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Abstract. Nutrient-phytoplankton-zooplankton interaction with general
uptake functions in which nutrient recycling is either instantaneous or de-
layed is considered. To account for higher predation, zooplankton’s death
rate is modeled by a quadratic term instead of the usual linear function.
Persistence conditions for each of the delayed and non-delayed models are
derived. Numerical simulations with data from the existing literature are
explored to compare the two models. It is demonstrated numerically that
increasing zooplankton death rate can eliminate periodic solutions of the
system in both the instantaneous and the delayed nutrient recycling models.
However, the delayed nutrient recycling can actually stabilize the nutrient-
plankton interaction.
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1 Introduction

Deterministic mathematical models of nutrient-plankton interaction with dif-
ferent complexity have been constructed and analyzed since the pioneering
work of Riley et al. [1] in which a simple diffusion model was proposed. The
majority of these latter models are formulated in terms of ordinary differen-
tial equations [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However, models
of partial differential equations arise when spatial inhomogeneity of either
nutrient or plankton distribution is incorporated [16, 17, 18, 19, 20, 21, 22].

The importance of nutrient recycling has been well documented [23] and
extensively investigated for closed ecological systems. Nutrient recycling in
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many of these studies is usually assumed to be instantaneous. In other words,
the time that is required to regenerate nutrient from dead plankton via bac-
terial decomposition is neglected in the model formulation. The consider-
ation of delayed nutrient recycling dates back to Beretta et al. [24, 25] in
the early 1990s, where they modeled an open chemostat system with a single
species of phytoplankton feeding upon a limiting nutrient and only past dead
phytoplankton is partially recycled into the nutrient concentration. They
examined the effect of delayed nutrient recycling upon the stability of the
interior steady state. In a more recent study by Ruan [11], both the in-
stantaneous and the delayed nutrient recycling were considered for an open
nutrient-phytoplankton-zooplankton system. Ruan’s numerical simulations
demonstrated that the delayed nutrient recycling model exhibits more oscil-
lations than the instantaneous nutrient recycling model [11].

Following the work of Lotka-Volterra, the death rate of an organism in
most of the mathematical models is usually modeled by a linear functional,
i.e., the per capita mortality rate of a biological population is a constant.
The simplicity of this assumption makes the model mathematically tractable.
The choice of zooplankton’s mortality is biologically controversial and it has
a significant impact on the dynamics of the resulting system. A quadratic
term used to model zooplankton death rate was initiated by Edwards and
Brindley [5]. They demonstrated numerically that the limiting cycle behavior
for which a linear death rate was considered disappeared when a quadratic
death rate for zooplankton was assumed.

The purpose of this study is to investigate nutrient-plankton interaction in
an open ecological system with both the instantaneous and delayed nutrient
recycling, where we use a quadratic term to model zooplankton mortality.
Parameter values cited in the existing literature are numerically simulated
to make our comparison. For each of these models, explicit conditions are
derived for population persistence. Unlike other ecological models for which
delays can destabilize the system, our numerical simulations presented here
suggest that delayed nutrient recycling can actually stabilize the nutrient-
plankton system. Moreover, the periodic solution of the system disappeared
as we increase zooplankton’s mortality rate, and this finding is the same as
that of the result obtained by Edwards and Brindley [5].

The remaining manuscript is organized as follows. The nutrient-plankton
model with instantaneous nutrient recycling is presented in the next section.
Section 3 studies the model with delayed nutrient recycling. Numerical ex-
amples and simulations are given in section 4. The final section provides a
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brief summary and discussion.

2 The model with instantaneous nutrient recycling

Let N(t), P (t), and Z(t) be the nutrient concentration, the phytoplankton
population, and zooplankton population at time t, respectively. The two
plankton levels are modeled in terms of nutrient content and therefore their
units are nitrogen or nitrate per unit volume. We let γ and δZ denote the
per capita death rate of phytoplankton and zooplankton respectively. The
quadratic mortality rate δZ2 is used to model higher predation by inver-
tebrate upon zooplankton. In a natural nutrient-plankton system, waters
flowing into the system bring input of fluxes of nutrients and outflows also
carry out nutrients [23]. We assume that the input nutrient concentration is
a constant and is denoted by N0. The rate of the waters flowing in and out
of the system is assumed to be a constant D. However, we use D1 and D2 for
phytoplankton population and zooplankton population washout rate respec-
tively, where D, D1, and D2 may be different to account for other physical
consideration such as sinking of phytoplankton.

The phytoplankton nutrient uptake and zooplankton grazing are modeled
by general functionals f and g, respectively, and our analysis is carried out
for these general functions. However, we will use particular functional form
for our numerical study in later section. The functional responses f and g
are assumed to satisfy the following hypotheses.

(H1) f ∈ C1([0,∞)), f(0) = 0, f ′(x) > 0 for x ≥ 0 and lim
x→∞

f(x) = 1.

(H2) g ∈ C1([0,∞)), g(0) = 0, g′(x) > 0 for x ≥ 0 and lim
x→∞

g(x) = 1.

In particular, Michaelis-Menten kinetics, Ivelev and Holling type III sat-
isfy both hypotheses. Let parameter a be the maximal nutrient uptake rate
of phytoplankton and b be the maximal zooplankton ingestion rate. Param-
eters α and c are the fraction of zooplankton grazing conversion and nutrient
recycling, respectively.

Since phytoplankton uptakes nutrient and zooplankton preys on the phy-
toplankton, there are minus terms −af(N)P and −bg(P )Z in the equa-
tions for Ṅ and Ṗ , respectively. Positive feed back terms γ1P , cδZ2 and
(1 − α)bg(P )Z will appear in the equation Ṅ due to recycling. Our model
with the above biological assumptions can be written as the following three
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dimensional ordinary differential equations.

Ṅ = D(N0 −N)− af(N)P + γ1P + cδZ2 + (1− α)bg(P )Z

Ṗ = af(N)P − γP − bg(P )Z −D1P (2.1)

Ż = αbg(P )Z − δZ2 −D2Z

N(0), P (0), Z(0) ≥ 0,

where 0 < γ1 ≤ γ, 0 < α, c ≤ 1 and D,N0, a, b, D1, D2, δ > 0.
The parameters in system (2.1) and their biological meanings are summarized
below.

N0 − constant input nutrient concentration

D − nutrient input and washout rate

D1 − phytoplankton washout rate

D2 − zooplankton washout rate

a − maximal nutrient uptake rate by phytoplankton

γ − phytoplankton death rate

γ1 − phytoplankton recycling rate, 0 < γ1 ≤ γ

δ − zooplankton death rate

c − zooplankton recycling rate, 0 < c ≤ 1

b − maximal zooplankton ingestion rate of phytoplankton

α − zooplankton conversion rate, 0 < α ≤ 1

Clearly solutions of (2.1) exist for all positive time. If N(0) = 0, then
Ṅ(0) > 0 implies N(t) > 0 for t > 0 sufficiently small. On the other hand if
there exists t0 > 0 such that N(t0) = 0 and N(t) > 0 for 0 ≤ t < t0, then
Ṅ(t0) > 0 and we obtain a contradiction. This shows that N(t) > 0 for t > 0.
Similar arguments can be shown that P (t) and Z(t) remain nonnegative for
all positive time. Let T = N +P +Z. Then Ṫ ≤ D(N0−N)−D1P −D2Z ≤
DN0 −D0T , where D0 = min{D, D1, D2}. Thus

lim sup
t→∞

(N(t) + P (t) + Z(t)) ≤ DN0

D0

,

and we conclude the following lemma.

Lemma 2.1 Solutions of (2.1) are nonnegative and bounded.
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Our next step is to find simple solutions of (2.1). The trivial equilibrium
E0 = (N0, 0, 0) always exists for (2.1). A steady state on the interior of

NP -plane exists if f(N) =
γ + D1

a
has a solution N1 and N1 < N0. In

this case the steady state is unique and is denoted by E1 = (N1, P1, 0),

where P1 =
D(N0 −N1)

γ + D1 − γ1

> 0. Clearly there is no interior steady state on

the NZ-coordinate plane due to the fact that zooplankton is obligate to
phytoplankton. The existence of an interior steady state is difficult to derive
analytically due to the quadratic term δZ2 in (2.1) and its uniqueness is also
not clear either. However if (N̄ , P̄ , Z̄) is a positive steady state, then N̄ > N1

by the second equation of (2.1).
From the Jacobian matrix associated with system (2.1) we can conclude

that E0 is locally asymptotically stable if af(N0) < γ + D1 and E1 is locally
asymptotically stable if αbg(P1) < D2. In particular, E0 is locally asymp-
totically stable if a ≤ γ + D1. In the following we show that E0 is globally
asymptotically stable if the inequality is true.

Theorem 2.2 If a ≤ γ + D1, then E0 is the only equilibrium and solutions
of (2.1) converge to E0.

Proof. The uniqueness of the steady state E0 is trivial. Note Ṗ < (a−D1−
γ)P implies lim

t→∞
P (t) = p̂ exists. By using lim

t→∞
Ṗ (t) = 0, we have p̂ = 0.

Thus for any ε > 0 there exists t0 > 0 such that P (t) < ε for t ≥ t0. We
choose ε > 0 such that αbg(ε)−D2 < 0. Hence Ż(t) ≤ [αbg(ε)−D2]Z(t) for
t ≥ t0 implies lim

t→∞
Z(t) = 0. Consequently for any ε > 0, there exists t1 > 0

such that P (t), Z(t) < ε for t ≥ t1. Therefore Ṅ(t) ≤ D(N0 − N) + γ1ε +
cδε2 + (1− α)bg(ε)ε if t ≥ t1, and hence

lim sup
t→∞

N(t) ≤ DN0 + γ1ε + cδε2 + (1− α)bg(ε)ε

D
.

Letting ε → 0+, we have lim sup
t→∞

N(t) ≤ N0. Similarly since there exists

M > 0 such that N(t) ≤ M for t ≥ 0, we have

Ṅ ≥ D(N0 −N)− af(M)ε

for t ≥ t1 and it can be shown that lim inf
t→∞

N(t) ≥ N0. Thus lim
t→∞

N(t) = N0

and E0 is globally asymptotically stable.
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Theorem 2.3 If af(N0) > γ + D1, then steady states E0 = (N0, 0, 0) and
E1 = (N1, P1, 0) both exist for (2.1), where E0 is unstable and E1 is globally
asymptotically stable on the positive NP -plane. In addition

(a) if αbg(P1) < D2, then (2.1) has no positive steady state and E1 is
locally asymptotically stable.

(b) if αbg(P1) > D2, then E1 is unstable and system (2.1) is uniformly
persistent.

Proof. Since af(N0) > γ+D1 and (H1) holds, af(N) = γ+D1 has a solution
N1 < N0. Thus steady state E1 exists and E0 is unstable. We apply the
Dulac criterion to eliminate the existence of a nontrivial periodic solution in
the NP -plane by choosing B(N, P ) = 1/P for N ≥ 0, P > 0. Then

∂

∂N
(BṄ) +

∂

∂P
(BṖ ) = −D/P − af ′(N) < 0

for N ≥ 0, P > 0. Therefore E1 is globally asymptotically stable on the NP
plane by the Poincaré-Bendixson Theorem.

(a) Suppose now αbg(P1) < D2. It’s clear that E1 is locally asymptotically
stable by the Jacobian matrix J(E1). We prove that (2.1) has no positive
steady state. Suppose on the contrary that (2.1) has a positive steady state
E2 = (N̄ , P̄ , Z̄). Then αbg(P̄ ) = δZ̄ + D2 > D2 and thus P̄ > P1. On
the other hand, D(N0 − N̄) = (γ + D1 − γ1)P̄ + D2Z̄ + (1 − c)δZ̄2 and
D(N0 − N1) = (γ + D1 − γ1)P1 < (γ + D1 − γ1)P̄ < D(N0 − N̄) imply
N1 > N̄ . This contradicts an earlier observation that N1 < N̄ . Hence (2.1)
has no interior steady state.

(b) Since αbg(P1) > D2, it follows from the Jacobian matrix at E1 that
E1 is unstable. Moreover, since (2.1) is dissipative, the remaining assertion
follows from the standard techniques of uniform persistence theory. Indeed,
since E1 is globally asymptotically stable on the positive NP plane, unstable
in the positive direction orthogonal to the NP plane, and E0 is globally
asymptotically stable on the positive NZ plane and unstable in the direction
orthogonal to the NZ plane, (2.1) is weakly persistent and thus uniformly
persistent [26].

Notice that system (2.1) may not have a positive steady state (N̄ , P̄ , Z̄)
even when af(N0) > γ + D1 and αbg(P1) > D2. We illustrate this point by
considering the case when δ = 0. It follows from the third equation of (2.1)
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that P̄ must solve g(P ) =
D2

αb
. After some straightforward calculations, it

can be seen that N̄ satisfies

D(N0 −N) + γ1P̄ − αaf(N)P̄ − (γ + D1)(1− α)P̄ = 0. (2.2)

Since the derivative of the left hand side of (2.2) with respect to N is negative,
a positive solution N̄ exists if

DN0 + γ1P̄ > (1− α)(γ + D1)P̄ .

If the above inequality is satisfied, then a unique positive steady state (N̄ , P̄ , Z̄)
exists if in addition af(N̄)− γ−D1 > 0. Therefore the positive steady state
may not always exist even when both boundary steady states are unsta-
ble. This conclusion is very different from previous plankton models studied
by many authors [7, 8, 9, 3, 5, 14, 15] for which a positive steady state is
guaranteed to exist if the boundary steady states are unstable. Numerical
simulations in section 4 will illustrate the observation made here.

3 The model with delayed nutrient recycling

In this section we incorporate delayed nutrient recycling into model (2.1).
The model now takes the following form.

Ṅ = D(N0 −N)− af(N)P + (1− α)bg(P )Z + γ1

∫ t

−∞
F1(t− s)P (s)ds

+cδ

∫ t

−∞
F2(t− s)Z2(s)ds

Ṗ = af(N)P − γP − bg(P )Z −D1P (3.1)

Ż = αbg(P )Z − δZ2 −D2Z

N(0) ≥ 0, P (x) = φ(x), Z(x) = ψ(x),−∞ < x ≤ 0,

where φ, ψ : (−∞, 0] → [0,∞) are bounded and continuous, and the delay

kernels Fi : [0,∞) → [0,∞) are continuous, bounded and satisfy

∫ ∞

0

Fi(s)ds =

1 for i = 1, 2. The assumptions about f and g are given in (H1) and (H2),
respectively.

Lemma 3.1 Solutions of (3.1) are nonnegative and bounded.
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Proof. Let (N(t), P (t), Z(t)) be a solution of (3.1). Clearly if P (t0) = 0
for some t0 ≥ 0, then P (t) = 0 for t ≥ t0. The same is true for Z(t). If
N(0) = 0, then Ṅ(0) > 0 implies N(t) > 0 for t > 0 sufficiently small.
Suppose on the other hand there exists t1 > 0 such that N(t1) = 0 and
N(t) > 0 for 0 < t < t1. Then we must have Ṅ(t1) ≤ 0. But it follows from
the first equation of (3.1) that Ṅ(t1) ≥ DN0 > 0. We obtain a contradiction.
Hence we conclude that solutions of (3.1) are nonnegative.

To show solutions of (3.1) are bounded, we construct a Liapunov function
as follows. Let V : R3

+ → R+ be defined by

V = N + P + Z + γ1

∫ ∞

0

∫ t

t−s

F1(s)P (u)duds + cδ

∫ ∞

0

∫ t

t−s

F2(s)Z
2(u)duds.

Then V ≥ 0, V → ∞ as ‖(N, P, Z)‖ → ∞ and the time derivative of V
along the trajectories of (3.1) is

V̇ = Ṅ + Ṗ + Ż + γ1

∫ ∞

0

[F1(s)P (t)− F1(s)P (t− s)]ds

+ cδ

∫ ∞

0

[F2(s)Z
2(t)− F2(s)Z

2(t− s)]ds

= D(N0 −N) + γ1P + cδZ2 − γP − δZ2 −D1P −D2Z.

Let S = {(N, P, Z) ∈ R3
+ : DN0 = DN+(γ−γ1)P+(1−c)δZ2+D1P+D2Z}.

Then V̇ < 0 in the positive octant outside of the region bounded by the
surface S. As a result, solutions of (3.1) are bounded by [27].

Since the delay kernels are normalized to one, it is straightforward to see
that system (3.1) always has steady state E0 = (N0, 0, 0), and the existence
of boundary steady state E1 = (N1, P1, 0) is the same as system (2.1). Let
n = N − N0, p = P and z = Z. The linearization [28, 29] of (3.1) with
respect to E0 yields the following system

ṅ = −Dn− af(N0)p + γ1

∫ t

−∞
F1(t− s)p(s)ds

ṗ = af(N0)p− γp−D1p (3.2)

ż = −D2z.

Let B∗(λ) denote the Laplace transform of F1, i.e., B∗(λ) =

∫ ∞

0

e−λsF1(s)ds.

The roots of the characteristic equation associated with E0 are the zeros of
the determinant of the following matrix
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


λ + D af(N0)− γ1B
∗(λ) 0

0 λ− af(N0) + γ + D1 0
0 0 λ + D2


 .

It follows that the roots of the characteristic equation are −D,−D2 and
af(N0) − γ − D1. Therefore E0 is locally asymptotically stable for (3.1) if
af(N0) < γ+D1. In the following we show that E0 is globally asymptotically
stable if a ≤ γ + D1.

Theorem 3.2 If a ≤ γ + D1, then E0 = (N0, 0, 0) is globally asymptotically
stable for (3.1).

Proof. Let (N(t), P (t), Z(t)) be a solution of (3.1). The proof of lim
t→∞

P (t) = 0

and lim
t→∞

Z(t) = 0 follows similarly as in the proof of Theorem 2.2. It is then

straightforward to show that

∫ t

−∞
F1(t− s)P (s)ds = 0. Indeed, for any ε > 0

there exists t0 > 0 such that P (t) < ε for t ≥ t0. Since solutions of (3.1) are
bounded, there exists K > 0 such that K = sup−∞<t<∞P (t) < ∞. Thus

∫ t

−∞
F1(t− s)P (s)ds =

∫ t0

−∞
F1(t− s)P (s)ds +

∫ t

t0

F1(t− s)P (s)ds

=

∫ ∞

t−t0

F1(s)P (t− s)ds +

∫ t

t0

F1(t− s)P (s)ds

≤ K

∫ ∞

t−t0

F1(s)ds + ε

→ ε as t →∞.

Since ε > 0 is arbitrary, this completes the claim. Similarly since lim
t→∞

Z(t) =

0, we can prove that lim
t→∞

∫ t

−∞
F2(t − s)Z2(s)ds = 0. It follows from the

first equation of (3.1) that lim
t→∞

N(t) = N0 and E0 is globally asymptotically

stable.

We remark that the proof of Theorem 3.2 can be carried over to the case
when P (0) = 0 without the assumption a ≤ γ + D1 as zooplankton feeds
upon phytoplankton alone. Therefore E0 is always globally asymptotically
stable on the NZ-plane. If af(N0) > γ + D, then E0 is unstable and there
exists a steady state E1 = (N1, P1, 0), where N1, P1 are defined as in section
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2. Let n = N −N1, p = P −P1 and z = Z. The linearization of system (3.1)
at E1 yields the following system

ṅ = −Dn− af ′(N1)P1n− af(N1)p + (1− α)bg(P1)z + γ1

∫ t

−∞
F1(t− s)p(s)ds

ṗ = af ′(N1)P1n− bg(P1)z (3.3)

ż = αbg(P1)z −D2z.

The characteristic equation satisfies

[λ− αbg(P1) + D2]{λ2 + [D + af ′(N1)P1]λ + af ′(N1)P1[af(N1)− γ1B
∗(λ)]}

= 0.

Clearly one solution is λ = αbg(P1) − D2, which is real. The remaining
solutions satisfy

λ2 + [D + af ′(N1)P1]λ + af ′(N1)P1[af(N1)− γ1B
∗(λ)] = 0. (3.4)

Notice that λ = 0 cannot be a solution of (3.4) as B∗(0) = 1 and af(N1) =
γ + D1 > γ1. Moreover, (3.4) is also the characteristic equation of the NP
subsystem of (3.1) at steady state (N1, P1). We derive a sufficient condition
such that solutions of (3.4) lie on the left half complex plane and thus we can
conclude that (N1, P1) is locally asymptotically stable for the NP subsystem
of (3.1). Our argument given here is similar to that of MacDonald [30].

Since solutions of (3.4) are continuous functions of the coefficients and
it is known from section 2 that (N1, P1) is globally asymptotically stable for
the NP subsystem when there is no delay, it is sufficient to examine the
case when solutions of (3.4) are pure imaginary. Observe that if λ = βi is a
solution, then λ = −βi is also a solution. Thus letting λ = βi, β > 0, (3.4)
becomes

−β2 + [D + af ′(N1)P1]βi + a2f ′(N1)P1f(N1)

af ′(N1)P1γ1

=

∫ ∞

0

e−βsiF1(s)ds.

Let the left hand side of the above equation be denoted by F (βi). Since

|
∫ ∞

0

e−βsiF1(s)ds| ≤ 1, a necessary condition for z = βi to be a solution of

(3.4) is |F (βi)| ≤ 1. We shall impose a condition on the parameters so that
the necessary condition |F (βi)| ≤ 1 is violated and consequently we will be
able to conclude that solutions of (3.4) have negative real parts.
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Let

G(β) = |F (βi)|2

=
[a2f ′(N1)f(N1)P1 − β2]2

a2[f ′(N1)]2P 2
1 γ2

1

+
β2[D + af ′(N1)P1]

2

a2[f ′(N1)]2P 2
1 γ2

1

.

Then G(0) =
a2[f(N1)]

2

γ2
1

> 1 as af(N1) = γ + D1 > γ1, and G′(β) =

4β3 + 2β[(D + af ′(N1)P1)
2 − 2a2f ′(N1)f(N1)P1]

a2[f ′(N1)]2P 2
1 γ2

1

. Therefore if

[D + af ′(N1)P1]
2 ≥ 2a2f ′(N1)f(N1)P1 (3.5)

then G′(β) > 0 for β > 0. Hence |F (βi)| > 1 for all β > 0. Consequently,
the real parts of λ’s of solutions of (3.4) are negative if (3.5) is satisfied. We
summarize our results into the following.

Theorem 3.3 If af(N0) > γ + D, αbg(P1) < D2 and (3.5) holds, then
E1 = (N1, P1, 0) is locally asymptotically stable for (3.1).

Therefore as long as local asymptotic stability of E1 is concerned, delayed-
nutrient recycling model can destabilize the system. Suppose now αbg(P1) >
D2 so that E1 is unstable. Similar to section 2 we adopt the concept of
persistence to show long term survival of the populations. Specifically, sys-
tem (3.1) is said to be uniformly persistent if there exists m > 0 such that
lim inf

t→∞
N(t) ≥ m, lim inf

t→∞
P (t) ≥ m, and lim inf

t→∞
Z(t) ≥ m for any solution

of (3.1) with N(0) > 0, φ(x) > 0 and ψ(x) > 0 for −∞ < x ≤ 0. In the
following we apply Theorem 3.3 of Ruan and Wolkowicz [31] to provide a set
of sufficient conditions for which system (3.1) is uniformly persistent.

Theorem 3.4 Suppose af(N0) > max{γ+D1+D2, γ+D} and αbg(P1) > D2

hold. Then system (3.1) is uniformly persistent.

Proof. We need to construct a Liapunov-like function. Define ρ(N, P, Z) =
NPZ. Then ρ is continuous on R3

+, ρ(N,P, Z) = 0 if and only if either
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N = 0, P = 0 or Z = 0. Moreover,

ψ(N,P, Z) =
ρ̇(N, P, Z)

ρ(N, P, Z)

= D(
N0

N
− 1)− af(N)P/N + (1− α)bg(P )Z/N

+ γ1/N

∫ t

−∞
F1(t− s)P (s)ds + αbg(P )− δZ −D2

+ cδ/N

∫ t

−∞
F2(t− s)Z2(s)ds + af(N)− γ − bg(P )Z/P −D1,

where ψ(N0, 0, 0) = af(N0)−γ−D1−D2 > 0 and ψ(N1, P1, 0) = 1/N1[D(N0−
N1)−af(N1)P1+γ1P1]+αbg(P1)−D2 = αbg(P1)−D2 > 0, i.e., ψ(N, P, Z) >
0 at E0 and E1. Thus (3.1) is uniformly persistent by [31].

4 Numerical simulations

In this section we will use numerical simulations to study systems (2.1) and
(3.1). Michaelis-Menton functions as nutrient uptake rate for phytoplankton
are frequently adopted by many researchers. We will first use Michaelis-

Menton forms to simulate our models. Specifically, f(N) =
N

k + N
, where the

half-saturation constant k varies from 0.02 to 0.25. The zooplankton grazing

rate is also modeled by a Michaelis-Menton function g(P ) =
P

m + P
, where

m has the same range as that of k. This range was within the parameter
region given in [5], which was collected from different research articles using
these functional forms. The model for the instantaneous nutrient recycling
is given below.

Ṅ = D(N0 −N)− aNP

k + N
+ cδZ2 + (1− α)

bPZ

m + P
+ γ1P

Ṗ =
aNP

k + N
− γP − bPZ

m + P
−D1P (4.1)

Ż = α
bPZ

m + P
− δZ2 −D2Z

N(0), P (0), Z(0) > 0.
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For the delayed model, we choose delay kernels F1(t − s) = 0.02e−0.02(t−s)

and F2(t− s) = 0.01e−0.01(t−s). Consequently, model (3.1) becomes

Ṅ = D(N0 −N)− aNP

k + N
+ (1− α)

bPZ

m + P
+ 0.02γ1

∫ t

−∞
e−0.02(t−s)P (s)ds

+0.01cδ

∫ t

−∞
e−0.01(t−s)Z2(s)ds

Ṗ =
aNP

k + N
− γP − bPZ

m + P
−D1P (4.2)

Ż = α
bPZ

m + P
− δZ2 −D2Z

N(0), P (0), Z(0) > 0.

Specific parameter values are D = D1 = D2 = 0.01, N0 = 1.0, a =
b = c = 0.6, k = m = 0.2, γ = 0.2, γ1 = 0.15 and α = 0.25. These
parameter values are within the range of the values investigated by [5]. Note
that in this case N1 = 0.1077, and P1 = 0.1487. Also af(N0) = 0.5 >
γ + D1 = 0.21 and αbg(P1) = 0.064 > D2 = 0.01. Therefore it follows from
Theorems 2.2 and 3.4 that systems (4.1) and (4.2) are uniformly persistent.
However, simulations suggest that there exists no positive steady state when
δ > 0 is small. When δ = 0.1, numerical simulations indicate that there is a
unique positive periodic solution and solutions of (4.1) with positive initial
conditions are asymptotic to this positive periodic solution. This is also true
for the delayed model (4.2). As we increase δ, the positive periodic solution
disappeared and there exists a unique positive steady state. Simulations also
demonstrate that solutions of (4.1) and respectively (4.2) with positive initial
conditions converge to the positive steady state. From the plot we can see
that the solution converges to the positive steady state with initial condition
N(0) = 0.1 P (0) = 0.4 and Z(0) = 0.2. However, convergence of solutions
of (4.2) to the steady state are faster than convergence of solutions of (4.1)

Put Figure 1 here

Bifurcation diagrams using δ as our bifurcation parameter are given here,
where we plot the minimum and maximum values of the components of the
positive periodic solution when it exists. As shown on these figures, positive
periodic solutions occur first and then followed by positive steady state as
we increase δ, where δ0 is the smallest δ value for which the positive steady
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state is non-hyperbolic. From these numerical simulations for both delayed
and non-delayed models, we conclude that the predation by higher predator
upon the zooplankton can stabilize the system, i.e., the quadratic death rate
of zooplankton can eliminate periodic solution. This conclusion is similar
to the one obtained in [3] for which the method of numerical simulation
was explored. Moreover, from these plots we see that the values of δ0 for
model (4.2) are smaller than those δ0s’ values for the non-delayed model
(4.1). Therefore we can conclude that the delayed model can stabilize the
system. This numerical finding is very different from the common belief that
delay can destabilize the system.

Put Figure 2 here

We now change D’s values but keep other parameter values fixed except
δ. Specifically, we use D = D1 = D2 = 0.1 and δ = 0.001. Simulations
suggest that the system now has a unique positive steady state and solutions
of system (4.1) with positive initial conditions all converge to this steady
state. The same is true for system (4.2).

We next change phytoplankton uptake rate f(N) to f(N) =
N2

k + N2
, with

the same k value as models (4.1) and (4.2), k = 0.2. Clearly this functional
form satisfies (H1) and is often referred to as a Holling-III functional response.
Simulations show that similar numerical results are obtained when D = D1 =
D2 = 0.01.

5 Discussion

Nutrient-plankton interaction with different complexities have been inten-
sively investigated. In addition to its central role in the global carbon cycle,
planktonic communities comprise a wide diversity of organisms that form the
basis of marine food webs. A recent paper by Grover [32] used a stoichiom-
etry approach with several nutrients to investigate plankton interaction. In
this manuscript we studied nutrient-phytoplankton-zooplankton models with
a single nutrient in a natural open system. The per capita death rate of
zooplankton is modeled by a linear function of the zooplankton population
instead of a constant. This assumption takes into account the higher level
predation upon zooplankton. The consideration was first incorporated and
investigated by [4]. They showed numerically that a quadratic zooplankton
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death rate can eliminate the periodic solutions for which a linear death rate
was used.

Our analysis showed that the mortality rate of zooplankton plays no role
in the system for persistence of both plankton populations. This observation
is illustrated in Theorem 2.3(b) and Theorem 3.4. Moreover, local stability
of the boundary steady states for either the instantaneous or delayed nutrient
recycling model is also independent of the zooplankton death rate. However,
our numerical simulations in this study suggest that zooplankton’s quadratic
death rate can eliminate the existence of periodic solutions for which a linear
zooplankton mortality was employed. This is demonstrated by the bifurca-
tion diagrams given in Figures 5-7 and 14-16 with δ > 0 very small. With the
same parameter values given in both the instantaneous and delayed nutrient
recycling models, we see from these bifurcation diagrams that the delayed
model can actually stabilize the system. That is, δ0 in the delayed model
is smaller than δ0 in the non-delayed model. This numerical result is very
different from the common belief that delay can destabilize the system. On
the other hand natural systems are in general stable. This study provides
valuable finding that delay may not destabilize the system if the system in-
corporates more complex and more realistic assumptions within the model.
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Figure 1: The top two figures are for system (4.1) while the bottom figures
are for system (4.2). Solutions with initial condition N(0) = 0.1, P (0) = 0.4
and Z(0) = 0.2 are plotted.
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Figure 2: Bifurcation diagrams are given here. The top figures are for system
(4.1) and the bottom figures are for system (4.2).
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Figure 3: When D, D1 and D2 are increased to 0.1, both systems (4.1) and
(4.2) have a unique positive steady state even when δ is very small as shown
by the top two figures for systems (4.1) and (4.2), respectively. The bottom
two figures use Holling-III as phytoplankton nutrient uptake rate.
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