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Abstract. Models of nutrient-plankton interaction with a toxic substance
that inhibits either the growth rate of phytoplankton, zooplankton or both
populations are proposed and studied. For simplicity, it is assumed that both
nutrient and the toxin have the same constant input and washout rate. The
effects of toxin upon the existence, magnitude, and stability of the steady
states are examined. Numerical simulations demonstrate that the system
can have multiple attractors when phytoplankton’s nutrient uptake rate is
inhibited by the toxin.

1 Introduction

Tiny plankton populates the surface waters of the oceans, rivers, and lakes.
Phytoplankton is responsible for approximately 40% of the planet’s total
annual photosynthetic production. It has been well documented that cer-
tain chemicals interfere with phytoplankton growth. Organic (e.g. triazine
herbicides, [2, 13, 14, 20]) or inorganic compounds (mainly heavy metals,
[6, 13, 14, 15, 18, 19]) both may have harmful effects. For example, samples
taken from the inner harbor of the Waukegan area, located in Lake County,
Illinois, on the west shore of Lake Michigan, have shown that photosynthesis
of the green algae Selenastrum capricornutum is inhibited due to pollutants
originating from industrial and recreational sources.

In addition to phytoplankton’s role as a major contributor of photosyn-
thetic production on earth, plankton populations comprise a large number
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of different species and are in the bottom of the food chain. Consequently,
the abundance of the populations plays a significant role in marine reserves,
fishery management, etc. Due to frequent human activities over lakes, seas
and oceans for the past many years, pollution has become a major problem
associated with abundance of plankton and marine populations. It is the
purpose of this study to investigate the effects of toxin upon the nutrient-
phytoplankton-zooplankton interaction. Our models proposed here are dif-
ferent from those plankton systems with multiple nutrients as studied in
[1, 8] and references cited therein. In those models with multiple nutrients,
nutrient uptake rates of phytoplankton are functions of multiple nutrients.
The models presented here consist of a single limiting nutrient, two plankton
populations and an inhibitor, where the inhibitor may include agents such
as pesticides and heavy metals.

In the early 1980s, Hansen and Hubbell [9] used antibiotic, nalidixic acid,
to examine competition of two strains of E. coli. One strain was sensitive and
the other was resistant to the inhibitor. This resistance of the population is
due to a chromosomal mutation and it does not result in detoxification of the
antibiotic. However, resistance by bacteria to antibiotics and heavy metals
frequently comes from the acquisition of an extrachromosomal element that
encodes an enzyme, which converts the inhibitor into a less toxic form. This
reduces the intracellular concentration of chloramphenicol and enables the
survival of bacteria that produce the enzyme. It also results in a significant
reduction of the antibiotic concentration in the environment [3, 10].

This biological phenomenon motivates our models and study presented
here. In one model, the zooplankton consumes the inhibitor without effect,
while phytoplankton’s uptake rate and consequently its growth rate are in-
hibited due to the presence of an external inhibitor. In the other model,
phytoplankton is regarded as a detoxifier that uptakes the toxin while zoo-
plankton’s grazing rate is severely diminished. We acknowledge that our
models are simplified real systems. However, it is a first step in under-
standing complex interaction between plankton populations and pollution.
In doing so, we first propose a simple plankton model and summarize its
dynamical consequences. We then examine the effect of toxin upon the exis-
tence, magnitude, and stability of the steady states. Criteria for coexistence
of both plankton populations are also discussed. However, comparisons be-
tween more complex dynamical behavior will only be numerically simulated.

The remainder of this manuscript is organized as follows. A base nutrient-
plankton model with instantaneous nutrient recycling is presented in the next
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section. Section 3 studies the model when phytoplankton is inhibited by the
toxin. Inhibition upon zooplankton is discussed in section 4. Numerical
examples will be provided for each section to illustrate complexity of the
interaction. The final section provides a brief summary and discussion.

2 The nutrient-phytoplankton-zooplankton model

In this section we shall introduce a base model which will be used to build
more complicated systems involving toxic substance in later sections. For
simplicity, we assume that the organisms and the nutrient are uniformly
distributed over the space. It is conventional to let N(t), P (t), and Z(t) be
the nutrient concentration, the phytoplankton population, and zooplankton
population at time t, respectively. For convenience, the two plankton levels
are modeled in terms of nutrient content and therefore their units are nitrogen
or nitrate per unit volume.

We let δ and ε denote the per capita natural death rate of phytoplank-
ton and zooplankton respectively. The phytoplankton’s per capita nutrient
uptake rate is denoted by f , while g is the zooplankton grazing rate. Both
functions have the standard monotonic assumptions as the Michaelis-Menton
kinetics, Ivelev, and Holling type III functional responses:

(H1) f, g ∈ C1([0,∞)), f(0) = g(0) = 0, f ′(x), g′(x) > 0 for x ≥ 0 and
lim

x→∞
f(x) = lim

x→∞
g(x) = 1.

Let parameter m be the maximal nutrient uptake rate of phytoplank-
ton and c be the maximal zooplankton ingestion rate. Parameters β and α
denote the fraction of zooplankton grazing conversion and phytoplankton nu-
trient conversion, respectively. In natural nutrient-plankton systems, waters
flowing into the system bring input of fluxes of nutrients and outflows also
carry out nutrients [7]. We assume that the input nutrient concentration is a
constant and is denoted by N0, and the rate of waters flowing in and out of
the system is also a constant and denoted by D. By ignoring some biological
and physical considerations, both plankton populations are also flowing out
of the system with the same constant washout rate D.

It is known that phytoplankton uptakes nutrient and zooplankton preys
on the phytoplankton for survival. Consequently, there are minus terms
−mf(N)P and −cg(P )Z in the equations for Ṅ and Ṗ , respectively. As
there is no nutrient loss in the system, there are positive feedback terms
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(1 − α)mf(N)P and (1 − β)cg(P )Z appeared in the equation for Ṅ due
to instantaneous nutrient recycling. Our model with the above biological
assumptions can be written as the following three dimensional ordinary dif-
ferential equations.

Ṅ = D(N0 −N)−mf(N)P + δP + εZ + (1− β)cg(P )Z + (1− α)mf(N)P

Ṗ = [αmf(N)− δ −D]P − cg(P )Z (2.1)

Ż = [βcg(P )− ε−D]Z

N(0), P (0), Z(0) ≥ 0,

where 0 < α, β ≤ 1, and D,N0,m, c, ε, δ > 0.
System (2.1) is a simple nutrient-plankton model and its asymptotic dy-

namics can be easily understood via standard analysis. In particular, solu-
tions of (2.1) exist for all future time. Since Ṅ |N=0 ≥ DN0 > 0, Ṗ |P=0 =
Ż|Z=0 = 0, solutions of (2.1) remain nonnegative. Let T = N + P + Z.
Then Ṫ = D(N0−T ) and we have lim

t→∞
T (t) = N0, i.e., solutions of (2.1) are

bounded. Moreover,

Γ = {(N, P, Z) ∈ R3
+ : N + P + Z = N0}

is a global attractor for the system. Restricted to Γ, (2.1) has the following
limiting system,

Ṗ = [αmf(N0 − P − Z)− δ −D]P − cg(P )Z

Ż = [βcg(P )− ε−D]Z (2.2)

P (0), Z(0) ≥ 0, P (0) + Z(0) ≤ N0.

Since N(t) + P (t) + Z(t) = N0 for t ≥ 0 in Γ and solutions of (2.1) remain
nonnegative, we see that P (t) + Z(t) ≤ N0 for t ≥ 0, i.e., system (2.2) is
well-defined.

In the remainder of this section we shall briefly discuss asymptotic dy-
namics of system (2.2). There exists a trivial steady state e0 = (0, 0) for all
parameter values. It can be seen that boundary steady state e1 = (P u

1 , 0)
exists if and only if

αmf(N0) > δ + D, (2.3)

where P u
1 satisfies αmf(N0 − P ) = δ + D. For the existence of an interior

steady state e2 = (P̄ u, Z̄u), it is necessary that βcg(P ) − ε − D = 0 has a
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solution P̄ u. It follows that Z̄u must satisfy

[αmf(N0 − P̄ u − Z)− δ −D]P̄ u = cg(P̄ u)Z.

Consequently the above equation has a solution Z̄u > 0 if and only if
αmf(N0 − P̄ u) > δ + D, in which case system (2.2) has a unique interior
steady state and P̄ u + Z̄u < P u

1 .
If αmf(N0) < δ + D, then by the above existence conditions for the

boundary state states, we see that e0 is the only steady state for system
(2.2). Moreover,

Ṗ ≤ [αmf(N0)− δ −D]P

implies lim
t→∞

P (t) = 0 and thus lim
t→∞

Z(t) = 0, i.e, e0 is globally asymptotically

stable for (2.2) if αmf(N0) < δ + D.
Suppose on the other hand, αmf(N0) > δ + D, so that P u

1 > 0 exists. If
in addition βcg(P u

1 ) < ε + D, we claim that there is no interior equilibrium

for (2.2). This is trivial if βcg(P ) < ε+D for P ≥ 0. Suppose g(P ) =
ε + D

βc
has a solution P̄ u > 0. Then P u

1 < P̄ u and thus f(N0− P̄ u) < f(N0−P u
1 ) =

δ + D

αm
and therefore there is no positive steady state. It is then easy to

prove that solutions of (2.2) with P (0) > 0 converge to e1. Indeed, since
Ṗ ≤ [αmf(N0−P )− δ−D]P and αmf(N0) > δ +D, steady state 0 for the
scalar equation ẋ = [αmf(N0 − x)− δ −D]x is unstable and solutions with
x(0) > 0 all converge to the steady state P u

1 . Thus we see that lim sup
t→∞

P (t) ≤
P u

1 for any solution of (2.2). Hence for any η > 0 there exist t1 > 0 such that

P (t) ≤ P u
1 + η for t ≥ t1. Since we assume g(P u

1 ) <
ε + D

βc
, we can choose

η > 0 such that g(P u
1 +η) <

ε + D

βc
. It then follows from the second equation

of (2.2) that lim
t→∞

Z(t) = 0. As a result, we can prove lim inf
t→∞

P (t) ≥ P u
1 if

P (0) > 0. Therefore solutions of (2.2) with P (0) > 0 converge to the steady
state e1 if αmf(N0) > δ + D and βcg(P u

1 ) < ε + D.
Suppose now αmf(N0) > δ + D and βcg(P u

1 ) > ε + D. Then E0 and E1

are saddle points. Apply a similar argument as above, it can be shown that
steady state e2 = (P̄ u, Z̄u) exists. Also from the Jacobian matrix of (2.2)
evaluated at e2 that e2 is locally asymptotically stable if αmf(x)− δ −D −
αmf ′(x)P̄ u−cg′(P̄ u)Z̄u < 0 where x = N0−P̄ u−Z̄u. Moreover, solutions of
(2.2) satisfy P (t) + Z(t) ≤ P u

1 for all t large. Since the stable manifold of e0
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and e1 lies on the Z and P -axis, respectively, there is no cyclic trajectories on
the boundary. It follows that system (2.2) is uniformly persistent by Thieme
[21], i.e., coexistence of both populations results. In the following we shall
use LaSalle’s invariance principle to prove global asymptotic stability of e2

in the interior of R2
+.

Consider a Liapunov function defined on R2
+ by

V (P, Z) =

∫ P

P̄ u

βcg(x)− ε−D

cg(x)
dx +

∫ Z

Z̄u

x− Z̄u

x
dx.

Notice that V ≥ 0 and V (P, Z) = 0 if and only if P = P̄ u and Z = Z̄u.
The time derivative of V along trajectories of (2.2) after some simplifications
becomes

V̇ (P, Z) = βc[g(P )− g(P̄ u)][
αmf(N0 − P − Z)P − (δ + D)P

cg(P )
− Z̄u].

Since g′(P ) > 0 for P ≥ 0, we impose condition

βc(P − P̄ u)[
αmf(N0 − P − Z)P − (δ + D)P

cg(P )
− Z̄u] < 0 (2.4)

for P > 0, Z > 0 and P +Z ≤ P u
1 . As a result, V̇ ≤ 0 and V̇ = 0 if and only

if P = P̄ u. Since the only invariant subset of {(P,Z) ∈ R2
+ : V̇ = 0} is e2,

it follows that e2 is globally asymptotically stable in the interior of R2
+ [5].

The asymptotic dynamics of (2.1) can be summarized below.

Theorem 2.1 Dynamics of system (2.1) are described below.

(a) If αmf(N0) < δ + D, then Eu
0 = (N0, 0, 0) is the only steady state for

(2.1) and solutions of (2.1) all converge to E0.

(b) If αmf(N0) > δ + D, then (2.1) has two steady states Eu
0 and Eu

1 =
(N0 − P u

1 , P u
1 , 0). In addition if βcg(P u

1 ) < ε + D, then solutions of
(2.1) with P (0) > 0 converge to Eu

1 .

(c) If αmf(N0) > δ + D and βcg(P u
1 ) > ε + D, then (2.1) has three

steady states Eu
0 , Eu

1 , and the interior steady state Eu
2 = (N0 − P̄ u −

Z̄u, P̄ u, Z̄u), and system (2.1) is uniformly persistent. Moreover, so-
lutions of (2.1) with positive initial conditions converge to Eu

2 if in
addition (2.4) holds.
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3 A nutrient-plankton-toxin model with inhibition on
the phytoplankton

Motivated by the discussion in Section 1, we will consider the situation when
toxic substance has a negative effect on the phytoplankton. Specifically, the
uptake rate and consequently the growth rate of phytoplankton is inhibited
by the presence of the toxin, but zooplankton can consume the substance
without any effect. Our goal is to study toxic effect on the natural nutrient-
plankton system by investigating simple solutions and asymptotic dynamics
analytically whenever it is possible.

Let S(t) denote the toxic concentration at time t. In addition to the nu-
trient concentration, it is assumed that the toxin is continuously pouring into
the system with the constant input concentration S0 and the same constant
input rate D as the nutrient. It is assumed that zooplankton can uptake the
substance without any effect while phytoplankton’s uptake rate is decreased
by a function h(S) depending on the toxin level S. The toxin uptake rate of
zooplankton is denoted by u. Functions h and u are assumed to satisfy the
following assumptions.

(H2) h ∈ C1([0,∞)), h(0) = 1, h′(x) < 0 and h(x) > 0 for all x ≥ 0.

(H3) u ∈ C1([0,∞)), u(0) = 0, u′(x) > 0 for x ≥ 0 and lim
x→∞

u(x) = 1.

The choices of h such as lim
x→∞

h(x) = 0 or lim
x→∞

h(x) > 0 depend on the types

of toxin and how harmful it is to the phytoplankton. If h(∞) = 0, then the
phytoplankton population growth rate will be severely inhibited when the
toxin concentration is abundant. If h(∞) > 0, then the population growth
rate is inhibited but is not completely diminished even when there is a large
amount of toxin in the system. Let b > 0 denote the maximum zooplankton
toxin uptake rate.

With these biological assumptions, our model is given below.

Ṅ = D(N0 −N)−mf(N)h(S)P + δP + εZ + (1− β)cg(P )Z

+(1− α)mf(N)h(S)P

Ṗ = [αmf(N)h(S)− δ −D]P − cg(P )Z

Ż = [βcg(P )− ε−D]Z (3.1)

Ṡ = D(S0 − S)− bu(S)Z

N(0), P (0), Z(0), S(0) ≥ 0,
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where 0 < α, β ≤ 1 and D,N0, S0,m, b, c, ε, δ > 0.
Clearly solutions of (3.1) exist and remain nonnegative for t ≥ 0. Similar

to the discussion for system (2.1), if we let T = N + P + Z, then Ṫ =
D(N0 − T ) and thus lim

t→∞
T (t) = N0. On the other hand, Ṡ ≤ D(S0 − S)

implies lim sup
t→∞

S(t) ≤ S0 for any solution of (3.1). Therefore, solutions of

(3.1) are bounded and we have the following lemma.

Lemma 3.1 Solutions of (3.1) remain nonnegative and are bounded for t ≥ 0.

Since ω-limit sets of solutions of (3.1) lie in

Ω = {(N, P, Z, S) ∈ R4
+ : N + P + Z = N0}, (3.2)

system (3.1) has the following limiting system

Ṗ = [αmf(N0 − P − Z)h(S)− δ −D]P − cg(P )Z

Ż = [βcg(P )− ε−D]Z (3.3)

Ṡ = D(S0 − S)− bu(S)Z

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0.

Notice that system (3.3) is well defined as P (t) + Z(t) ≤ N0 for t ≥ 0 for all
solutions of (3.1) with N(0)+P (0)+Z(0) = N0. As before, we first examine
steady state solutions of (3.3). Clearly steady state ê0 = (0, 0, S0) always
exists for (3.2). Steady state ê1 = (P̂1, 0, S

0) exists if and only if

αmf(N0)h(S0) > δ + D, (3.4)

where P̂1 satisfies αmf(N0 − P )h(S0) = δ + D. Comparing inequalities
(3.4) and (2.3), we see that (2.3) is more likely to occur. Therefore in order
for the phytoplankton to survive when there is an external toxin inhibiting
the growth rate of phytoplankton, it is necessary to have a higher input
nutrient concentration N0. In particular, the higher the toxin input S0 to the
system, the higher the nutrient concentration N0. Moreover, since S0 > 0,
0 < h(S0) < 1, we see that

P̂1 < P u
1 ,

where P u
1 is the P -component of the steady state e1 for system (2.2), i.e.,

toxic substance inhibiting the growth rate of phytoplankton can reduce the
phytoplankton population size of the equilibrium with the absence of zoo-
plankton.
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Since there is no steady state of the form (0, Z, S) with Z, S > 0, we turn
to investigate the effect of toxin upon the existence and magnitude of an
interior steady state (P̄ , Z̄, S̄). We see from the equilibrium equations that
P̄ must solve

βcg(P ) = ε + D.

Since Z can be written in terms of S as

Z =
D(S0 − S)

bu(S)
= ĝ(S),

the S component of an interior steady state, S̄, must satisfy

[αmf(N0 − P̄ − ĝ(S))h(S)− δ −D]P̄ = cg(P̄ )ĝ(S). (3.5)

Clearly ĝ′(S) < 0 for 0 < S ≤ S0, and (3.5) has no positive solution if
αmf(N0 − P̄ − ĝ(S))h(S) < δ + D for all S, 0 < S ≤ S0. However, if the
above inequality is reversed for some S, 0 < S ≤ S0, then it is inconclusive
as to whether (3.5) has no positive solutions, a unique positive solution,
or multiple positive solutions. Consequently, the number of interior steady
states of (3.3) can not be determined. We will use numerical examples to
demonstrate our finding.

On the other hand, suppose an interior steady state ê2 = (P̄ , Z̄, S̄) does
exist for (3.3). Then

P̄ = P̄ u,

and from the P equation we can conclude that

Z̄ < Z̄u.

Therefore toxic effect on the growth rate of phytoplankton can lower the
zooplankton population size at the coexisting equilibrium, but not on the
phytoplankton population. This is different from our earlier conclusion for
the steady state of the form (P, 0, S). It seems counterintuitive. However,
since zooplankton uptakes toxin and the toxin has a negative effect on the
phytoplankton if there is no zooplankton population to detoxify the environ-
ment, we see that P1 < P u

1 in the steady state of the form (P, 0, S) when
there is no zooplankton present. On the other hand due to the presence
of zooplankton to consume toxin, we have P̄ = P̄ u for the interior steady
states. But then zooplankton has a lower population size at least in the in-
terior steady state as the population uses part of its energy to detoxify the
toxin.
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We now turn to discuss asymptotic dynamics of system (3.3). It is clear
that lim

t→∞
P (t) = 0 if αmf(N0) < δ + D. Furthermore, as

Ṗ ≤ [αmf(N0 − P )− δ −D]P,

we see that solutions (P (t), Z(t), S(t)) of (3.2) satisfy lim sup
t→∞

P (t) ≤ P u
1 if

αmf(N0) > δ + D. The Jacobian matrix of (3.3) at the trivial steady state
ê0 = (0, 0, S0) has a lower triangular form and ê0 is asymptotically stable if

αmf(N0)h(S0) < δ + D. (3.6)

Since h(S0) < 1, we immediately conclude that it is more likely for both
populations to become extinct than that of the uninhibited model (2.2) as the
above inequality is more likely to occur than αmf(N0) < δ + D. Moreover,
there exists no steady state of the form ê1 = (P1, 0, S

0) and there are also no
interior equilibria when (3.6) holds.

Similar to model (2.2), it can be easily shown that if inequality (2.3)
holds, i.e., if αmf(N0) < δ + D, then steady state ê0 = (0, 0, S0) is globally
asymptotically stable. However, it is in general not true that ê0 is globally
asymptotically stable when (3.6) is satisfied. Our numerical example given
below demonstrates that there is an interior steady state which is moreover
locally asymptotically stable when (3.6) holds. Therefore dynamics of system
(3.3) are much more complicated than system (2.1). There are multiple
attractors even when the trivial steady state is locally asymptotically stable.
On the other hand, it can be easily proven that ê0 is globally asymptotically
stable on the nonnegative PS-coordinate plane if (3.6) holds. Furthermore,
in addition to (3.6), if

βcg(P u
1 ) ≤ ε + D

is satisfied, then it is straightforward to show that lim
t→∞

Z(t) = 0, lim
t→∞

S(t) =

S0, and solutions of (3.3) converge to ê0. The nutrient-plankton interactions
are much more complicated than the uninhibited model (2.1). In partic-
ular, coexistence of both populations is possible and it depends on initial
conditions even when (3.6) holds.

Suppose now αmf(N0)h(S0) > δ+D so that ê1 exists. From the Jacobian
matrix of (3.3) at ê1 = (P̂1, 0, S

0), we see that ê1 is asymptotically stable if

βcg(P̂1) < ε + D.
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Similar to the discussion for the existence of interior steady states, we are
unable to reach the conclusion as whether or not the system has an interior
steady state when the above inequality is true. However, when the above
inequality and (3.6) are reversed, system (3.3) is uniformly persistent. By
using the theory of asymptotic autonomous systems we see that the same is
true for the original 4-D system.

Theorem 3.2 Dynamics of system (3.1) can be summarized below.

(a) If αmf(N0)h(S0) < δ + D and βc ≤ ε + D, then Ê0 = (N0, 0, 0, S0) is
globally asymptotically stable for system (3.1).

(b) If αmf(N0)h(S0) > δ + D and βcg(P̂1) > ε + D, then system (3.1) is
uniformly persistent.

Since P̂1 increases with increasing nutrient input N0, we see from Theorem
3.2(b) that in order for both populations to coexist with each other it is
necessary to have a larger nutrient input when there is a toxin concentration
inhibiting phytoplankton growth rate.

We now use a numerical example to illustrate complexity of the model.

Let f(x) =
x

2 + x
, g(x) =

x

1 + x
, u(S) =

S

6 + S
and h(S) = e−2S. Then

system (3.2) becomes

Ṗ = [
αm(N0 − P − Z)

2 + N0 − P − Z
h(S)− δ −D]P − cP

1 + P
Z

Ż = [
βcP

1 + P
− ε−D]Z (3.7)

Ṡ = D(S0 − S)− bS

6 + S
Z

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0.

Choosing N0 = 4.85, D = 0.05, δ = 0.4, ε = 10−5, c = 0.1, m = 5,
α = 0.9, β = 0.99, b = 2 and S0 = 4, then it is easy to verify that
αmf(N0)h(S0) < δ + D and αmf(N0) > δ + D. Therefore the trivial
steady state E0 = (0, 0, 4) is locally asymptotically stable. However, nu-
merical simulations showing the existence of an interior steady state and it
is also locally asymptotically stable. Consequently, asymptotic behavior of
solutions of system (3.7) depend on initial conditions even when (3.6) holds.
These plots are given as Figures 1 and 2.
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If we use h(S) = e−0.8S, D = 0.07, δ = 0.04, c = 0.3, β = 0.4,
b = 2 and the rest of the parameter values are the same as given above,
then inequality (3.6) is reversed so that system (3.7) has a steady state
(P̂ , 0, S0) = (1.8540, 0, 4). In this case, numerical simulations yield an in-
terior steady state (2.000, 2.6131, 0.3118) and solution with initial condition
(2.5, 2, 3) converges to the interior steady state and solution with initial con-
dition (0.1, 0.2, 7) goes to the steady state on the PS-coordinate plane as
shown by figure 3. However, we are unable to find multiple interior steady
states using these functional forms with various parameter values.

4 The nutrient-plankton-toxin model with inhibition
on the zooplankton

In this section we assume that phytoplankton can uptake the toxin without
any effect while zooplankton’s grazing rate is inhibited by the presence of the
toxin. We use the same notation h to represent reduction factor of zooplank-
ton grazing rate. The toxin uptake rate of phytoplankton is denoted by v,
where h and v depend on the toxin level S and have the same mathemat-
ical assumptions as h and u in the previous section. Moreover, parameter
d is the maximal phytoplankton toxin uptake rate. Building upon the base
model given in section 2, our model with this biological consideration can be
described by the following system of ordinary differential equations.

Ṅ = D(N0 −N)−mf(N)P + δP + εZ + (1− β)cg(P )h(S)Z

+(1− α)mf(N)P

Ṗ = [αmf(N)− δ −D]P − cg(P )h(S)Z

Ż = [βcg(P )h(S)− ε−D]Z (4.1)

Ṡ = D(S0 − S)− dv(S)P

N(0), P (0), Z(0), S(0) ≥ 0,

where 0 < α, β ≤ 1 and D,N0, S0,m, c, d, ε, δ > 0.
It can be easily shown that solutions of (4.1) exist, remain nonnegative

and are bounded for all t ≥ 0. The set Ω as defined in (3.2) is also a global
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attractor for (4.1), and (4.1) restricted to Ω has the following limiting system

Ṗ = [αmf(N0 − P − Z)− δ −D]P − cg(P )h(S)Z

Ż = [βcg(P )h(S)− ε−D]Z (4.2)

Ṡ = D(S0 − S)− dv(S)P

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0.

Similar to system (3.3), (4.2) always has a trivial steady state e∗0 = (0, 0, S0)
and steady state e∗1 = (P ∗

1 , 0, S∗1) exists if and only if

αmf(N0) > δ + D,

where P ∗
1 = P u

1 and S∗1 solves

D(S0 − S) = dv(S)P ∗
1 .

Moreover
S∗1 < S0 and P̂1 < P ∗

1 = P u
1 ,

where P̂1 and S0 are the P , S-components of the steady state ê1 = (P̂1, 0, S
0)

for system (3.3). Therefore toxic concentration in the steady state with the
absence of zooplankton is smaller in model (4.2) than in system (3.3). This
is owing to the fact that phytoplankton can detoxify the environment so that
the toxic concentration is lower than the model presented in the previous
section, where zooplankton population can uptake the toxin.

Examining the existence of an interior steady state, we see from the third
equilibrium equation that P -component of the steady state must satisfy

P =
D(S0 − S)

dv(S)
= g∗(S),

where lim
S→0+

g∗(S) = ∞ and
dg∗(S)

dS
< 0 for 0 < S ≤ S0. Substituting g∗(S)

for P in the second equilibrium equation, we have

βcg(g∗(S))h(S) = ε + D.

Since g′ > 0, h′ < 0, and
dg∗(S)

dS
< 0 for 0 < S ≤ S0, the above equation has

a solution S̄∗ < S0 if and only if

βc > ε + D. (4.3)
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Consequently from the first equilibrium equation we see that Z̄∗ > 0 exists
if and only if

αmf(N0 − P̄ ∗) > δ + D. (4.4)

Therefore steady state (P̄ ∗, Z̄∗, S̄∗) exists if and only if (4.3) and (4.4)
hold; and the interior equilibrium is unique if it exists. Moreover, it is clear
that P̄ ∗ < P̄ u and thus αmf(N0 − P̄ ∗) > δ + D is more likely to occur
than αmf(N0 − P̄ u) > δ + D. Consequently, toxic substance inhibits the
grazing rate of zooplankton can promote coexistence of both populations in
the interior steady state. However, it can lower phytoplankton population
level at least in the interior steady state.

We next turn to discuss asymptotic dynamics of system (4.2). Anal-
ysis of model (4.2) is parallel to that of system (2.2). In particular, if
αmf(N0) < δ + D, then e∗0 = (0, 0, S0) is the only steady state and it
is globally asymptotically stable. If the inequality is reversed, then steady
state e∗1 = (P ∗

1 , 0, S∗1) exists. In addition if βcg(P ∗
1 )h(S∗1) < ε + D, then the

interior steady state does not exist and it can be easily shown that solu-
tions of (4.2) with P (0) > 0 all converge to e∗1. If αmf(N0) > δ + D and
βcg(P ∗

1 )h(S∗1) > ε + D, then it is standard to prove uniform persistence of
the system. The discussion of model (4.1) is summarized below.

Theorem 4.1 Dynamics of system (4.1) are described below.

(a) If αmf(N0) < δ + D, then E∗
0 = (N0, 0, 0, S0) is the only steady state

for (4.1) and solutions of (4.1) all converge to E∗
0 .

(b) If αmf(N0) > δ + D, then (4.1) has two steady states E∗
0 and E∗

1 =
(N0 − P ∗

1 , P ∗
1 , 0, S∗). In addition if βcg(P ∗

1 ) < ε + D, then solutions of
(4.1) with P (0) > 0 converge to E∗

1 .

(c) If αmf(N0) > δ + D and βcg(P ∗
1 ) > ε + D, then (4.1) has three

steady states E∗
0 , E∗

1 , and the interior steady state E∗
2 = (N0 − P̄ ∗ −

Z̄∗, P̄ ∗, Z̄∗, S̄∗), and system (4.1) is uniformly persistent.

Let f(x) =
x

2 + x
, g(x) =

x

1 + x
, v(S) =

S

3 + S
and h(S) = e−2S. Then

14



system (4.2) becomes

Ṗ = [
αm(N0 − P − Z)

2 + N0 − P − Z
− δ −D]P − cPe−2S

1 + P
Z

Ż = [
βcPe−2S

1 + P
− ε−D]Z (4.5)

Ṡ = D(S0 − S)− bS

3 + S
P

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0.

Choosing N0 = 4.85, D = 0.05, δ = 0.4, ε = 10−5, c = 0.1, m = 5,
α = 0.9, β = 0.99, b = 2 and S0 = 4, we have αmf(N0) > δ + D so
that steady state (P ∗

1 , 0, S∗1) exists. In this case βcf(P ∗
1 )h(S∗1) > ε + D.

Numerical simulations showing the existence of an interior steady state and it
is locally asymptotically stable. Therefore, the system with an inhibitor that
inhibits the grazing rate of zooplankton is more stable. It has a very similar
dynamic behavior as the uninhibited system (2.1). Numerical simulations of
this system is given in Figure 4.

5 Discussion

Nutrient-phytoplankton-zooplankton models are proposed to study the ef-
fects of pollutants upon the nutrient-plankton interaction. Our models con-
sist of a single limiting nutrient, two plankton populations, and a toxin,
where the toxin may be harmful to either phytoplankton or zooplankton.
The toxin can be regarded as either an organic or inorganic substance. The
inclusion of this toxic inhibitor is motivated by the study in [3, 9, 10], and the
problems of declining marine populations, and heavy pollution in our marine
and aquatic systems. Although more complicated models can be built to
incorporate multiple nutrients and/or with spatial dimensions, we focused
on simple models to study the biological problem.

We contrasted the proposed models with each other and with a base
nutrient-plankton system. It is found that it is necessary to have a higher nu-
trient input N0 when there is a toxin inhibits either phytoplankton’s growth
rate or zooplankton’s grazing rate. The model exhibits complicated behavior
with multiple attractors when phytoplankton’s growth rate is inhibited. In
the following we present two simulations where growth rates of both plankton
populations are diminished. In one model phytoplankton can uptake toxin
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and in the other model zooplankton can uptake toxin. The systems exhibit
multiple positive periodic solutions. However, we are unable to find more
complicated dynamical behavior.

A simple model with both populations inhibited by the toxin and only
phytoplankton can consume the toxin is given below.

Ṗ = [
αm(N0 − P − Z)e−2S

2 + N0 − P − Z
− δ −D]P − cP

(1 + P )(1 + S)
Z

Ż = [
βcP

(1 + P )(1 + S)
− ε−D]Z (5.1)

Ṡ = D(S0 − S)− qS

5 + 5S
P

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0,

Using N0 = 4.85, D = 0.05, δ = 0.1, ε = 10−5, c = 0.5, m = 5, α = 0.9,
β = 0.99, q = 2 and S0 = 1, we have αmf(N0) > δ + D. Numerical
simulations yield multiple periodic solutions as given in Figure 5.

The following model captures the phenomenon when zooplankton can
uptake toxin while both plankton populations are inhibited by the toxin.

Ṗ = [
αm(N0 − P − Z)e−2S

2 + N0 − P − Z
− δ −D]P − cP

(1 + P )(1 + S)
Z

Ż = [
βcP

(1 + P )(1 + S)
− ε−D]Z (5.2)

Ṡ = D(S0 − S)− qS

5 + 5S
Z

P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N0.

The parameter values for system (5.2) are N0 = 4.85, D = 0.05, δ = 0.05,
ε = 10−5, c = 0.5, m = 1, α = 0.7, β = 0.99, q = 3 and S0 = 2.1. Numerical
simulations also yield multiple periodic solutions as given in Figure 6.

Although our models are simplified real systems, one can conclude from
this study that nutrient-plankton interactions have multiple attractors when
there is a toxin inhibiting either the growth rate of phytoplankton or both
plankton populations. Survival of both species may depend on initial pop-
ulation sizes. However, a larger input nutrient concentration will in general
promote the coexistence of both populations.

16



References

[1] Antonios, M., A mathematical model of two-trophic-level aquatic sys-
tems with two complementary nutrients, Math. Biosc., 84, 231-248,
1987.

[2] Bester, K., Huehnerfuss, H., Brockmann, U.H., Rick, H.J., Biological
effects of triazine herbicide contamination on marine phytoplankton.
Arch. Environ. Contam. Toxicol 29: 277-283, 1995.

[3] Bull, A., Slater, J., Microbial interactions and community structure,
Microbial Interactions and Communities, Vol.1, edited by A. Bull and
J. Slater, London: Academic Press, 1982.

[4] Busenberg, S., Kumar, S.K., Austin, P., Wake, G.: The dynamics of a
model of a plankton-nutrient interaction. Bull. Math. Biol. 52, 677-696,
1990.

[5] Coddington, E., Levinson, N., Theory of Ordinary Differential Equa-
tions, New York: McGraw Hill, 1955.

[6] Davies, A.G., Pollution studies with marine phytoplankton. Part II.
Heavy metals. Adv. Mar. Biol. 15: 381-508, 1978.

[7] DeAngelis, D.L.: Dynamics of Nutrient Cycling and Food Webs. New
York: Chapman & Hall 1992.

[8] Grover, J.: The impact of variable stoichiometry on predator-prey in-
teractions: a multinutrient approach. Amer. Natur. 162, 29-43, 2003.

[9] Hansen, S., Hubbell, S., Single nutrient microbial competition: agree-
ment between experimental and theoretical forecast outcomes, Science,
207, 1491-1493, 1980.

[10] Lenski, R., Hattingh, S., Coexistence of two competitors on one resource
and one inhibitor: A chemostat model based on bacteria and antibiotics,
J. Theor. Biol., 122, 83-93, 1986.

[11] Leon, J., Tumpson, D., Competition betwen two species for two comple-
mentary or substitutable resources, J. Theor. Biol. 50, 185-201, 1975.

17



[12] Li, B., Smith, H.L., How many species can two essential resources sup-
port, SIAM J. Appl. Math., 62, 336-366, 2000.

[13] Rick, H.J., Repercussions of the silicate copper interaction in marine
diatoms on planktonic systems. Habilitation Thesis, University of Kiel,
Germany, 2000.

[14] Rick, H.J., Rick, S., Anthropogenic distorted Si-Cu ratios - effects on
coastal plankton communities. Presentation at SETAC 23 rd Annual
Meeting: Achieving Global Environmental Quality: Integrating Sciene
& Management, 16-20 November 2002, Salt Lake City, Utah, 2002.

[15] Riedel, G.F., Influence of salinity and sulfate on the toxicity of Cr(VI) to
the estuarine diatom Thalassiosira pseudonana. J. Phycol., 20, 496-500,
1998.

[16] Ruan, S.: Persistence and coexistence in zooplankton-phytoplankton-
nutrient models with instantaneous nutrient recycling. J. Math. Biol.
31, 633-654, 1993.

[17] Ruan, S.: Oscillations in plankton models with nutrient recycling. J.
Theor. Biol. 208, 15-26, 2001.

[18] Sunda, W.G., Huntsman, S.A., Processes regulating cellular metal ac-
cumulation and physiological effects. Phytoplankton as model systems.
Sci. Total Environ. 219: 165-181, 1998.

[19] Sunda, W.G., Huntsman, S.A., Interactive effects of external man-
ganese, the toxic metals copper and zinc, and light in controlling cellular
manganese and growth in a coastal diatom. Limnol. Oceanogr. 43: 1467-
1475, 1998.

[20] Thomas, W.H., Seibert, D., Effects of copper on the dominance and
the diversity of algae: Controlled ecosystem pollution experiment. Bull.
Mar. Sci 27(1): 23- 33, 1977.

[21] Thieme, H.R., Persistence under relaxed point-dissipativity (with appli-
cation to an epidemic model). SIAM J. Math. Anal. 24, 407-435, 1993.

18



0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

P 

 

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

Z 

 

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

S 

t

Figure 1: System (3.7) has an interior steady state. Solution with initial con-
dition (2.5, 2, 3) converges to the interior steady state (1.0208, 3.3457, 0.1765)
while solution with initial condition (3, 1, 5) goes to the trivial steady state
(0, 0, 4).
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Figure 2: With the same parameter values as in Figure 1, System (3.7) has an
interior steady state (1.0208, 3.3457, 0.1765) which is locally asymptotically
stable even when condition (3.6) is satisfied. Initial conditions are (2.5, 2, 3)
and (1, 1, 2) for the solid and dashed lines, respectively.
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Figure 3: Solution with initial condition (2.5, 2, 3) converges to the interior
steady state while solution with initial condition (0.1, 0.2, 7) goes to the non-
trivial steady state on the PS-plane.
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Figure 4: Solutions of system (4.5) with initial conditions (2.5, 2, 3) and
(3.5, 1, 2) converge to the interior steady state (2.0838, 2.5101, 0.1455). Al-
though it is not plotted, this is also true for solutions with other initial
conditions.
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Figure 5: Solutions of system (5.1) with initial condition (2.5, 2, 3) and
(0.1, 0.5, 2) oscillate. They generate two positive periodic solutions.
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Figure 6: Solutions of (5.2) with initial condition (2.5, 1, 3) and (0.1, 0.5, 7)
also oscillate.
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