (1.3) can
be expressed as

AT Qmr = P(m+1)rB
T
mr,(m+1)r,(2.3)

where the matrix Bmr,(m+1)r ∈ R
mr×(m+1)r is obtained by appending the columns

ErL
(m+1) to Bmr. Note that Bmr,(m+1)r is the leading mr×(m+1)r submatrix of the

matrix B(m+1)r, which is obtained after m+1 steps of block Lanczos bidiagonalization.
We remark that a right singular vector of A associated with a zero singular value

can be expressed as a linear combination of the columns of Pmr, e.g., by using the
singular value decomposition of Bmr. However, the corresponding left singular vector
of A is not readily available.

We will use the connection between partial block Lanczos bidiagonalization (1.2)-
(1.3) of A and partial block Lanczos tridiagonalization of the matrix AT A. Multiplying
equation (1.2) by AT from the left-hand side yields

AT APmr = PmrB
T
mrBmr + FrE

T
r Bmr.(2.4)

The matrix

Tmr := BT
mrBmr ∈ R

mr×mr(2.5)

is symmetric and block-tridiagonal with block-size r, and the expression (2.4) is a
partial block Lanczos tridiagonalization of AT A with initial block-vector Pr; see, e.g.,
[7, Section 9.2.6] for a discussion on block Lanczos tridiagonalization. Since Tmr is
block-tridiagonal, equation (2.4) shows that the block-columns P (j) of Pmr satisfy
a three-term recurrence relation. Moreover, the block-columns P (1), P (2), . . . , P (m)

form an orthonormal basis of the block Krylov subspace

Km(AT A, Pr) = span{Pr, A
T APr , (A

T A)2Pr, . . . , (A
T A)m−1Pr}.(2.6)

Similarly, multiplying (1.3) by A from the left-hand side yields

AAT Qmr = QmrBmrB
T
mr + AFrE

T
r .(2.7)
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The columns of Qmr form an orthonormal basis of the block Krylov subspace

Km(AAT , Qr) = span{Qr, AAT Qr, (AAT )2Qr, . . . , (AAT )m−1Qr}(2.8)

with Qr := APr. We remark that since the columns of Qmr generally are not orthogo-
nal to AFr, the decomposition (2.7) typically is not a block Lanczos tridiagonalization
of AAT .

Let {σ(Bmr)
j , u

(Bmr)
j , v

(Bmr)
j }mr

j=1 denote the singular triplets of Bmr enumerated
so that

σ
(Bmr)
1 ≥ σ

(Bmr)
2 ≥ . . . ≥ σ(Bmr)

mr ≥ 0.(2.9)

Then, analogously to (1.1),

Bmrv
(Bmr)
j = σ

(Bmr)
j u

(Bmr)
j , BT

mru
(Bmr)
j = σ

(Bmr)
j v

(Bmr)
j , 1 ≤ j ≤ mr,(2.10)

and the mr × mr matrices of left and right singular vectors

U (Bmr)
mr := [u

(Bmr)
1 , u

(Bmr)
2 , . . . , u(Bmr)

mr ], V (Bmr)
mr := [v

(Bmr)
1 , v

(Bmr)
2 , . . . , v(Bmr)

mr ],

are orthogonal.

We determine approximate singular triplets {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }mr

j=1 of A from the
singular triplets of Bmr by

σ̃
(A)
j := σ

(Bmr)
j , ũ

(A)
j := Qmru

(Bmr)
j , ṽ

(A)
j := Pmrv

(Bmr)
j .(2.11)

Combining (2.10) and (2.11) with (1.2)-(1.3) shows that

Aṽ
(A)
j = σ̃

(A)
j ũ

(A)
j , AT ũ

(A)
j = σ̃

(A)
j ṽ

(A)
j + FrE

T
r u

(Bmr)
j , 1 ≤ j ≤ mr.(2.12)

It follows from the orthonormality of the columns of the matrices Pmr and U
(Bmr)
mr that

the approximate left singular vectors ũ
(A)
1 , ũ

(A)
2 , . . . , ũ

(A)
mr are orthonormal. Similarly,

the approximate right singular vectors ṽ
(A)
1 , ṽ

(A)
2 , . . . , ṽ

(A)
mr are also orthonormal.

The relations (2.12) suggest that an approximate singular triplet {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }

be accepted as a singular triplet of A if FrE
T
r u

(Bmr)
j is sufficiently small. Specifically,

our numerical method accepts {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j } as a singular triplet of A if

‖R(m+1)‖ ‖ET
r u

(Bmr)
j ‖ ≤ δ‖A‖(2.13)

for a user-specified value of δ, where we have used (2.2). The quantity ‖A‖ in (2.13)

is easily approximated by the largest singular value σ
(Bmr)
1 of the block-bidiagonal

matrix Bmr. The computation of σ
(Bmr)
1 is inexpensive because the matrix Bmr is not

large. During the computations of the desired singular triplets of A, typically, several
matrices Bmr and their singular value decompositions are computed. We approximate
‖A‖ by the largest of the singular values of all the matrices Bmr generated. This
generally gives a good estimate of ‖A‖.
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3. Restarting by augmentation of Ritz vectors. Wu and Simon [23] re-
cently discussed the computation of a few extreme eigenvalues of a large symmetric
matrix by a restarted Lanczos tridiagonalization method, and proposed an implemen-
tation based on the augmentation of Ritz vectors by a Krylov subspace. A restarted
Lanczos bidiagonalization method based on this approach is described in [2]. The
present section generalizes the latter scheme to allow block-size r larger than one.

Let the partial block Lanczos bidiagonalization (1.2)-(1.3) be available, and as-
sume that we are interested in determining the k largest singular triplets of A, where

k < mr. Consider the approximate right singular vectors ṽ
(A)
j , 1 ≤ j ≤ mr, deter-

mined by (2.11). It follows from (2.2), (2.4), (2.10), and (2.11), that

AT Aṽ
(A)
j − (σ̃

(A)
j )2ṽ

(A)
j = σ̃

(A)
j P (m+1)R(m+1)ET

r u
(Bmr)
j , 1 ≤ j ≤ mr,(3.1)

which shows that the residual errors for all vectors ṽ
(A)
j , 1 ≤ j ≤ mr, live in

R(P (m+1)), the range of P (m+1). Moreover, since the vectors ṽ
(A)
j are orthogonal

to R(P (m+1)), they are Ritz vectors of AT A. Specifically, ṽ
(A)
j is a Ritz vector asso-

ciated with the Ritz value (σ̃
(A)
j )2. If σ̃

(A)
j = 0, then ṽ

(A)
j is an (exact) eigenvector of

AT A.
We now derive modifications of the decompositions (1.2)-(1.3), in which the k

first columns of an analog of the matrix Pmr are the Ritz vectors ṽ
(A)
1 , ṽ

(A)
2 , . . . , ṽ

(A)
k

associated with the k largest Ritz values. We recall that these Ritz vectors are also
approximate right singular vectors of A. Their accuracy, as well as the accuracy of
available approximate left singular vectors, is improved by augmenting the modified
decompositions by block Krylov subspaces, and then restarting the computations.

Let the Ritz vectors ṽ
(A)
j , 1 ≤ j ≤ k, be available and introduce the matrix

P̃k+r := [ṽ
(A)
1 , ṽ

(A)
2 , . . . , ṽ

(A)
k , P (m+1)] ∈ R

n×(k+r).(3.2)

It follows from (2.11) that

AP̃k+r = [σ̃
(A)
1 ũ

(A)
1 , σ̃

(A)
2 ũ

(A)
2 , . . . , σ̃

(A)
k ũ

(A)
k , AP (m+1)].(3.3)

Orthogonalization of AP (m+1) against the vectors ũ
(A)
j , 1 ≤ j ≤ k, yields

AP (m+1) =

k
∑

j=1

ũ
(A)
j r̃T

j + W (m+1),(3.4)

where r̃T
j := (ũ

(A)
j )T AP (m+1), 1 ≤ j ≤ k, and the columns of the remainder matrix

W (m+1) ∈ R
`×r are orthogonal to the vectors ũ

(A)
j , 1 ≤ j ≤ k. The vectors r̃j can be

evaluated inexpensively by using the right-hand side of

r̃j = (P (m+1))T AT ũ
(A)
j = (P (m+1))T (σ̃

(A)
j ṽ

(A)
j + FrE

T
r u

(Bmr)
j ) = R(m+1)ET

r u
(Bmr)
j .

Introduce the QR-factorization

W (m+1) =: Q(m+1)S(m+1),

where Q(m+1) ∈ R
`×r has orthonormal columns and S(m+1) ∈ R

r×r is upper trian-
gular. We remark that similarly as in Section 2, column pivoting is applied when
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evaluating the QR-factorization. Therefore S(m+1) is upper triangular up to column
pivoting, only. This comment applies to all “triangular” factors of QR-factorizations
computed throughout this paper.

Define the matrices

Q̃k+r := [ũ
(A)
1 , ũ

(A)
2 , . . . , ũ

(A)
k , Q(m+1)] ∈ R

`×(k+r)(3.5)

and

B̃k+r :=













σ̃
(A)
1 0 r̃T

1

. . .
...

σ̃
(A)
k r̃T

k

0 S(m+1)













∈ R
(k+r)×(k+r).(3.6)

The matrix Q̃k+r has orthonormal columns and B̃k+r may have nonvanishing entries
only on the diagonal and in the last r columns. Substituting (3.4) into (3.3) yields
the decomposition

AP̃k+r = Q̃k+rB̃k+r,(3.7)

which is our desired analog of (1.2).
We turn to the matrix

AT Q̃k+r = [AT ũ
(A)
1 , AT ũ

(A)
2 , . . . , AT ũ

(A)
k , AT Q(m+1)],(3.8)

which we would like to express in terms of P̃k+r and B̃T
k+r . This will give an analogue

of the decomposition (1.3). The first k columns of (3.8) are linear combinations of

the vectors ṽ
(A)
j and the columns of P (m+1); specifically, we have for 1 ≤ j ≤ k,

AT ũ
(A)
j = σ̃

(A)
j ṽ

(A)
j + P (m+1)R(m+1)ET

r u
(Bmr)
j = σ̃

(A)
j ṽ

(A)
j + P (m+1)r̃j .(3.9)

The last r columns of (3.8) are orthogonal to the Ritz vectors ṽ
(A)
j ,

(ṽ
(A)
j )T AT Q(m+1) = σ̃

(A)
j (ũ

(A)
j )T Q(m+1) = 0, 1 ≤ j ≤ k.

Therefore they can be expressed as

AT Q(m+1) = P (m+1)Z(m+1) + F̃r, Z(m+1) ∈ R
r×r,(3.10)

where the columns of F̃r ∈ R
n×r are orthogonal to the vectors ṽ

(A)
j , 1 ≤ j ≤ k, and

to R(P (m+1)). Since

(Q(m+1))T AP (m+1) = (Q(m+1))T (

k
∑

j=1

ũ
(A)
j r̃T

j + W (m+1)) = S(m+1),

it follows from (3.10) that Z(m+1) = (S(m+1))T . This observation, together with (3.9)
and (3.10), shows that

AT Q̃k+r = P̃k+rB̃
T
k+r + F̃rE

T
r ,(3.11)
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which is the desired analogue of the decomposition (1.3). We remark that F̃r can be
computed from (3.10).

If the matrix F̃r in (3.11) vanishes, then the singular values of B̃k+r are singular
values of A, and we are done. When F̃r 6= 0, new block-columns P (m+j) ∈ R

n×r and
Q(m+j) ∈ R

`×r, j = 2, 3, . . . , `, are computed and appended to the matrices P̃k+r and
Q̃k+r, respectively, as follows. Evaluate the QR-factorization

F̃r =: P (m+2)R(m+2),(3.12)

where P (m+2) ∈ R
n×r has orthonormal columns and R(m+2) ∈ R

r×r is upper trian-
gular. Let L(m+2) := (R(m+2))T . Note that the matrix P̃k+2r := [P̃k+r , P

(m+2)] ∈
R

n×(k+2r) has orthonormal columns. Determine the QR-factorization

Q(m+2)S(m+2) := (I − Q̃k+rQ̃
T
k+r)AP (m+2),(3.13)

where Q(m+2) ∈ R
`×r has orthonormal columns and S(m+2) ∈ R

r×r is upper triangu-
lar. Substituting the transpose of equation (3.11) into the right-hand side of (3.13),
and using (3.12), shows that

Q(m+2)S(m+2) = AP (m+2) − Q(m+1)L(m+2).(3.14)

Let Q̃k+2r := [Q̃k+r, Q
(m+2)] ∈ R

`×(k+2r) and define the matrix B̃k+2r by first ap-
pending the column ErL

(m+2) and then the row [0, . . . , 0, S(m+2)] ∈ R
r×(k+2r) to

B̃k+r, i.e.,

B̃k+2r :=

















σ̃
(A)
1 0 r̃T

1

. . .
... 0

σ̃
(A)
k r̃T

k

S(m+1) L(m+2)

0 S(m+2)

















∈ R
(k+2r)×(k+2r).

It now follows from (3.7) and (3.14) that

AP̃k+2r = Q̃k+2rB̃k+2r .(3.15)

We proceed by evaluating the QR-factorization

P (m+3)R(m+3) := (I − P̃k+2rP̃
T
k+2r)A

T Q(m+2),(3.16)

where P (m+3) ∈ R
n×r has orthonormal columns and R(m+3) ∈ R

r×r is upper trian-
gular. Let L(m+3) := (R(m+3))T . Substituting (3.15) into (3.16) gives

P (m+3)R(m+3) = AT Q(m+2) − P (m+2)(S(m+2))T ,

which shows that

AT Q̃k+2r = P̃k+2rB̃
T
k+2r + P (m+3)R(m+3)ET

r .(3.17)

The decompositions (3.15) and (3.17) are analogous to (3.7) and (3.11). We continue
in this manner to append new block-columns to the matrices P̃k+jr and Q̃k+jr , as
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well as rows and columns to the matrices B̃k+jr , for j = 2, 3, . . . , i − 1, to obtain the
decompositions

AP̃k+ir = Q̃k+irB̃k+ir , AT Q̃k+ir = P̃k+irB̃
T
k+ir + P (m+i+1)R(m+i+1)ET

r ,(3.18)

where the matrices P̃k+ir and Q̃k+ir have orthonormal columns and

B̃k+ir =





























σ̃
(A)
1 0 r̃T

1

. . .
... 0

σ̃
(A)
k r̃T

k

S(m+1) L(m+2)

S(m+2) . . .

0 . . . L(m+i)

S(m+i)





























∈ R
(k+ir)×(k+ir).

Typically, the number of steps i is chosen so that the matrices in the decompositions
(3.18) require about the same amount of computer storage as the matrices in the
decompositions (1.2) and (1.3), i.e., i ≈ m − k/r.

Having determined the decompositions (3.18), the method proceeds by computing
the singular value decomposition of B̃k+ir . The k largest singular triplets of B̃k+ir give
us approximations of the k largest singular triplets of A by using formulas analogous
to (2.11). These k largest approximate triplets determine new decompositions of the
form (3.7) and (3.11), from which we compute new decompositions of the form (3.18).
The computations continue in this manner until sufficiently accurate approximations
of the k largest singular triplets of A have been found. An algorithm that describes
these computations for block-size r = 1 can be found in [2, Subsection 3.3].

This section has discussed how to determine approximations of the k largest sin-
gular triplets of A. The computations of approximations of the k smallest singular

triplets of A can be carried out analogously. The vectors ṽ
(A)
j , 1 ≤ j ≤ k, in (3.2) then

should be right approximate singular vectors of the k smallest available approximate
singular triplets of A (instead of the largest ones). We note, however, that when the
k smallest singular triplets of A are desired, it may be advantageous to augment har-
monic Ritz vectors instead of Ritz vectors by block Krylov subspaces. This approach
is described in the following section.

4. Restarting by augmentation of harmonic Ritz vectors. Numerical ex-
amples reported in [2] for block-size r = 1 show that augmentation of harmonic Ritz
vectors may yield faster convergence towards the smallest singular triplets than aug-
mentation of Ritz vectors. Kokiopoulou et al. [11] report analogous behavior of
restarted Lanczos bidiagonalization methods that apply implicit shifts. This section
generalizes the method in [2] for augmentation of harmonic Ritz vectors to block-size
r larger than one.

Let the partial Lanczos bidiagonalization (1.2)-(1.3) of A be available and assume

that the matrix Bmr is nonsingular. The harmonic Ritz values θ̂j of AT A associated
with the partial block Lanczos tridiagonalization (2.4) are the eigenvalues of the gen-
eralized eigenvalue problem

((BT
mrBmr)

2 + Er(S
(m))T L(m+1)(L(m+1))T S(m)ET

r )ŵj = θ̂jB
T
mrBmrŵj ,(4.1)
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with ŵj ∈ R
mr\{0} for 1 ≤ j ≤ mr; see, e.g., Morgan [14, 15], Paige et al. [17], and

[1] for properties of harmonic Ritz values.

The eigenpairs {θ̂j , ŵj} of (4.1) can be determined from the singular value decom-
position of the matrix Bmr,(m+1)r introduced in (2.3) as follows. Let {σ′

j , u
′
j , v

′
j}mr

j=1

denote the singular triplets of Bmr,(m+1)r. We enumerate the triplets so that

0 < σ′
1 ≤ σ′

2 ≤ . . . ≤ σ′
mr,(4.2)

because in the present section, we are concerned with the computation of the k <
mr smallest singular triplets of A. The k smallest singular triplets of Bmr,(m+1)r

determine the matrices

U ′
k := [u′

1, u
′
2, . . . , u

′
k] ∈ R

mr×k,

V ′
k := [v′1, v

′
2, . . . , v

′
k] ∈ R

(m+1)r×k,(4.3)

Σ′
k := diag[σ′

1, σ
′
2, . . . , σ

′
k] ∈ R

k×k,

where U ′
k and V ′

k have orthonormal columns and

Bmr,(m+1)rV
′
k = U ′

kΣ′
k, BT

mr,(m+1)rU
′
k = V ′

kΣ′
k.(4.4)

We refer to (4.4) as a partial singular value decomposition of Bmr,(m+1)r. It now

follows from ET
r Bmr = S(m)ET

r and

Bmr,(m+1)rB
T
mr,(m+1)r = BmrB

T
mr + ErL

(m+1)(L(m+1))T ET
r(4.5)

that θ̂j := (σ′
j)

2 is an eigenvalue and ŵj = B−1
mru

′
j an accompanying eigenvector of

(4.1). Thus, θ̂1, θ̂2, . . . , θ̂k determined in this manner are the k smallest harmonic Ritz

values of AT A. The harmonic Ritz vector of AT A associated with θ̂j is defined by

v̂j := Pmrŵj ,(4.6)

see, e.g., [1, 14, 15, 17].
Similarly to (3.1), we have

AT Av̂j − θ̂j v̂j = P̄ (m+1)(L(m+1))T ET
r u′

j , 1 ≤ j ≤ k,

where

P̄ (m+1) := P (m+1) − PmrB
−1
mrErL

(m+1),(4.7)

i.e., the residual errors for all harmonic Ritz pairs {θ̂j , v̂j} live in R(P̄ (m+1)).
We turn to the derivation of relations analogous to (3.7) and (3.11). Equations

(4.6) and (4.7) yield

[v̂1σ
′
1, v̂2σ

′
2, . . . , v̂kσ′

k , P̄ (m+1)] = P(m+1)r

[

B−1
mrU

′
kΣ′

k −B−1
mrErL

(m+1)

0 Ir

]

,

where the matrix P(m+1)r is the same as in (2.3). Introduce the QR-factorization

[

B−1
mrU

′
kΣ′

k −B−1
mrErL

(m+1)

0 Ir

]

=: Q′
k+rR

′
k+r,(4.8)
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where Q′
k+r ∈ R

(m+1)r×(k+r) has orthonormal columns and R′
k+r ∈ R

(k+r)×(k+r) is
upper triangular. The matrix

P̂k+r := P(m+1)rQ
′
k+r(4.9)

has orthonormal columns. Application of equations (1.2) and (4.8) shows that

AP̂k+r = [APmr, AP (m+1)]Q′
k+r

= [QmrBmr, AP (m+1)]

[

B−1
mrU

′
kΣ′

k −B−1
mrErL

(m+1)

0 Ir

]

(R′
k+r)

−1

= [QmrU
′
kΣ′

k, AP (m+1) − Q(m)L(m+1)](R′
k+r)

−1.

Consider the matrix

Q̂k := QmrU
′
k.(4.10)

It has orthonormal columns and we compute the Fourier coefficients

Ĉ(m+1) := Q̂T
k (AP (m+1) − Q(m)L(m+1)) ∈ R

k×r,

as well as the QR-factorization

Q̂(m+1)Ŝ(m+1) := AP (m+1) − Q(m)L(m+1) − Q̂kĈ(m+1),

where Q̂(m+1) ∈ R
`×r has orthonormal columns and Ŝ(m+1) ∈ R

r×r is upper triangu-
lar. Define the matrix

Q̂k+r := [Q̂k, Q̂(m+1)] ∈ R
`×(k+r).(4.11)

Note that Q̂k+r has orthonormal columns. The matrix

B̂k+r :=

















σ′
1 0

σ′
2 Ĉ(m+1)

. . .

σ′
k

0 Ŝ(m+1)

















(R′
k+r)

−1 ∈ R
(k+r)×(k+r).(4.12)

is the product of two upper triangular matrices, one of which has nonzero entries only
on the diagonal and in the last r columns. In particular, B̂k+r is upper triangular.
We have

AP̂k+r = Q̂k+rB̂k+r,(4.13)

which is the wanted analogue of (3.7).
We now derive an analogue of the decomposition (3.11). Let Q̂k be given by

(4.10). Equations (2.3) and (4.4) yield

AT Q̂k = AT QmrU
′
k = P(m+1)rB

T
mr,(m+1)rU

′
k = P(m+1)rV

′
kΣ′

k.(4.14)

It follows from the left-hand side decomposition of (4.4) that

[Imr , B
−1
mrErL

(m+1)]V ′
k = B−1

mrU
′
kΣ′

k,
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and, hence,

V ′
k =

[

B−1
mrU

′
kΣ′

k −B−1
mrErL

(m+1)

0 Ir

] [

Ik

ET
r V ′

k

]

.(4.15)

Substituting (4.15) into (4.14), using (4.8) and (4.9), gives

AT Q̂k = P(m+1)rQ
′
k+rR

′
k+r

[

Ik

ET
r V ′

k

]

Σ′
k = P̂k+rR

′
k+r

[

Ik

ET
r V ′

k

]

Σ′
k.(4.16)

Let B̂k,k+r denote the leading k × (k + r) submatrix of the upper triangular matrix

B̂k+r in (4.13). Then we obtain from (4.13) that

Q̂T
k AP̂k+r = B̂k,k+r .(4.17)

It follows from (4.16) that

P̂ T
k+rA

T Q̂k = R′
k+r

[

Ik

ET
r V ′

k

]

Σ′
k,

and a comparison with (4.17) shows that

R′
k+r

[

Ik

ET
r V ′

k

]

Σ′
k = B̂T

k,k+r .

Thus, equation (4.16) can be expressed as

AT Q̂k = P̂k+rB̂
T
k,k+r .(4.18)

We turn to the last r columns, AT Q̂(m+1), of AT Q̂k+r. Equation (4.13) yields

P̂ T
k+rA

T Q̂(m+1) = B̂T
k+rQ̂

T
k+rQ̂

(m+1) = B̂T
k+rEr

and, therefore,

AT Q̂(m+1) = P̂k+rB̂
T
k+rEr + F̂r,(4.19)

where F̂r ∈ R
n×r and P̂ T

k+rF̂r = 0. Combining (4.18) and (4.19) yields

AT Q̂k+r = P̂k+rB̂
T
k+r + F̂rE

T
r ,(4.20)

which is the desired analogue of (3.11). Note that the residual matrix F̂r can be
computed from equation (4.19), since the other terms are explicitly known.

Given the decompositions (4.13) and (4.20), we can proceed similarly as in Section
3 to compute the decompositions

AP̂k+ir = Q̂k+irB̂k+ir , AT Q̂k+ir = P̂k+irB̂
T
k+ir + F̆rE

T
r ,(4.21)

which are analogous to (3.18). In particular, P̂k+ir ∈ R
n×(k+ir) and Q̂k+ir ∈ R

`×(k+ir)

have orthonormal columns with leading submatrices P̂k+r and Q̂k+r, respectively.
The matrix B̂k+ir ∈ R

(k+ir)×(k+ir) is upper block-bidiagonal with leading principal
submatrix B̂k+r.
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Having determined the decompositions (4.21), we proceed by computing the sin-
gular value decomposition of B̂k+ir . The k smallest singular triplets of B̂k+ir give us
approximations of the k smallest singular triplets of A, cf. (2.11), as well as k new
harmonic Ritz vectors (4.6). We continue by augmenting the latter vectors by a block
Krylov subspace as described in this section. An algorithm for block-size r = 1 is
presented in [2, Subsection 3.3].

We remark that the accurate computation of the matrix B−1
mrEr, used in (4.8),

can be difficult when the matrix Bmr has a large condition number κ(Bmr) :=

σ
(Bmr)
mr /σ

(Bmr)
1 . In this case, we switch from augmentation of harmonic Ritz vectors

to augmentation of Ritz vectors; see [2, Section 3.3] for details.

5. Numerical examples. We compare the MATLAB function irlbablk, which
implements the block Lanczos bidiagonalization method of the present paper, to the
MATLAB function irlba, which implements the Lanczos bidiagonalization method
(with block-size 1) described in [2]. The functions irlbablk with block-size r = 1
and irlba yield identical results. MATLAB codes for both functions are available
from Netlib1, where also a primer for their use, a demo with a graphic user interface,
as well as code for reproducing the computed examples of this section can be found.
All codes have been tested with MATLAB versions 6.5-7.2.

The following examples illustrate that it may be beneficial to use a block-method
for certain problems. The execution of irlbablk is determined by certain user-
specified parameters; see Table 5.1. The parameters for irlba can be found in [2,
Section 4], where also a comparison of irlba with other recently proposed methods
is presented.

Both irlbablk and irlba implement the following reorthogonalization strategies;
cf. the discussion on reorthogonalization in Section 2. The codes apply one-sided
reorthogonalization when the matrix A is fairly well conditioned (as in Examples 1, 2,
and 4) and two-sided reorthogonalization when A is ill-conditioned (as in Example 3).
For the examples of this section, one- and two-sided reorthogonalization yield about
the same accuracy. We therefore do not report results for both reorthogonalization
strategies; a comparison of these strategies for irlba can be found in [2].

In the computed examples, we determine the initial block Pr by orthonormalizing
the columns of an n × r matrix with normally distributed random entries. When
comparing the performance for different block-sizes, we generate the matrix Ps, with
s being the largest block-size in the experiment, and let in the computations with
block-size r ≤ s, Pr consist of the first r columns of Ps. In particular, the initial
vector for irlba is the first column of Ps.

All computations were carried out in MATLAB version 6.5 R13 on a Dell 530
workstation with two 2.4 GHz (512k cache) Xeon processors and 2 GB (400 MHz) of
memory running the Windows XP operating system. Machine epsilon is ε ≈ 2.2·10−16.

Example 1. We consider the computation of the k = 2 smallest singular triplets
of the diagonal matrix

A = diag[1, 1 +
1

2004
, 3, 4, . . . , 200] ∈ R

200×200(5.1)

and report the performance of irlbablk and irlba. Restarting is carried out by
augmentation of Ritz vectors. We use block-size r = 2 for irlbablk.

1http://www.netlib.org/numeralgo/na26
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Table 5.1

Parameters for irlbablk.

adjust Initial number of vectors added to the k restart vectors to speed up
convergence. Default value: adjust = 3.

aug A 4-letter string. The value ’RITZ’ yields the augmentation described
in section 3; the value ’HARM’ gives augmentation according to section
4. Default value: aug =’HARM’ if sigma =’SS’, and aug =’RITZ’ if
sigma =’LS’.

blsz Block-size of block Lanczos bidiagonal matrix. The parameter specifies
the value of r in (1.2)-(1.3). Default value: blsz = 3.

disps When disps > 0, available approximations of the k desired singular
values and norms of associated residual errors are displayed each it-
eration; disps = 0 inhibits display of these quantities. Default value:
disps = 0.

k Number of desired singular triples. Default value: k = 6.
maxit Maximum number of restarts. Default value: maxit = 1000.
m Maximum number of consecutive block Lanczos bidiagonalization steps

in the beginning of the computations. This parameter specifies the
largest value of m in (1.2)-(1.3) and determines the storage requirement
of the method. The code may increase the value of m during execution
to speed up convergence, in which case a warning message is displayed.
Default value: m = 10.

reorth A 3-letter string. The value ’ONE’ yields one-sided full reorthogo-
nalization of the “shorter” vectors; the value ’TWO’ gives two-sided
full reorthogonalization. When our available estimate of κ(A), see the
discussion following (2.13), is larger than ε−1/2, two-sided full reorthog-
onalization is used. Default value: reorth =’ONE’.

sigma A 2-letter string (’SS’ for smallest and ’LS’ for largest) which specifies
which extreme singular triplets are to be computed. Default value:
sigma =’LS’.

tol Tolerance used for convergence check, same as δ in (2.13). Default
value: tol = 10−6.

Pr Initial matrix of r columns for the block Lanczos bidiagonalization.
When ` ≥ n, P (1) := Pr ; cf. Algorithm 2.1. Default value: Pr is an
n × r matrix with orthonormal columns obtained by QR-factorization
of an n × r matrix with normally distributed random entries.

The function irlbablk carries out m block Lanczos steps before restart. We let
m = 10 or m = 20, and let i = m − 1 in (3.18). The main storage requirement is
for the matrices Pmr and Qmr generated before the first restart, as well as for the
matrices P̃k+ir and Q̃k+ir in (3.18) obtained after restarting. The latter matrices
over-write Pmr and Qmr. Thus, the storage requirement for the matrices Pmr, Qmr,
P̃k+ir , and Q̃k+ir is 4m n-vectors.

The function irlba is called with m = 20 and the storage requirement for the
corresponding matrices is 2m n-vectors. Thus, irlbablk with m = 10 requires about
the same amount of storage as irlba with m = 20.

The top graphs of Figure 5.1 show the performance of irlbablk with m = 10
(solid graphs) and irlba with m = 20 (dotted graphs). The solid graph labeled
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Fig. 5.1. Example 1: Approximations of the 2 smallest singular triplets of the matrix (5.1).
For the top graphs both irlbablk (with block-size r = 2) and irlba use about the same amount
of storage. For the bottom graphs the storage for irlbablk is doubled. This increases the rate of
convergence. irlba has difficulties determining the second smallest singular value.

Ritz(1) ≈ 1 displays the norm of the residual error for the smallest Ritz value,
cf. (2.13). This Ritz value approximates the singular value 1. The graph labeled
Ritz(2) ≈ 1 + 1/2004 displays the norm of the residual error for the second smallest
Ritz value, which approximates 1 + 1/2004. As can be expected, the residual error
associated with the smallest Ritz value is smaller than the residual error associated
with the second smallest Ritz value.

The solid horizontal line marks the tolerance δ = 1 · 10−6. Thus, if this value
of δ is chosen in (2.13), then irlbablk requires about 260 restarts to determine
approximations of the 2 smallest singular values with desired accuracy.

The dotted graph labeled Ritz(1) ≈ 1 shows the norm of the residual error for the
smallest Ritz value determined by irlba. This Ritz value approximates the singular
value 1. The code irlba requires fewer restarts than irlbablk to determine an
approximation of the smallest singular value of A with an associated residual error
of 1 · 10−6 because the value of m used for irlba is twice as large as for irlbablk.
However, irlba fails to find the second smallest singular value, 1 + 1/2004, within
the first 80 restarts. The dotted curve labeled Ritz(2) ≈ 3 displays the norm of the
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residual error for the second smallest Ritz value determined by irlba. Until about
85 restarts, this Ritz value approximates the third smallest singular value, 3, of A.

The stopping criterion for irlba is (2.13) with r = 1. Let δ = 1 · 10−6 in this
stopping criterion. Then irlba computes approximations of the singular values 1
and 3 to specified accuracy within about 60 restarts. Since the stopping criterion is
satisfied the computations are terminated at this point. There is no indication to a
user of the code that the computed Ritz values do not approximate the 2 smallest
singular values of A.

Such an indication is not delivered until about 85 restarts, when the residual
errors increase and irlba determines an approximation of the singular values 1 and
1 + 1/2004. Note that the residual errors for both Ritz values increase when irlba

“discovers” the singular value 1 + 1/2004.
This example illustrates that if there are close singular values and it is important

to determine all the associated singular triplets, then irlbablk does this more reliably
than irlba.

The rate of convergence of irlbablk displayed in the top graphs of Figure 5.1 can
be increased by choosing a larger value of m. Results for m = 20 are shown on the
bottom part of Figure 5.1. The number of restarts, as well as the total computational
work, is reduced by increasing m to 20, however, the required computer storage is
increased.

We finally remark that the behavior irlbablk and irlba is similar if instead of
Ritz vectors, harmonic Ritz vectors are augmented at restart. In particular, irlba
also misconverges in this situation. We therefore do not report the details of the
computations with harmonic Ritz vectors. 2

Example 2. Let A ∈ R
324×324 be obtained by discretizing the 2-dimensional

negative Laplace operator on the unit square by the standard 5-point stencil with
Dirichlet boundary conditions. The MATLAB command

A = delsq(numgrid(′S′, 20))(5.2)

determines this matrix. We would like to compute the 6 largest singular values of
A to high accuracy and let δ be machine epsilon in (2.13). Restarting is carried out
by augmentation of Ritz vectors. The dominating storage requirement for irlbablk,
already discussed in Example 1, is proportional to mr, where as usual r is the block-
size and m is the largest number of consecutive block Lanczos steps. We limit the
memory requirement of irlbablk by choosing m and r so that mr ≤ 20. Thus, we
applied irlbablk with the {r, m} pairs {1, 20}, {2, 10}, {3, 6}, {4, 5}, {5, 4}.

We refer to the computations between each consecutive restart as an iteration.
The top histogram of Figure 5.2 displays the average CPU-time for one iteration using
several different block-sizes r. The figure shows that the CPU-time per iteration is
smaller for block-sizes r > 1 than for block-size r = 1. This depends on more efficient
memory management when r > 1.

The bottom histogram of Figure 5.2 shows the total CPU-time required to de-
termine the 6 largest singular triplets of A with desired accuracy, as well as the total
number of matrix-vector products (mvp) with the matrices A and AT . Here the eval-
uation of Aw with w ∈ R

324×r counts as r matrix-vector products. The smallest
total CPU-time is achieved for block-size r = 2, even though the smallest number of
matrix-vector products is obtained for r = 1. This example illustrates that block-
methods may require less total CPU-time than methods that work with single vectors
(block-size r = 1). The codes irlbablk for block-size r = 1 and irlba were found to
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Fig. 5.2. Example 2: Computation of the 6 largest singular triplets of the matrix (5.2). The top
histogram shows the average CPU-time between consecutive restarts. The bottom histogram displays
the total CPU-time required and the number of matrix-vector product evaluations needed to compute
the desired singular triplets to desired accuracy.

require essentially the same amount of CPU-time. We therefore only report timings
for the former.

We remark that the combination of r and m that requires the least total CPU-
time depends on the problem at hand and on the architecture of the computer used.
For instance, suppose that there are no singular value-clusters, and assume that
the computer architecture and matrix-storage format are such that the evaluation
of matrix-vector products with a block-vector with r columns takes r times as long
as the sequential evaluation of matrix-vector products with r (single) vectors. Then,
block-size r = 1 will give the shortest CPU-time. Under different circumstances, the
CPU-time may be smaller for a block-size r > 1; see also the discussion on the use of
sparse BLAS towards the end of Section 1. For many problems, the main advantage
of using block-size r > 1 is increased reliability. 2

Example 3. We would like to determine the 4 smallest singular triplets of the
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Fig. 5.3. Example 3: Graphs showing the errors in computed approximations of the 4 smallest
singular values of the matrix (5.3). The solid graphs show the errors obtained by augmentation
of Ritz vectors and the dotted graphs shows the errors obtained by augmentation of harmonic Ritz
vectors.

symmetric Toeplitz matrix

T =























t1 t2 · · · tn−1 tn
t2 t1 t2 tn−1

t2 t1
...

...
. . .

...

tn−1 t2
tn tn−1 · · · t2 t1























∈ R
n×n(5.3)

with n = 130 and

ti =



































1, if i = 1,

(

µ sin( i−1
µ )

(i − 1)

)2

, if i = 2, 3, . . . , 8,

0, otherwise.
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This matrix has previously been considered by Luk and Qiao [13], who determine its
rank, as well as by Nagy [16]. The 4 smallest singular values are about σ1 = 2.32·10−6,
σ2 = 8.36 · 10−6, σ3 = 7.72 · 10−4, and σ4 = 8.65 · 10−3. Figure 5.3 shows the errors in
the approximations of these singular values determined by irlbablk with block-size
r = 4 and m = 10 as a function of the number of restarts. The solid graphs shows
the errors in the computed approximate singular values determined when restarting is
carried out by augmentation of Ritz vectors and the dotted graphs display the errors
in the approximations determined when restarting by augmentation of harmonic Ritz
vectors is used. The latter approach is seen to yield the smallest errors in all of the
desired singular values at almost all restarts. We remark that an analogous example
for block-size 1 (using the code irlba) is presented in [2]. 2

Table 5.2

Example 4: Computation of the 10 largest singular triplets of a term-by-document matrix.

block- # of # mat.-vec. # matrix CPU time
size blocks products access mat.-vec. other total

products computations
r = 1 m = 20 80 80 0.359s 0.500s 0.859s
r = 2 m = 10 104 52 0.357s 0.471s 0.828s
r = 3 m = 7 162 54 0.408s 0.717s 1.125s
r = 4 m = 5 248 62 0.606s 0.941s 1.547s

Example 4. A common task in information retrieval is the computation of a
few of the largest singular triplets of a term-by-document matrix. These matrices
can be very large and furnish important examples of problems that require out-of-
core memory access to evaluate matrix-vector products. The largest singular triplets
determine a low-rank approximation of the term-by-document matrix and the angles
between the search vectors and the columns of the computed low-rank approximation
are used for informational retrieval; see, e.g., Berry et al. [3] for further details.

The access to matrices that have to be stored out-of-core is very CPU-time de-
manding, and therefore it typically is advantageous to compute more than one matrix-
vector product for each matrix access.

In the present example we consider the term-by-document matrix HYPATIA,
which is included in the package na26 of Netlib associated with the present paper.
HYPATIA is of size 11390× 1265 and has 109056 non-zero terms from the web server
of the Department of Mathematics at the University of Rhode Island. HYPATIA was
created in the same manner as many standard term-by-document test matrices; see
the TMG web page2 for details.

We seek to determine the 10 largest singular triplets of HYPATIA with irlbablk

and limit the memory requirement by choosing the parameters m and r so that
mr ≤ 21. Thus, we use irlbablk with the {r, m} pairs {1, 20}, {2, 10}, {3, 7}, {4, 5}.
Restarts are carried out by augmentation of Ritz vectors.

Table 5.2 displays the performance of irlbablk. The table shows the number
of matrix accesses to decrease as the block-size r increases from 1 to 3. The least
total CPU-time and the least number of matrix accesses are achieved for block-size
r = 2, even though the least number of matrix-vector product evaluations is required
when r = 1, where the number of matrix-vector product evaluations is counted as in
Example 2. 2

2http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG
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6. Conclusion. This paper presents a block-generalization of the restarted Lan-
czos bidiagonalization method described in [2]. Computed examples illustrate that
the block-method implemented by the MATLAB function irlbablk can determine
desired singular triplets more reliably than the code irlba presented in [2] when the
associated singular values are very close. Moreover, in certain situations irlbablk

may determine desired singular triplets to specified accuracy faster than irlba.

Acknowledgement. We would like to thank Michela Redivo-Zaglia for com-
ments.
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