AUGMENTED IMPLICITLY RESTARTED
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Abstract. New restarted Lanczos bidiagonalization methods for the computation of a few of
the largest or smallest singular values of a large matrix are presented. Restarting is carried out
by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonaliza-
tion method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors.
Computed examples show the new methods to be competitive with available schemes.
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1. Introduction. Many problems in scientific computation require knowledge
of a few of the largest or smallest singular values of a matrix and associated left and
right singular vectors. These problems include the approximation of a large matrix
by a matrix of low rank, the computation of the null space of a matrix, total least-
squares problems, see, e.g., Bjorck [5, Sections 4.6 and 7.6.5], as well as the tracking
of signals; see, e.g., Comon and Golub [9] for a discussion of the latter.

Let A € R*™ be a large sparse matrix. We may assume that £ > n, because
otherwise we replace the matrix by its transpose. Let

(1.1) oM > > > >0

denote the singular values of A, and let ug-A) € R and UJ(.A) eR* 1 <j<n,be
associated left and right singular vectors, respectively. Hence,

(1.2) Av](-A) = U§A)U§A), ATug-A) = JJ(A)UJ(.A), 1<j<n,
and
"N (4) (4), (A
A= 3 @A )T,
j=1
The matrices UT(LA) = [ugA),ugA), .. ,u%A)] and Vn(A) = [v%A),véA), .. ,v%A)] have or-

thonormal columns. We refer to {U§A),M§A), U](-A)} as a singular triplet of A. Singular
triplets associated with large (small) singular values are referred to as large (small)
singular triplets.

This paper presents new restarted Lanczos bidiagonalization methods for comput-
ing a few of the largest or smallest singular triplets. The methods compute sequences
of projections of A onto judiciously chosen low-dimensional subspaces. Restarting is
implemented by augmentation of Krylov subspaces that are determined similarly as

in the standard Lanczos bidiagonalization method.
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Application of m steps of partial Lanczos bidiagonalization to the matrix A with
initial unit vector p; € R™ yields the decompositions

(1.4) ATQ,, = PpBL + rpel,

where P, € R**™ Q,, € IRZX’”, P;;';Pm = I, Pher = p1, QﬁQm = Iy, rm € R,
and

(1.5) Pl =0.

Further, the matrix

-051 b1 O-

(1.6) B,, = .. € RMxm

ﬂm—l

0 o

is upper bidiagonal, I,;, € R™*™ denotes the identity matrix, and e; the jth axis vec-
tor. We refer to the decompositions (1.3)-(1.4) as a partial Lanczos bidiagonalization
of A and to the vector 7, in (1.4) as the residual vector; see Bjorck [5, Section 7.6] for
a recent discussion on partial Lanczos bidiagonalization. The number of bidiagonal-
ization steps, m, is assumed to be small enough so that the decompositions (1.3)-(1.4)
with the stated properties exist.

In applications of interest to us, m is not very large, and the singular triplets

{a(-B”) (Brm) U(Bm)}g”zl of B,, can be computed inexpensively by the Golub-Kahan

A R
algorithm [11]. Approximate singular triplets of A, denoted by {&J(.A),ﬂg.A), 17](-’4)}, can
be determined from the singular triplets of B,, and the matrices P, and @, in the
decompositions (1.3)-(1.4); see Section 2 for details.

When the matrix A is large, i.e., when £ and possibly n are large, the storage
requirement of the partial Lanczos bidiagonalization (1.3)-(1.4) is large, unless the
number of Lanczos bidiagonalization steps, m, is small. However, for a small value
of m, the desired singular triplets of A may be approximated poorly by computed

approximate singular triplets {&](-A) al", 17,(-A)

o }. In order to circumvent this difficulty,
several methods have been proposed that are based on the computation of partial
Lanczos bidiagonalizations (1.3)-(1.4) with m small for a sequence of initial vectors
p1; see, e.g., [6, 14, 15, 16, 17, 18, 29]. These methods are commonly referred to
as restarted partial Lanczos bidiagonalization methods. We will comment on some
of these methods below. They differ in their choice of initial vector p; used for the
restarts and in their implementation of the restarting procedure. Ideally, we would
like p; to be a linear combination of the right singular vectors of A associated with
the desired singular values.

Sorensen [30] proposed efficient approaches for restarting the Arnoldi and the
Lanczos tridiagonalization procedures. These approaches can be thought of as cur-
tailed QR~algorithms, and, similarly to the QR-algorithms, their performance depends
critically on the selection of shifts; see also [1, 8, 22, 31] for discussions and exten-
sions. Bjorck et al. [6] derived analogous recursion formulas for a restarted Lanczos
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bidiagonalization method, and presented an application to the solution of ill-posed
problems. Recently, Kokiopoulou et al. [18] applied these recursion formulas to com-
pute a few desired singular triplets of a large sparse matrix. The shifts are applied by
“chasing the bulge” in a curtailed QR-algorithm. Other implementations of restarted
Lanczos bidiagonalization are discussed in [14, 15, 16, 17, 29]. The present paper
describes mathematically equivalent, but numerically more robust, implementations
of the methods discussed by Kokiopoulou et al. [18].

This paper is organized as follows. Section 2 reviews Lanczos bidiagonalization
and introduces notation used in the remainder of the paper. Section 3 describes
our implementations of restarted Lanczos bidiagonalization. Restarting is carried out
by augmenting the Krylov subspaces that arise naturally in the standard Lanczos
bidiagonalization method by Ritz vectors or harmonic Ritz vectors associated with
desired singular triplets. A few computed examples, which compare the performance
of several methods and implementations, are presented in Section 4.

2. Lanczos bidiagonalization. The following algorithm determines the partial
Lanczos bidiagonalization (1.3)-(1.4) of the large sparse matrix A € R®*". The num-
ber of Lanczos bidiagonalization steps, m, typically is much smaller than either one
of the matrix dimensions ¢ and n. Throughout this paper || - || denotes the Euclidean
vector norm or the associated induced matrix norm. We remark that the methods
described easily can be modified to apply to matrices A with complex-valued entries;
the main modification required is that the matrices P,,, Q.,, and By, in (1.3)-(1.4)
may have complex-valued entries, and transposition has to be replaced by transposi-
tion and complex conjugation. The MATLAB code used for the computed examples
of Section 4 can be applied to matrices A with complex-valued entries.

ALGORITHM 2.1. LANCZOS BIDIAGONALIZATION

Input: A € RE*™ or functions for evaluating matriz-vector products
with the matrices A and AT,
p1 € R™ : initial vector of unit length,
m : number of bidiagonalization steps.

Output: P, = [p1,p2,---,Pm] € R**™ : matriz with orthonormal columns,
Qm = [q1,q2,---,qm] € R*™ : matriz with orthonormal columns,
By, € R™*™ : upper bidiagonal matriz (1.6) with entries a; and fB;,
rm € R™ : residual vector.

1. Py :=py; q1 := Apy;
2. ar = |lqill; @ := @1 /eu; Q1= qi;
3 forj=1:m
4. Ty = AT(]J' — Q;pj;
5. Reorthogonalization: r; :=r; — P;j(P]'r});
6. if j <m then
7. By :=Irsll; pj1 :=13/Bj; Pir = [P}, pjal;
8. gj+1 = Apj+1 — Bjg;;
9. Reorthogonalization: gj41 := qj+1 — Qj(Q;"quH);
10. aj1 = gj+1ll; Gi+1 := Giv1/v1; Qi1 = (@), qjt1l;
11. endif
12. endfor



When the computations with Algorithm 2.1 are carried out in finite precision
arithmetic and the columns of P, and @),, are not reorthogonalized, the computed
columns might be far from orthogonal. We therefore reorthogonalize the columns of
these matrices in lines 5 and 9 the algorithm.

Several reorthogonalization strategies for the columns of the matrices Py, and @,
are discussed in the literature. Larsen [19] found that when m is fairly large and one
is interested in computing a few of the largest singular triplets of A, partial reorthog-
onalization gives comparable accuracy and requires less computational work than full
reorthogonalization, but when a few of the smallest singular triplets are desired, often
(essentially) full reorthogonalization is required to achieve high accuracy. Wu and
Simon [34] report that when m is not large, full reorthogonalization should be carried
out, because due to the overhead associated with partial reorthogonalization, the lat-
ter is not competitive. Moreover, Simon and Zha [29] show that when the matrix A
is not very ill-conditioned, only the columns of one of the matrices P, or @,, need to
be reorthogonalized. Reorthogonalization of the columns of P, only can reduce the
computational effort required to compute the partial Lanczos bidiagonalization (1.3)-
(1.4) considerably when £ > n. Algorithm 2.1 easily can be modified to implement
the latter approach.

The Lanczos bidiagonalization algorithm (Algorithm 2.1) requires the diagonal
entries a; > 0, 1 < j < m, as well as the superdiagonal entries 8;, 1 < j < m, of
B, to be nonvanishing. Assume for the moment that a; > 0 for 1 < j < m, and
@, = 0. Then the vector g, determined in line 8 of the algorithm vanishes, and the
decompositions (1.3)-(1.4) can be expressed as

APy, = Qum-1Bm—_1,m, ATQn_ 1 = PBT

m—1,m>

where By,_1,m,m denotes the the leading (m — 1) x m submatrix of By,. It follows
that A is singular and that the singular values of B,,_i,, are singular values of
A. The associated singular triplets of A can be determined from P,, @mn—1, and
the singular triplets of B;,_1,,- The singular values of By,_;,,, are nonvanishing.
Moreover, the right singular vector of A associated with the zero singular value can
be expressed as a linear combination of the columns of P,,, e.g., by using the singular
value decomposition of B,,. However, the corresponding left singular vector of A is
not readily available. For simplicity, we will in the remainder of this paper assume
that all a; are positive.

It follows from Algorithm 2.1 that 3,,, the last superdiagonal element of the upper
bidiagonal matrix By, 41 € RmTDx(m+1) ohtained by m + 1 steps of partial Lanczos
bidiagonalization, is given by

(2.1) Bm = Irmll

and therefore can be computed when the decompositions (1.3)-(1.4) are available. We
may assume that 8, > 0, because otherwise the singular values of B,, are singular
values of A and the associated singular triplets of A can be determined from the
singular value decomposition of B, and the matrices P, and @,,. If 3,, = 0 and
the determined singular triplets of A include all the desired ones, then we are done;
otherwise we proceed to compute additional singular triplets by the methods described
in this paper.
When 8, > 0, the last column of Pp,41 := [Pp,Pm+1] is given by

(22) Pm+1 = Tm/,Bm
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and the relation (1.4) can be expressed as
(2.3) ATQm = m+lBT{L,m+17

where the matrix By, ;41 € R™*(m+1) is obtained by appending the column f,,e,,
to Bp,. In particular, the matrices in the decomposition (2.3) are available after m
Lanczos bidiagonalization steps. We also note that By, -1 is the leading m x (m+1)
submatrix of the matrix By, 1 obtained after m+1 steps of Lanczos bidiagonalization.

We will use the connection between partial Lanczos bidiagonalization (1.3)-(1.4)
of A and partial Lanczos tridiagonalization of the matrix AT A. Multiplying equation
(1.3) by AT from the left-hand side yields

(2.4) AT AP, = P,BLB,, + rnel B,, = P,,BL B,, + amrmel,
where the last equality follows from the fact that B,, is upper bidiagonal. The matrix
(2.5) T, := BT B,, € R™*™

is symmetric and tridiagonal, and the expression (2.4) is a partial Lanczos tridiag-
onalization of AT A with initial vector p; = Pe;; see, e.g., [12, Section 9.1.2] for
a discussion on Lanczos tridiagonalization. Since T, is tridiagonal, equation (2.4)
shows that the columns of P, satisfy a three-term recurrence relation; the columns
form an orthonormal basis of the Krylov subspace

(2.6) K (AT A, p1) = span{p1, AT Ap1, (AT A)?py, ..., (ATA)™ p,}.
Similarly, multiplying (1.4) by A from the left-hand side yields

(2.7) AATQ. = QB BT + Arpel.

The columns of @, form an orthonormal basis of the Krylov subspace

(2.8) K (AAT, q)) = span{qi, AAT g, (AATY?q, ..., (AAT)m_lql}

with g1 := Ap;. We remark that since the columns of @),,, generally are not orthogonal
to Arp,, the decomposition (2.7) typically is not a Lanczos tridiagonalization of AAT.

Let {a](-B"‘), ugB”),vg-Bm)}, 1 < j < m, be the singular triplets of B,, enumerated
so that

(2.9) oiBm) > glBr) 5 > g(Bm) > 0,
Then, analogously to (1.2),

(2.10) Bpoi®™) = oyl BLyPm) = o Pmy(Bm) g <<,

and the m x m matrices of left and right singular vectors

UlBm) .= [ugB’”),ugB’"),...,ugf’")], V(Bm) .= [v%Bm),vz(,B’"),...,vﬁf”)],

are orthogonal.

a™ ey, 1< <m,of A

We determine approximate singular triplets {6§A), ;

from the singular triplets of B,, by

(2.11) g =0l @ = QP 5 = PP



Combining (2.10) with (1.3)-(1.4) shows that

212) AsM =5Wal, ATalM =5V el ulP 1< <m.

The equations (2.12) suggest that an approximate singular triplet {&g-A),ﬂ;A),ﬂg-A)}

be accepted as a singular triplet of A if rmeﬁug.B’") is sufficiently small. Specifically,

A) G 54
J

our numerical method accepts {&](- ;@ ’,0;"} as a singular triplet of A if

(2.13) Bmlelul| < o)A

for a user-specified value of §, where we have used (2.1). The quantity ||A|| in (2.13) is

easily approximated by the singular value 0§B’") of largest magnitude of the bidiagonal

matrix By,. The computation of agB”) is inexpensive because the matrix B, is
small. During the computations of the desired singular triplets of A, typically, several
matrices B,, and their singular value decompositions are computed. We approximate
||A|| by the largest of the singular values of all the matrices B,, generated. This
generally gives a good estimate of ||A]|.

3. Augmented Lanczos bidiagonalization methods. It is well known that
the implicitly restarted Arnoldi and Lanczos tridiagonalization methods described
by Sorensen [30] can suffer from numerical instability due to propagated round-off
errors. The instability can delay or prevent convergence of desired eigenvalues and
eigenvectors; see Lehoucq and Sorensen [22] for a discussion and remedies. Morgan
[26] showed that the implicitly restarted Arnoldi method by Sorensen [30] can be im-
plemented by augmenting the available Krylov subspace basis by certain Ritz vectors.
Such an implementation can be less sensitive to propagated round-off errors than the
implementation in [30]. Recently, Wu and Simon [34] described a so-called thick-
restarted Lanczos tridiagonalization method for the symmetric eigenvalue problem.
The method is based on augmenting Krylov subspaces by certain Ritz vectors; it is
simple to implement and is mathematically equivalent to the implicitly restarted Lanc-
zos tridiagonalization method of Sorensen [30]. This paper presents thick-restarted
Lanczos bidiagonalization methods. We remark that thick restarting techniques also
have been used in the context of the Jacobi-Davidson and Arnoldi methods for eigen-
value computations; see Stathopoulos et al. [32, 33] for discussions and analyses.

3.1. Augmentation by Ritz vectors. Let the partial Lanczos bidiagonaliza-
tion (1.3)-(1.4) be available, and assume that we are interested in determining the k
largest singular triplets of A, where k& < m. Note that the approximate right singular
vector 17](-’4) of A, defined by (2.11), is a Ritz vector of AT A associated with the Ritz

value (&J(-A))z. We have
(3.1) ATATY — 32 = aprmel o), 1<j<m.

The observation that the right-hand sides are parallel to r,, for all j forms the basis
of the restarted Lanczos tridiagonalization method by Wu and Simon [34] as well as
of the restarted Lanczos bidiagonalization method of this subsection.

We derive decompositions of the form (1.3)-(1.4) which allow us to choose the
first k columns of the matrix P,, as Ritz vectors. The accuracy of these approximate
left singular vectors, as well as of available approximate right singular vectors, is then
improved by restarting the computations. It follows from the orthonormality of the
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columns of the matrices P, and V,\P™) that the Ritz vectors 1";(’4) defined by (2.11)

are orthonormal. Moreover, equation (1.5) shows that the v( )

Let the Ritz vectors vj(- ), 1 < j <k, associated with the k largest Ritz values be
available, assume that r,,, # 0, and introduce the matrix

are orthogonal to r,,.

(32) Py =0, 50,0, Pl

In view of (2.2), the last column of Py, is parallel to the residual error (3.1). It
follows from (2.11) that

(3.3) APy = [0 e a6 e Apya].
Orthogonalization of Ap,,+1 against the vectors ﬂ;A) yields

k A
(3.4) Apmir = Y pal™ + 7,

Jj=1

where the remainder 7 is orthogonal to the vectors a§f‘", 1 < j < k. The coefficients

o (a§A))

pj: T Ap,y1 can be evaluated inexpensively by using the right-hand side of

(a§A))TApm+1 - P%+1AT1E§.A) =p£+1( (A) (A) +rmelu (Bm)) /BmeT 5(Bm)

We may assume that the vector 7y, is nonvanishing, because otherwise we can termi-
nate the iterations; see below. Introduce the matrices

Tk

(35) Q~k+1 = [aY‘)a agA)a ) agcA)7 ~ ]
[I7x]
and
b 0 4
k Pk

O Qg1

Thus, By41 may have nonvanishing entries only on the diagonal and in the last column.
Substituting (3.4) into (3.3) now yields the decomposition

3.7) APyy1 = Qry1Biy,

which is analogous to (1.3).
We turn to the matrix

(3.8) AT Quiy = ATa, AT, AT, AT
Tk

which we would like to express in terms of Pk+1 and Bk 41- This will give an analogue

of the decomposition (1.4). The first k columns of (3.8) are linear combinations of

~(A

the vectors ¥; ) and Pm+1; specifically,

3.9) ATa{M =5Vl +relulPm) = 6We +pap;, 1< <k,
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where we have used (2.2). The last column of (3.8) is orthogonal to the Ritz vectors
~(A)
[

J )

A
(AT 4T T ()&:0 1<j<k
! 7l ~ %7 Tl ’ T
and therefore it can be expressed as
7 ~ -
(3.10) ATHF—ZH = NPm+1 + frt1,

where fk+1 € R” is orthogonal to the vectors T)J(-A), 1 <5<k, as well as to pp41.
Since

~T

= T
ph AT — e _ T Apms = T Zpﬂ U 1711,
176l 7kl Il \ =

it follows from (3.10) that 4, = ||7x||. This observation, together with (3.9) and (3.10),
gives the expression

(3.11) AT Qi1 = Poi By + frrreiys,

which is the desired analogue of the decomposition (1.4). We remark that fy,; can
be computed from equation (3.10).

The similarity of the decompositions (3.7) and (3.11), and (1.3)-(1.4), suggests
that it may be possible to append new columns to the matrices Ppr; and Qg1 in
a way similar to Lanczos bidiagonalization. We will show that this is indeed the
case. For notational simplicity, denote the columns of Pyyq and Qry1 by p; and §j,
respectively, i.e.,

Rnx(k-i—l) fo(k-i-l) .

Pk-l—l = WI;ﬁQa"'aﬁk-i-l] S Qk—i—l = [17176725"%(119-}—1] €

We may assume that fi 1 # 0, because otherwise it follows from (3.7) and (3.11)
that the singular values of Bk+1 are singular values of A, and we are done. Thus, let

Brg1 = ||frs1ll and Pry2 := frt1/Brs1. Then the matrix Pryo = [Pry1,Pry2] has
orthonormal columns.

Let
(3.12) Gpradere = (I — Qrr1Qiyr) Abrr2s

where G2 > 0 is a scaling factor, such that G2 is of unit length. We comment on
the possibility of dyyo vanishing below. Equation (3.11) yields

(3.13) AT Qi1 = Py Bl s + BryiPrizeiias
and substituting (3.13) into (3.12) shows that
Gr2iie = APrrs — Ori1 (AT Q1) Broio
(3.14) = Aprya — Qrr1(Brar By + Brr1eriaiPris)Prya

= Aprto — Br1Qrt1€rt1 = Abry2 — B rr1.
8



Let Qpyo = [Qk+1,qk+2] € RE*+2) and define By, € RH2)x(k+2) by first ap-
pending the column Sj41ext1 and then the row dk+26kT+2 to Bg41, i.e.,

54 0 & 0
Biyo = &,(CA) Pk 0
k1 Brt1

O Olpq2

It now follows from (3.7) and (3.14) that
(315) APkJ,.Q == Qk+2.§k+2.

We turn to the derivation of a decomposition of the form (3.13) with k+1 replaced
by k + 2. Let

(3.16) Brsabris = (I — Pora Pl o) AT Gige,

where Bk+2 > 0 is a scaling factor, such that pr3 is of unit length. We may assume
that a positive coefficient fo exists, otherwise we are done; see below. Substituting
(3.15) into (3.16) yields

Brr2Pk+s = AT Grvo — PeyoBilisersa = AT Gy — GrtoPrio,
which, together with (3.13), shows that
(3.17) AT Qpyn = Prya B\ o + BrioPriseiys-

The decompositions (3.15) and (3.17) are analogous to (3.7) and (3.13). We therefore
can continue in the same fashion by appending new columns to the matrices P; and
(;, and new rows and columns to the matrices B;, for j =k +2,k+3,... . After a
total of m — k steps, we obtain the decompositions

(318) APm = Qmém: ATQm = Pmérqu + Bmﬁm—i—leﬂa

where the matrices P, and Qm have orthonormal columns and

EL 0 4 0 7
"
B, = Okt1 Br
Bm—l
| 0 G |

_ The method now proceeds by first computing the singular value decomposition of
B, and then determining the k largest approximate singular triplets of A from the k
largest singular triplets of B,,, cf. (2.11). These triplets define new decompositions

9



of the form (3.7) and (3.11), from which we compute new decompositions of the
form (3.18). The computations proceed in this manner until sufficiently accurate
approximations of the k largest singular triplets of A have been determined. An
algorithm is presented in Subsection 3.3 below.

We remark that the computations are analogous for determining the & smallest
singular triplets of A. The vectors T)](-A), 1< j <k, in (3.2) then should be replaced
by the right approximate singular vectors of the k£ smallest available approximate
singular triplets of A. These approximate singular triplets are used to define decom-
positions (3.7) and (3.11), from which we compute decompositions (3.18) in the same
manner as described above. We are interested in the k£ smallest singular triplets of the
matrix B, in the decompositions (3.18). These triplets yield approximations of the
k smallest triplets of A. The computations are continued until sufficiently accurate
approximations of the k£ smallest singular triplets of A have been found. However, we
note that when the k smallest singular triplets of A are desired, it can be advanta-
geous to augment by harmonic Ritz vectors instead. This is discussed in Subsection
3.2.

We finally comment on the cases when 7 vanishes in (3.4), and when the left-hand
sides of (3.12) and (3.16) vanish. In all these cases, one can show that the singular
values of the matrix B]- also are singular values of A and the singular triplets of B]-
yield singular triplets of A.

3.2. Augmentation by harmonic Ritz vectors. Augmenting by Ritz vectors
as described in the previous subsection, or equivalently, shifting by Ritz values, often
gives good approximations to the largest singular triplets of A. However, Kokiopoulou
et al. [18] observed that when seeking to compute the smallest singular triplets of
A, shifting by harmonic Ritz values can give faster convergence than shifting by
Ritz values. This section describes how shifting by harmonic Ritz values can be
implemented via augmentation by harmonic Ritz vectors. Harmonic Ritz vectors are
approximate eigenvectors of AT A associated with harmonic Ritz values of AT A.

Let the partial Lanczos bidiagonalization (1.3)-(1.4) of A be available and assume
that all the diagonal and superdiagonal entries of B,,,, as well as 3,, given by (2.1), are
nonvanishing. Then, in particular, B,, is nonsingular. The harmonic Ritz values éj of
AT A associated with the partial Lanczos tridiagonalization (2.4) are the eigenvalues
of the generalized eigenvalue problem
(3.19) (BLBp)? + a2, 2 emel Yiv; = 0,BL Bpib;,  1<j<m,

m

with @; € R™\{0}; see, e.g., Morgan [25] or Paige et al. [28] for properties of harmonic
Ritz values. .

The eigenpairs {6;,w;} of (3.19) can be computed without forming the matrix
BT B,, as follows. Let

(320) wj = Bm’lf}j.
Then (3.19) can be expressed as
(3.21) (BB, + Bremen)wj = 65w;,

where we may choose the eigenvectors w; to be orthonormal. Let By, 41 be the
matrix in (2.3) and note that

(3.22) Bimm+1By i1 = BmBy, + Bremern.
10



Introduce the singular triplets {U(B"‘ "‘+1),u§ ™ m+1),v§ ™ ’”+1)} 1 < j < m, of the
matrix By, ;41 and let them be enumerated so that

(3.23) 0< J§Bm’m+1) < UgB'"""“) <... < gBmmin),

This enumeration differs from the one for the singular values of B,,, cf. (2.9), because
in the present subsection we are concerned with the computation of the £ < m
smallest singular triplets of A. Throughout this subsection, we use the following
simplified notation

1 _(Bm,m+1) 1 _  (Bm,m+1) 1 (Bm,m+1)
0; =0, , uj = uj , vj = v; )

The k smallest singular triplets of By, ;41 determine the matrices

Up o= [uy, v, . . ., u)] € R™*F
(3.24) Vi = [v),0h,. .., v}] € ROVFUXE
¥, = diag[o}, 05, ..., 0%] € RF*F

where U, and V| have orthonormal columns, and
(3-25) BumsiVi = Uik, BpmaUp = ViSh.

We refer to (3.25) as a partial singular value decomposition of By, my1. It follows
from (3.22) and (3.25) that {(0})?,u}} is an eigenpair of (3.21), and (3.20) shows
that {(0})?, B,,'u}} is an eigenpair of (3.19). Thus, the eigenpairs of (3.19) and
(3.21) associated with the k smallest eigenvalues can be determined from the partial
singular value decomposition (3.25). Gu and Eisenstat [13] describe how the singular
value decomposition of By, 41 can be computed by updating the singular value
decomposition of B,,; see also Bunch and Nielsen [7]. However, when A is large
and m is small, the computational effort required for determining the singular value
decompositions of By, and By, m+1 is negligible. We will therefore not dwell on the
computation of (3.25).

The harmonic Ritz vector of AT A associated with the harmonic Ritz value ; is
given by

(3.26) ’ﬁj = Pm’lij,

see, e.g., [25, 28]. Morgan [27] recently pointed out that the residual errors associated
with different harmonic Ritz pairs {éj,ﬁj} are parallel. We show this result for the
problem at hand, because this property is central for our augmentation method. Thus,
using (2.4), (3.20), (3.21), and (3.26), we obtain

AT Ap; — 6;0; = ATAPi; —6; Pmus,

(P, BTB +amrme Yij — 0, P
P,.(BT B, — 6;I,,); +amrme%w1
P.B;, (B BT 0;In)w; + rmel w;
PmB
6T

ot (=P, gmeTwm?)«meﬁwj
— B2 PnB

It is convenient to define the scaled residual vector

(3.27) P := Pmt1 — BmPm B, e
11



where we have used (2.2).
We are in a position to derive relations analogous to (3.7) and (3.11) for harmonic
Ritz vectors. Equations (3.20), (3.26), and (3.27) yield

=177y _ —1
[0101, 020, - - s 0k 0)s Prm] = Prmt1 [ Fm gkz’“ ﬂmlfm o,
where the matrix P,,4; is the same as in (2.3). Introduce the QR-factorization
B-lUY,  —BmBle
(3.28) m Ok k Bm lm " ] = Q2+1R;g+17

where Q) ; € RmM+UX(k+1) has orthonormal columns and R}, € RF+DX(k+1) jg
upper triangular.
Consider the matrix

(3.29) Pk+1 = [P1,D2, -+ > Pkt1] == Pm+1Q2:+l‘

Its columns p; are orthonormal since both Py, 1 and Q) , have orthonormal columns.
The equations (1.3) and (3.28) yield

APy, = (AP, Apm11]Qia

B—lUIEI _ mB_lem _
Z[QmBmaApm-H] mok k ﬂ 1m ( ;c+1) !

= [QmU]:; ;u —Bmdm + Apm-i—l](R;H_l)_l-

In the derivation of our method, we only assume that the matrix B,, is upper trian-
gular, because B,,, has this property after restarts. Below we comment on possible
simplifications when B,, is upper bidiagonal.

Let

(3.30) Qr == QmU,.
The columns of this matrix are orthonormal, and we define the Fourier coefficients
& =192 -, lT = QF (~Bmim + Aprsa)-
The vector
Qk1Ger1 = —Bmm + Apmi1 — Qrér

is orthogonal to the columns of Qk and the scaling factor dgy; > 0 is chosen so that
Gk+1 is of unit length. It follows that

(3.31) APey1 = Q1 Biya,

where

(3.32)  Qut1 = [Qr,dry1] € RXEHD,

o 0 %
) o)

(3.33) By = : (R, 1)~ € RUFDX(k+)
o Yk

O Q1

12



Thus, Qk+1 has orthonormal columns and Ek+1 is the product of two upper triangular
matrices, one of which has nonzero entries only on the diagonal and in the last column.
In particular, Bpy1 is upper triangular. The decomposition (3.31) is the desired
analogue of (3.7). When B,, is given by (1.6), one can show that dgr+1 = ama1,
(jk-l,-l = Qm+1, and ék =0. .

We now derive an analogue of the decomposition (3.11). Let Q) be given by
(3.30). Then equation (3.25) yields
(3.34) ATQy = ATQuUf, = Puy1 BL 11 Ui = P ViSh.
It follows from the decomposition on the left-hand side of (3.25) that

(I, BmB;, em]Vi = B;,' Uy S5,

and therefore

B-1U'S!  —B, B-le I
I __ m k<—k m~m Pm
S B el | et

Substituting (3.35) into (3.34), using (3.28) and (3.29), gives

Iy,

(3.36) ATQy = Pr1Ql 1 Ry [ RV
m+1"'k

N I
Y =P, R [ ] pI
] k k+14bk 1 erTn+1VkI k

Let Bk,kﬂ be the leading k x (k + 1) submatrix of the upper triangular matrix
Byj41 in (3.31). Then (3.31) yields

(3.37) QF APyi1 = By -
It follows from (3.36) that

Iy,

ka+1ATQk = R;c+1 [ el v ] ks
m+1'k
and comparison with (3.37) shows that

I ] -
! k EI — BT
k+1 T [ k — “k,k+1-
+ [ em—i-lvk +

Hence, equation (3.36) can be expressed as
(3.38) ATQy = 1319+1BkT,k+1-
We turn to the last column, AT g1, of ATQry1. Equation (3.31) yields
By AT Gy = BiLy Q1 Grr = Bl exin = Grprer,
where éj41 denotes the last diagonal entry of Bk+1. Thus,
(3.39) AT Gry1 = Qg1 Prrs + Frat,
where PT, 71 = 0. Combining (3.38) and (3.39) yields

(3.40) AT Qi1 = Peya By + Frpref o,
13



which is the desired analogue of (3.11). Note that the residual vector 7y; can be
computed from equation (3.39), because the other terms are explicitly known.

Let Bri1 = ||Fes1ll and ppyo := Fry1/Brs1, and define
Piyo = [Pry1,bk42), Bz = [Bigt, Brrensa]-

Then (3.40) can be written in the form

TA _ P T
A Qk—i-l = Pk+2Bk+1,k+2a

which is an analogue of (2.3).
Given the decompositions (3.31) and (3.40), we can proceed analogously as in
Subsection 3.1 to compute the decompositions

(3.41) APy = OnBry  ATOn = Py BT + el

where Py, € R"*™ has orthonormal columns with leading n x (k + 2) submatrix Py,
Qm € R™ has orthonormal columns with leading £ x (k + 1) submatrix Qg1, and

Beyr Brer O
Oryo  Bryz

Qrt3  Pres
G Rm Xm

&
3
Il

IBm—l

0 dom

has the (k+1) x (k+1) leading principal submatrix By, and an (m—k—1)x (m—k—1)
upper bidiagonal trailing principal submatrix. The residual vector 7., is orthogonal
to the columns of P,. The method of this subsection can be restarted by letting
B, = Bm; Py = Pm; Qm = Qm; Tm = Tm, and B 1= ”rm”

We remark that the accurate computation of the vector B,, e, used in (3.28), can
be difficult when the matrix B,, has a large condition number &(B,,) := o) / agB’"),
where the singular values are enumerated as in (3.23). In this case, we switch from
augmentation by harmonic Ritz vectors to augmentation by Ritz vectors. Details are
provided in the following subsection.

3.3. An augmented Lanczos bidiagonalization algorithm. We describe an
algorithm for the computation of a few of the largest or smallest singular triplets of a
large matrix A. The algorithm is based on augmentation by Ritz vectors or harmonic
Ritz vectors as described in the previous subsections. The Boolean variable harmonic
suggests the type of augmentation used. If harmonic is true and B,, is not too ill-
conditioned, then the augmentation scheme of Subsection 3.2 is applied; otherwise
augmentation is carried out according to Subsection 3.1.

ALGORITHM 3.1. AUGMENTED LANCZOS BIDIAGONALIZATION

Input: A € RE*™ or functions for evaluating matriz-vector products
with the matrices A and AT,
p1 € R™ : initial vector of unit length,
m : number of bidiagonalization steps,

14



k : number of desired singular triplets,

4 : tolerance for accepting computed approzimate singular triplet, cf. (2.13),
€ : machine epsilon,

harmonic : Boolean variable that suggests type of augmentation; see above.

Output: Computed set of approzimate singular triplets {o;,u;,v; };?:1 of A.

Compute the partial Lanczos bidiagonalization (1.3)-(1.4) using Algorithm 2.1.
Compute the singular value decomposition (2.10) of B,.
Check convergence: If all k desired singular triplets satisfy (2.13) then exit.
Compute the augmenting vectors:
4a. if not harmonic or k(By,) > €'/ then
Determine the matrices P := Pit1; Q := Qry1, B := Byyq, and
vector v := fry1 by (3.2), (3.5), (3-6), and (3.10), respectively.
4b. if harmonic and K(B,,) < e /2 then
Compute the partial singular value decomposition (3.24) of Bm,m+1
and the QR-factorization (3.28). X X
Determine the matrices P := Pit1, Q := Qky1, B := Biy1, and
vector r := Fry1 by (3.29), (3.32), (3.38), and (3.39), respectively.
5. The available matrices P, QQ, B, and the vector r satisfy

o o~

AP = (B, ATQ = PBT +ref.

Append m — k columns to the matrices P and @), and m — k rows and columns
to the matriz B. Denote the matrices so obtained by Pp,, Qn,, and By,
respectively. Determine a new residual vector and denote it by oy, .

6. Goto 2.

The above algorithm is a simplification of the actual computations carried out.
For instance, the algorithm exits when a matrix B, that is numerically singular
has been detected, but the available decompositions of A can be used to determine
singular triplets of A; see the discussion in Section 1. Moreover, the number of aug-
mented vectors used at each restart typically is larger than the number of desired
singular triplets. Assume that k' of the desired k singular triplets have been found.
We then augment by k + k" (instead of k) singular triplets, where k" is chosen as
large as possible, such that k" < k' and k¥ + k" < m — 3. The term —3 secures
that at least 3 orthogonalization steps can be carried out between restarts. This ap-
proach has been advocated by Lehoucq [21] in the context of the implicitly restarted
Arnoldi method. It often yields faster convergence without increasing the memory re-
quirement. Finally, our implementation enforces two-sided reorthogonalization when
k(By,) > €~'/2. MATLAB code is available at the authors’ home pages.

4. Numerical examples. All computations were carried out using MATLAB
version 6.5 R13 on a Dell 530 workstation with two 2.4 GHz (512k cache) Xeon
processors and 2 GB (400 MHz) of memory running under the Windows XP operating
system. Machine epsilon is € = 2.2 - 10716,

We compare our methods, outlined by Algorithm 3.1, with methods recently
proposed by Hochstenbach [15, 14], Kokiopoulou et al. [18], as well as with MATLAB’s
internal function svds, and the scheme proposed in [2]. Hochstenbach [15, 14] presents
a Jacobi-Davidson method. This is a powerful scheme when a good preconditioner
for the linear system of equations that has to be solved is available. In our computed
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examples, we assume that no good preconditioner is known, and apply the method
without preconditioner. The linear system of equations is solved by the GMRES
iterative method. The MATLAB implementation! jdsvd offers several extraction
choices, such as standard, u-harmonic, v-harmonic, double-harmonic, and refined. In
our numerical examples, refined extraction often gave best accuracy. This is consistent
with results reported by Hochstenbach [15]. We refer to the Jacobi-Davidson method
with refined extraction as jdsvd(Ref). The code jdsvd is still under development
and we used the version available to us at the time of the numerical experiments.

Our methods are mathematically, but not numerically, equivalent to the methods
proposed by Kokiopoulou et al. [18]. We used the MATLAB implementation irlanb?
by Kokiopoulou et al. [18] in our comparison. The code irlanb calls Larsen’s MAT-
LAB code lanbpro [19] to compute partial Lanczos bidiagonalizations with partial
reorthogonalization. irlanb is designed for computing a few of the smallest singular
triplets, but not for computing a few of the largest ones. The code therefore is not
used in Examples 4 and 5 below. Ritz values and harmonic Ritz values can be used as
shifts. We refer to irlanb with these shift selections as irlanb(R) and irlanb(H),
respectively. The code irlanb is still under development and we report results for
the version available to us at the time of the numerical experiments.

The internal MATLAB function svds uses FORTRAN codes of ARPACK [23].
It calls an eigenvalue routine to compute eigenvalue-eigenvector pairs associated with
positive eigenvalues of the symmetric matrix

(4.1) 7 .= [ f?T 61 ] e R x(¢+n) |

The matrix Z has the eigenvalues
:EU£A), :taéA), . :ta,(LA),

as well as /—n zero eigenvalues, where we as usual assume that £ > n. The eigenvectors
of Z yield both the right and left singular vectors of A. The method requires the
computation of eigenpairs associated with eigenvalues near zero when determining
the smallest singular triplets of A. This can be difficult when Z has many positive
and negative eigenvalues of large magnitude. For this reason, the svds function uses
a shift-and-invert approach for computing the smallest singular triplets. This requires
factorization of the matrix Z, and therefore the function svds typically demands much
more storage than the other methods in our comparison. Since svds does not yield
the number of linear systems of equations that have to be solved, we only report the
CPU-time required.

The MATLAB code irblsvds implements an implicitly restarted block-Lanczos
method applied to the matrix (4.1) for the computation of a few singular triplets of
A. The method and code are described in [2, 3].> The matrix Z is only used for
evaluation of matrix-vector products; in particular, the matrix Z is not factored. The
code irblsvds generally is not well suited for computing the smallest singular triplets
of A when £ — n is large, because then Z has £ — n zero eigenvalues and the code
may determine these eigenvalues and associated eigenvectors instead of eigenpairs
associated with tiny singular triplets of A. Unless indicated otherwise, we use the

LCode is available at http://www.case.edu/artsci/math/hochstenbach/software/jdsvd.html
2Code is available at http://www.hpclab.ceid.upatras.gr/scgroup/software/software.html
3Code is available at the authors’ home pages.
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default value 3 for the block-size in our experiments with irblsvds. The largest
number of consecutive block-Lanczos steps is chosen so that irblsvds has about the
same storage requirement as the other codes. We note that of the methods used in the
examples of this section, only the ones of the present paper are based on augmented
matrix formulations.

TABLE 4.1
Parameters for irlba.

adjust Initial number of vectors added to the k restart vectors to speed up
convergence. Default value: adjust = 3.

aug A 4-letter string. The value RITZ yields the augmentation described
in Subsection 3.1; the value HARM gives augmentation according to
Subsection 3.2. Default value: aug = HARM if sigma = SS, and
aug = RITZ if sigma = LS.

disps ~ When disps > 0, available approximations of the k desired singular
values and norms of associated residual errors are displayed each it-
eration; disps = 0 inhibits display of these quantities. Default value:
disps = 0.

k Number of desired singular triplets. Default value: k = 6.

mazxit Maximum number of restarts. Default value: maxit = 100.

steps Maximum number of Lanczos bidiagonalization steps. The parameter
specifies the largest value of steps m in (1.3)-(1.4) and determines the
storage requirement of the method. Default value: steps = 20.

reorth A 3-letter string. The value ONE yields one-sided full reorthogonal-
ization on the “shorter” vectors; the value TWO gives two-sided full
reorthogonalization. When our available estimate of k(A), see the dis-
cussion following (2.13), is larger than e~'/2, two-sided full reorthogo-
nalization is used. Default value: reorth = ONE.

sigma A 2-letter string (SS for smallest and LS for largest) which specifies
which extreme singular triplets are to be computed. Default value:

sigma = LS.

é Tolerance used for convergence check; see (2.13). Default value: § =
107,

Vo Initial vector for Lanczos bidiagonalization. When £ > n, p; := vg;

cf. Algorithm 2.1. Default value: vg is a random vector with normally
distributed entries.

The schemes of Subsections 3.1 and 3.2 are implemented by the MATLAB code
irlba.® The execution of irlba is determined by certain user-specified parameters;
see Table 4.1. We refer to the augmentation method of Subsection 3.1, based on Ritz
vectors, as irlba(R), and to the augmentation method of Subsection 3.2, based on
harmonic Ritz vectors, as irlba(H). The scheme irlba(R) with one- and two-sided
full reorthogonalization is referred to as irlba(R1) and irlba(R2), respectively. The
analogous implementations of irlba(H) are denoted by irlba(H1) and irlba(H2).
One-sided full reorthogonalization reorthogonalizes the columns of the smaller one of
the matrices P,,, and @,,. Thus, when £ > n, the columns of P,, are reorthogonalized.

The codes irblsvds, irlanb, jdsvd, and svds allow a user to choose numerous
parameters that affect their performance. Unless stated otherwise, we use the default
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values for the parameters. Except for the function svds, we choose the parameters
that affect storage so that all codes require about the same maximum computer
storage.

It is impossible to use the same starting vector for all the methods, since some
routines work with A and A7, others with the matrix Z. To make our comparison less
dependent on the choice of starting vector, we record the best results for each method
over 5 runs using default random starting vector(s) generated by each code. We use
the same starting vector when the same method is applied with different parameter
values. The reported number of matrix-vector products is the total number of matrix-
vector product evaluations with A4 and A7 for irlba, irlanb, and jdsvd, and with
Z for irblsvds.

A=diag(1:100) A=diag(1:200)
svds svds
jdsvd(Ref) jdsvd(Ref)
iranb(R) \ iranb(R) \
inanb(H) \ inanb(H) \
irblsvds ‘ irblsvds ‘
irlba(R2) irba(R2)
irlba(H2) irlba(H2)
irba(R1) irba(R1)
irlba(H1) irba(H1)
0 0:4 0‘.8 112 0 0‘.6 112 1‘.8 2:4 3
CPU Time (Secs.) CPU Time (Secs.)
A=diag(1:300) A=diag(1:400)
svds svds
jdsvd(Ref) jdsvd(Ref)
inanb(R) \ inanb(R) \
inanb(H) \ iranb(H) \
irblsvdls \ ilsvdls \
irlba(R2) irba(R2)
irba(H2) irlba(H2)
irba(R1) irba(R1)
irlba(H1) irba(H1)
0 1‘.2 2‘.4 316 4‘.8 6 0 2 4 6 8 10
CPU Time (Secs.) CPU Time (Secs.)

F1G. 4.1. Ezample 1: CPU times for computing the smallest singular triplet.

Example 1. (Smallest singular value). We would like to compute the smallest
singular triplet of the diagonal matrices

A:=diag[l,2,...,n],  n=100,200,300,400.
18



Each code was instructed to determine only one singular triplet, the smallest one. This
corresponds to the parameter values sigma = SS and k = 1 for irlba. We allowed
each one of the codes irlba, irlanb, jdsvd, and irblsvds about the amount of
storage required for carrying out 20 Lanczos bidiagonalization steps. In particular, the
largest number of consecutive block-Lanczos steps allowed by irblsvds was limited
to 7 (with block-size 3). This corresponds to about the same storage requirement as
21 Lanczos bidiagonalization steps. We let adjust := 4 for irbla, see Table 4.1. This
forces both the irlba and irlanb codes to apply the same number of bidiagonalization
steps in the first restart. We chose the tolerance 10~ for all codes, i.e., § := 1078 in
(2.13). For the jdsvd code we only report refined extraction, because this extraction
method was the fastest. Figure 4.1 displays the CPU times required for the different
methods. MATLAB’s svds function is seen to be fastest. This may depend on that
svds is not coded in MATLAB, and that it is based on a shift-and-invert approach.
For large problems shift-and-invert may require unacceptable amounts of memory
and execution time; however, when computation and storage of factors of matrices of
the form Z — 71, where 7 is a scalar, is feasible, then this is approach is attractive.
Among the methods that only use the matrices A and A7 for evaluating matrix-vector
products, irlba is seen to be competitive. O

Example 2. (Smallest singular values). We are interested in determining the
smallest singular triplets of four matrices generated in MATLAB with the commands

A = randn(n), A(:,1) = A(:,10),

for n = 200,400, 600,800. Here A = randn(n) determines an n x n matrix with
normally distributed entries with mean zero and variance one. The command A(:,1) =
A(:,10) overwrites column 1 by column 10 and secures that the matrix obtained has
a zero singular value. This example illustrates that augmentation by harmonic Ritz
vectors can give substantially faster convergence than augmentation by Ritz vectors.

The code irlba was used with tolerance 6 := 107!, two-sided reorthogonaliza-
tion, and carried out up to 30 consecutive Lanczos bidiagonalization vectors between
restart (start := 30). Figure 4.2 shows the convergence to zero of the smallest com-
puted singular value. The vertical axis displays the absolute error in the smallest
computed singular value, i.e., the smallest computed singular value, and the hori-
zontal axis shows the number of restarts. The cross-over label indicates when irlba
switched from augmenting with harmonic Ritz vectors to augmenting with Ritz vec-
tors. As mentioned in Subsection 3.2, augmentation by harmonic Ritz vectors requires
the solution of a linear system of equations with the matrix By, (while augmentation
by Ritz vectors does not). We switch from augmentation by harmonic Ritz vectors to
augmentation by Ritz vectors when the condition number of the matrix B,, is larger
than the square-root of the reciprocal of machine epsilon; cf. Algorithm 3.1.

We remark that computing singular triplets with numerically vanishing singular
values is not always possible since the approximated left singular vectors 115-’4) are ob-
tained from the Krylov subspace (2.8), which is restricted to the range of A. However,
in presence of round-off errors, irlba often is able to successfully compute singular
triplets associated with zero singular values. O

Example 3. (Smallest singular values). We consider the 1033 x 320 matrix
WELL1033 and the 1850 x 712 matrix WELL1850 from the set LSQ in the Harwell-
Boeing Sparse Matrix Collection [10]. These matrices arise from surveying problems.
We would like to determine the 6 smallest singular triplets of these matrices, and
select the parameters for the different codes accordingly. For instance, for irlba we
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— Ritz

A :=randn(n) and A(;,1) := A(;,10) harmonic Ritz
10’ ‘ ‘ 10’
n=200 ] n =400
1 0-10 . 1 0—10 /
10SS~over Cross-over
(restart 32) (restart 104)
1 0—20 1 0—20
0 20 40 60 0 50 100 150 200
Number of restarts Number of restarts
0 0 T
10 n =600 10 n=2800
-10 -10 / -
10 / E 10 Cross-over
Cross—over (restart 395)
(restart 190)
107 107
0 100 200 300 400 0 200 400 600
Number of restarts Number of restarts

F1g. 4.2. Ezample 2: Absolute error in the smallest singular value computed by irlba ver-
sus number of restarts using augmentation with Ritz vectors (solid curve) and augmentation with
harmonic Ritz vectors (dotted curve). After the cross-over point augmentation is with Ritz vectors.

let sigma := SS and k := 6. All codes are allowed the amount of storage required
for 40 Lanczos bidiagonalization steps. The number of implicit QR-steps in irlanb
is chosen to be 31; this choice is consistent with the default value of the parameter
adjust of irlba. It forces irbla and irlanb to apply the same number of Lanczos
bidiagonalization steps in the first restart. The tolerance for all methods is set to
d = 1078, irlanb with augmentation by harmonic Ritz vectors gave better results
than augmentation by Ritz vectors. We therefore only report results for the former.
The restarted block-Lanczos method irblsvds used block-size 4 and was allowed
to carry out at most 10 consecutive block-Lanczos steps between restarts. jdsvd
gave the best results for refined extraction. Therefore we do not report results for
other extraction methods. MATLAB’s svds function was unable to find any of the
desired singular triplets to requested accuracy for either one of the matrices. Table 4.2
summarizes the computed results. The table shows that irlba was able to compute
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TABLE 4.2

Ezample 3: Computation of the 6 smallest singular triplets of the matrices

WELL1850.

WELL1033 and

irlba(H1)
matrix # matrix-vector | CPU | magnitude of
products time | largest error
WELL1033 638 0.36s | 2.41-1071'°
WELL1850 1442 1.39s 1.72-10713
irlba(H2)
matrix # matrix-vector | CPU | magnitude of
products time | largest error
WELL1033 638 0.59s | 2.14-1071'®
WELL1850 1442 2.41s 1.72-10713
irblsvds
matrix # matrix-vector | CPU | magnitude of
products time | largest error
WELL1033 7520 18.67s | 8.53-10716
WELL1850 16080 77.53s | 1.11-107'°
irlanb (H)
matrix # matrix-vector | CPU | magnitude of
products time | largest error
WELL1033* - — -
WELL1850 1578 8.31s | 3.03-10°1°

* Method failed to convergence.

jdsvd (Ref)
matrix # matrix-vector | CPU | magnitude of
products time | largest error
WELL1033 1978 2.66s | 4.15-10710
WELL1850 4244 7.69s | 6.84-107!2

all 6 singular values with the fewest matrix-vector product evaluations and the least
CPU time for both matrices. O

Example 4 (Largest singular values). The matrices MEDLINE, CRANFIELD,
and CISI are standard term-by-document test matrices and can be obtained from the
Cornell SMART FTP server? or the TMG web page®. They are of size 5735 x 1033,
4563 x 1398, and 5544 x 1460, respectively. We also consider the term-by-document

4ftp://ftp.cs.cornell.edu/pub/smart.
Shttp://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/ .
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matrix HYPATIAS of size 11390 x 1265 with 109056 non-zero terms from the web
server at the Department of Mathematics, University of Rhode Island. HYPATTA
was created in the same manner as standard term-by-document test matrices. All
test matrices use the local term frequency (i.e., number of times a word occurs on a
website) and have no global weighting or normalization. The parameter values chosen
for the different methods are consistent with our desire to determine the 10 largest
singular triplets for each one of these matrices; for irlba we let sigma :=LS and
k := 10. The available storage is assumed to be large enough to simultaneously store
all vector generated during 20 consecutive steps of Lanczos bidiagonalization. The
tolerance & in the stopping criterion is 1076, Since we seek to determine the largest
singular triplets, irbla uses the augmentation method of Section 3.1. We report the
results for one-sided and two-sided full reorthogonalization. The code irblsvds was
used with block-size 4 and was allowed to carry out at most 5 consecutive block-
Lanczos steps between restarts. The fastest extraction method for jdsvd was refined.
Table 4.3 displays the performance of the methods and illustrates the competitiveness
of irlba. The code irlanb is not part of our comparison, since it is designed for the
computation a few of the smallest singular triplets, only. O

Example 5 (Condition number). We would like to determine the condition num-
ber k(A) := 0§A) / oY, where the singular values are enumerated according to (1.1),
of the Liuchli matrix A := L(n,u) € RTDX" for n = 20000 and the default value
of u.” Thus, A has ones across the top row and p on the subdiagonal; the remaining
matrix entries are zero. This matrix often is used to illustrate the drawback of forming
AT A in least-squares computations; see [19]. The Léiuchli matrix A is nonsingular; it
has the simple singular value \/n + p? and the singular value y of multiplicity n — 1
giving the condition number k(A) = 9.490724975767860 - 10°, and therefore AT A is
numerically singular. irlba only implicitly works with the matrix A7 4 and is able to
compute x(A). Specifically, we let sigma :=LS and SS, k := 1, and allow the storage
required for all vectors generated by 20 consecutive steps of Lanczos bidiagonaliza-
tion. The tolerance ¢ in the stopping criterion is set to machine epsilon €. Two-sided
full reorthogonalization was employed. We augmented by Ritz vectors when comput-
ing the largest singular value and, until the matrices B,, became ill-conditioned, by
harmonic Ritz vectors when determining the smallest singular value. irlba required
0.703 and 0.796 seconds of CPU time to compute the largest and smallest singular
values of A, respectively, and gave the condition number 9.490724975767925 - 10° with
a relative error of 6.83 - 10715, Thus, the fact that AT A is numerically singular does
not cause irlba problems. O
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TABLE 4.3

Ezxample 4: Computation of the 10 largest singular values of the matrices MEDLINE, CRAN-
FIELD, CISI, and HYPATIA.
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irlba(R1)
matrix # matrix-vector CPU time magnitude of
products matrix-vector one-sided Total | largest error
products reorthogonalization
MEDLINE 74 0.24s 0.061s 0.34s | 1.08-10710
CRANFIELD 78 0.38s 0.078s 0.53s | 9.46-10712
CISI 76 0.33s 0.030s 0.45s | 5.80-10~11
HYPATIA 78 0.39s 0.174s 0.75s | 9.75-10~10
irlba(R2)
matrix # matrix-vector CPU time magnitude of
products matrix-vector two-sided Total | largest error
products reorthogonalization
MEDLINE 74 0.17s 0.111s 0.41s | 1.08-10710
CRANFIELD 78 0.35s 0.124s 0.56s | 2.64-1071!2
CISI 76 0.30s 0.125s 0.52s | 7.80-101!
HYPATIA 78 0.47s 0.266s 0.88s | 9.75-10710
irblsvds
matrix # matrix-vector CPU time magnitude of
products largest error
MEDLINE 436 4.55s 5.09-10710
CRANFIELD 508 5.72s 3.28-10710
CISI 564 6.39s 2.41-10710
HYPATIA 432 9.36s 2.15-107%
jdsvd (Ref)
matrix # matrix-vector CPU time magnitude of
products largest error
MEDLINE 218 2.25s 7.32-10710
CRANFIELD 240 2.58s 7.16-10711
CISI 218 2.39s 2.93-10710
HYPATIA 240 4.70s 4.43-10~10
svds
matrix CPU time magnitude of
largest error
MEDLINE 1.06s 4.94-10712
CRANFIELD 1.48s 2.64- 10711
CISI 1.58s 2.73-10712
HYPATIA 2.53s 1.02- 10711




