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Abstract. A model of interaction between nutrient, prey, and predator with
intratrophic predation of the predator and a limiting periodic nutrient input
is proposed and studied. Dynamics of the system are shown to depend on
two thresholds. These thresholds are expressed in terms of certain periodic
solutions of the system. Intratrophic predation can have impact on the model
only if both thresholds are greater than zero. In this case positive periodic
solutions exist. Numerical techniques are then used to explore the effect of
intratrophic predation by examining the mean value and stability of these
positive periodic solutions. It is demonstrated numerically that intratrophic
predation can increase the stability region of the positive periodic solutions.
It can also elevate the mean values of prey population and decrease the
mean values of nutrient concentration for stable positive periodic solutions.
Moreover, intratrophic predation can eliminate the chaotic behavior of the
system when the degree of intratrophic predation is larger enough.
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1 Introduction

Classical predator-prey models have been used to study nutrient-plankton
interaction. The intensive investigation of this simple food chain in var-
ious complexity has helped researchers in understanding and interpreting
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nutrient-plankton phenomenon. In most of these studies, each plankton pop-
ulation is modeled explicitly. Therefore, either the systems are very simple
to allow for mathematical analysis, or else numerical simulations are used as
a tool to study the large systems. Since ecosystems may involve hundreds of
species, it is almost impossible to model the interaction within an ecosystem
explicitly. Therefore, intratrophic predations arise when a large number of
species are lumped together and considered as a single population. In this
case it is very likely that some of the species of the population might prey
on other species of the same population. Unlike the classical predator-prey
models, intratrophic predation on the contrary has received only little atten-
tion. Its discussion stems from a survey paper on evolution and intraspecific
predation by Polis [14], who demonstrated that cannibalism is an interesting
and important mechanism in population dynamics.

By using continuous-time, age-structured population models, Bosch, Roos
and Gabriel [20], and Cushing [2] studied cannibalism and have contributed
to the understanding of this biological phenomenon. Aside from cannibalism,
however, intratrophic predation may include broader biological mechanisms
as mentioned above. Kohlmeier and Ebenhoh [11] incorporated intratrophic
predation in a simple Lotka-Volterra predator-prey model by assuming that
the food resource that is available to the predator is a weighted sum of
prey and predator densities. Their numerical simulations indicated a strong
increase of both prey and predator as the intensity of intratrophic preda-
tion increases. Pitchford and Brindley [13] analyzed the model proposed by
Kohlmeier and Ebenhoh [11] and concluded that the numerical findings in
[11] may not always be true. However, they showed that intratrophic pre-
dation always increases the coexisting equilibrium value of the prey and its
stability when such a mechanism is very small.

Unlike the two trophic levels studied by the previous authors [11, 13],
Jang and Baglama [10] considered intratrophic predation in a nutrient-prey-
predator model with a limiting constant nutrient input. That is, the food
resource of prey was modeled explicitly. The incorporation of nutrient con-
centration as a state variable was motivated by the benthic ecosystem in
which different zooplankton species may be regarded as a single predator
population and some of the species may prey on the others. Under the
same modeling methology as Kohlmeier and Ebenhoh [11], and Pitchford
and Bradley [13], they showed that the mechanism of intratrophic predation
can influence the dynamics of the model only if basic reproductive numbers
of both prey and predator are greater than 1. In this case, the mechanism
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always decreases the nutrient concentration and increases the prey popula-
tion for any interior equilibrium. However, unlike the assumption made in
Pitchford and Bradley [13] for which the intensity of intratrophic predation
is assumed to be very small, the findings presented in [10] are valid for any
degree of intratrophic predation.

There are numerous observations supporting the evidence that the in-
put limiting nutrient may vary with time [3, 12]. To incorporate day/night
or seasonal cycles, one may model the limiting nutrient input periodically.
Our main objective in this study is to investigate the effect of intratrophic
predation on the dynamics of such a system. The incorporation of periodic
input nutrient has been studied previously for chemostat systems by several
researchers which includes Hsu [9], Smith [16], Hale and Somolinos [6], Yang
and Freedman[21], and more recently by Ruan [19] for nutrient-plankton
system. Our model presented here differs from those classical chemostat sys-
tems and nutrient-plankton systems as the food resource that is available to
the predator is a linear combination of both prey and predator populations
instead of only prey population.

It is proved that the dynamics of the model depend on two thresholds.
We show that intratrophic predation can have impact on the dynamics of
the model only if these two thresholds are positive. Numerical techniques
are then exploited to study the effect of the mechanism. The simulations
clearly indicate that intratrophic predation can increase the mean value of
prey population and decrease the mean value of nutrient concentration for
stable positive periodic solutions. Moreover, intratrophic predation can also
increase the stability of the positive periodic solutions and eliminate the
phenomenon of sensitive dependence on initial conditions when the degree
of intratrophic predation is sufficiently large. As a result, the mechanism
has the effect of stabilizing the nutrient-plankton interaction in a variable
nutrient input environment.

In the following section, a mathematical model is presented and its dy-
namical consequences are discussed. Numerical simulations complementing
these analytical results will be given in Section 3. The final section provides
a brief summary and discussion.
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2 The model

Let x(t) be the nutrient concentration or the food resource of prey at time t.
We assume in the absence of prey, the nutrient is governed by the chemostat
law. To incorporate seasonal or day/night cycles, we assume that the input
nutrient concentration varies periodically about a mean value. Consequently,
the nutrient concentration in the absence of prey is governed by the periodic
equation ẋ = k(x0 + ae(t) − x), where k is the constant input rate, or the
washout rate, x0 is the constant input nutrient concentration, a, where 0 <
a < x0, is the amplitude of the oscillation, and e(t) is τ -periodic with mean
value 0 and |e(t)| ≤ 1.

Let y(t) be the prey population at time t. The uptake of prey is modeled

by the Michaelis-Menten kinetics
m1x

a1 + x
, where a1 is the half-saturation con-

stant and m1 is the maximal nutrient uptake rate of prey. We let α denote
the net nutrient conversion rate and γ the death rate of prey. The preda-
tor population at time t is denoted by z(t). Similar to the models given in
[10, 11, 13], the food resource that is available to the predator is modeled
by y + bz, where b, 0 ≤ b ≤ 1, is the measure of intensity of intratrophic
predation. If b = 0, there is no intratrophic predation and consequently the
prey is the only food resource for the predator. If b = 1, the predator regards
prey and predator alike and thus preys on both populations indiscriminately.

We use a Holling-II functional response to model the predator’s uptake
rate, with half-saturation constant a2. Let m2 and δ be the maximal uptake
rate and the death rate of predator respectively, and let β be the net prey
conversion rate. Putting all these assumptions together, our model is given
by the following system of ordinary differential equations.

ẋ = k(x0 + ae(t)− x)− m1xy

a1 + x

ẏ =
αm1xy

a1 + x
− m2yz

a2 + y + bz
− γy (2.1)

ż =
βm2(y + bz)z

a2 + y + bz
− m2bz

2

a2 + y + bz
− δz

x(0), y(0), z(0) ≥ 0,

where k, x0,m1, a1,m2, a2, γ, δ > 0, 0 < α, β ≤ 1, and 0 ≤ b ≤ 1.
Let us now study system (2.1). Consider the τ -periodic differential equa-
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tion

ẋ = k(x0 + ae(t)− x). (2.2)

It’s easy to see that (2.2) has a unique τ -periodic solution x∗(t), where

x∗(t) =
ke−kt

ekτ − 1

∫ t+τ

t

ekr(x0 + ae(r))dr (2.3)

and every solution x(t) of (2.2) can be written as x(t) = x∗(t) + (x(0) −
x∗(0))e−kt and thus x(t)− x∗(t) → 0 as t →∞.

The first step in understanding system (2.1) is to show that solutions
of the system remain nonnegative and are bounded, so that system (2.1) is
biologically meaningful.

Lemma 2.1 Solutions of (2.1) are nonnegative and (2.1) is dissipative.

Proof. Since ẋ|x=0 = k(x0 + ae(t)) > 0, ẏ|y=0 = 0 and ż|z=0 = 0, solutions of
(2.1) remain nonnegative for t ≥ 0. Let S = x + y + z. Then

Ṡ ≤ k(x0 + ae(t)− x)− γy − δz

≤ k(x0 + a− x)− γy − δz

≤ k(x0 + a)− k0(x + y + z)

where k0 = min{k, γ, δ}. It follows that

lim sup
t→∞

(x(t) + y(t) + z(t)) ≤ k(x0 + a)

k0

.

Moreover, since Ṡ|
S=

k(x0+a)
k0

≤ 0, we have x(t) + y(t) + z(t) ≤ k(x0 + a)

k0

for

all t large. This shows that system (2.1) is dissipative.

Clearly, (2.1) always has a trivial τ -periodic solution (x∗(t), 0, 0). We let

σ0 =
1

τ

∫ τ

0

[
αm1x

∗(t)
a1 + x∗(t)

− γ

]
dt.

Theorem 2.2 If σ0 < 0, then solutions (x(t), y(t), z(t)) of (2.1) satisfy
lim
t→∞

y(t) = lim
t→∞

z(t) = lim
t→∞

(x(t)− x∗(t)) = 0 for all 0 ≤ b ≤ 1.
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Proof. Since ẋ ≤ k(x0 + ae(t)− x), it follows from (2.2) that x(t) ≤ x∗(t) +
(x(0)−x∗(0))e−kt for t ≥ 0. Thus for any ε > 0, there exists t0 ≥ 0 such that
x(t) ≤ x∗(t) + ε for t ≥ t0. We choose ε > 0 so that

∫ τ

0

[
αm1(x

∗(t) + ε)

a1 + x∗(t) + ε
− γ

]
dt < 0.

As ẏ ≤ y

(
αm1x

a1 + x
− γ

)
, we have

y(t) ≤ y(0)e

∫ t0

0

[
αm1x(r)

a1 + x(r)
− γ

]
dr

e

∫ t0+nτ

t0

[
αm1(x

∗(r) + ε)

a1 + x∗(r) + ε
− γ

]
dr

= y(0)e

∫ t0

0

[
αm1x(r)

a1 + x(r)
− γ

]
dr

e

∫ nτ

0

[
αm1(x

∗(r) + ε)

a1 + x∗(r) + ε
− γ

]
dr

for some n = n(t) > 0. Thus lim
t→∞

y(t) = 0, and as a result lim
t→∞

z(t) = 0.

We are now in a position to show lim
t→∞

(x(t) − x∗(t)) = 0. Observe that

d

dt
(xekt) = kekt(x0 + ae(t))− m1xyekt

a1 + x
. Thus,

x(t) = x(0)e−kt + ke−kt

∫ t

0

ekr(x0 + ae(r))dr −m1e
−kt

∫ t

0

x(r)y(r)ekr

a1 + x(r)
dr.

Notice as lim
t→∞

y(t) = 0 and x(t) is bounded, we have

lim
t→∞

e−kt

∫ t

0

x(r)y(r)ekr

a1 + x(r)
dr = 0.

On the other hand, x(0)e−kt +ke−kt

∫ t

0

ekr(x0 + ae(r))dr is the solution of

(2.2) with initial condition x(0). Consequently, x(t) − x∗(t) → 0 as t → ∞
and the proof is complete.

We conclude that intratrophic predation has no effect on the dynamics
of the system if σ0 < 0. This is because the input nutrient concentration is
not sufficient to support the prey population and consequently the predator
also becomes extinct. Therefore the mechanism of intratrophic predation
has no effect to the interaction. Suppose now σ0 > 0. It is straightforward
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to show that the trivial τ -periodic solution (x∗(t), 0, 0) of (2.1) is unstable.
Indeed, the linearlization of system (2.1) about the τ -periodic solution yields
the following linear periodic system

Ż =




−k
−m1x

∗(t)
a1 + x∗(t)

0

0
αm1x

∗(t)
a1 + x∗(t)

− γ 0

0 0 −δ




Z,

where Z is a row vector of functions in one variable. The Floquet multipliers
of (x∗(t), 0, 0) are the eigenvalues of Φ(τ), where Φ(t) is the fundamental
matrix solution of the above linear periodic system satisfying Φ(0) = I. A
simple calculation yields

Φ(t) =




e−kt e−kt

∫ t

0

−m1e
krx∗(r)z2(r)

a1 + x∗(r)
dr 0

0 e

∫ t

0

[
αm1x

∗(r)
a1 + x∗(r)

− γ]dr
0

0 0 e−δt




,

where z2(r) = e

∫ r

0

[
αm1x

∗(s)
a1 + x∗(s)

− γ

]
ds

. Thus the eigenvalues of Φ(τ) are

e−kτ , e−δτ and e

∫ τ

0

[
αm1x

∗(t)
a1 + x∗(t)

− γ

]
dt

> 1. This illustrates that (x∗(t), 0, 0)
is unstable if σ0 > 0.

We proceed to show that (2.1) has a nontrivial τ -periodic solution of the
form (x̄(t), ȳ(t), 0), where x̄(t), ȳ(t) > 0, when σ0 > 0. Let

Γ =

{
(x, y, z) ∈ R3

+ : x + y + z ≤ k(x0 + a)

k0

}

and Λ+(e) denote the ω-limit set of e ∈ R3
+. Since (2.1) is dissipative,

Λ+(e) 6= ∅, Λ+(e) is compact and invariant, and Λ+(e) ⊂ Γ for any e ∈
R3

+. Let B be a subset of Γ. The stable set W+(B) of B is defined to
be {e ∈ R3

+ : Λ+(e) ⊂ B}. The weak stable set W+
w (B) is defined as

W+
w (B) = {e ∈ R3

+ : Λ+(e)∩B 6= ∅}. Let M0 = {(x∗(t), 0, 0) : t ∈ [0, τ ]} and
A = {(x, y, z) ∈ R3

+ : y = 0}. Similar to Ruan [19], and Yang and Freedman

7



[21], we need the following two lemmas to show the existence of a τ -periodic
solution of the form (x̄(t), ȳ(t), 0).

Lemma 2.3 For system (2.1), A ⊂ W+(M0), and if e(0) ∈ A \ M0 then
lim

t→−∞
‖e(t)‖ = ∞.

Proof. A ⊂ W+(M0) is trivial. Let e(0) = (x(0), 0, 0) ∈ A \ M0. Since
y(t) = z(t) = 0 for all t and x(t) = x∗(t) + (x(0) − x∗(0))e−kt, lim

t→−∞
x(t) =

±∞. Thus lim
t→−∞

‖e(t)‖ = ∞. Let ê(0) = (x̂(0), 0, ẑ(0)) ∈ A \ M0. Then

lim
t→−∞

‖ê(t)‖ = lim
t→−∞

‖e(t)‖ = ∞, where e(0) = (x̂(0), 0, 0), and the assertion

is shown.

Lemma 2.4 If σ0 > 0, then lim inf
t→∞

y(t) > 0 for any solution (x(t), y(t), z(t))

of (2.1) with y(0) > 0.

Proof. Let e = (x(0), y(0), z(0)) ∈ R3
+ with y(0) > 0 be given. If lim inf

t→∞
y(t)

= 0, then Λ+(e) ∩ A 6= ∅ and M0 ⊂ Λ+(e), and thus e ∈ W+
w (M0). On

the other hand if ē ∈ W+
w (M0), then lim inf

t→∞
yē(t) = 0. Thus W+

w (M0) =

{ê ∈ R3
+ : lim inf

t→∞
yê(t)=0}. We wish to show that A = W+(M0). It is

necessary to show W+(M0) ⊂ A. Let ê ∈ R3
+ \ A. If ê ∈ W+(M0), then

Λ+(ê) ⊂ M0. Thus lim
t→∞

yê(t) = lim
t→∞

zê(t) = 0, and there exists α̂ > 0 such

that xê(t)− x∗(t + α̂) → 0 as t →∞.
We choose ε > 0 and t0 > 0 so that zê(t) < ε, xê(t) > x∗(t + α̂) − ε for

t ≥ t0 and

∫ τ

0

[
αm1(x

∗(t + α̂)− ε)

a1 + x∗(t + α̂)− ε
− m2ε

a2 + bε
− γ

]
dt > 0. Consequently,

ẏ(t) ≥
[

αm1x(t)

a1 + x(t)
− m2z(t)

a2 + bz(t)
− γ

]
y(t)

≥
[
αm1(x

∗(t + α̂)− ε)

a1 + x∗(t + α̂)− ε
− m2ε

a2 + bε
− γ

]
y(t)

for all t ≥ t0, and thus lim
t→∞

y(t) = ∞. We obtain a contradiction and conclude

that W+(M0) ⊂ A.
We next show that M0 is isolated for F , the flow generated by system

(2.1), i.e., we need to find a neighborhood N of M0 such that M0 is the
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maximal invariant set in N . Let

c = max
y∈[0,

k(x0+a)
k0

]

f ′(y)

where f(y) =
m2y

a2 + y
. We choose ∆0 > 0 such that

1

τ

∫ τ

0

[
αm1(x

∗(r)− ∆0

c
)

a1 + x∗(r)− ∆0

c

− (γ + ∆0)

]
dr = σ0/2 > 0.

Let ∆ = ∆0/c. It can be shown that N = {e ∈ R3
+ : d(e, M0) < ∆0/c}

is an isolated neighborhood of M0, where d is the usual Euclidean metric
in R3. For if this were not true, then there exists an invariant set V such
that M0 ⊂ V ⊂ N and V \ M0 6= ∅. Since V is invariant, it follows from
Lemma 2.3 that (V \M0) ∩ A = ∅. Therefore if ê ∈ V \M0, then yê(0) > 0.
Consequently, since V ⊂ N , we have

yê(t) > yê(0)e

∫ t

0

[
αm1(x

∗(r)−∆)

a1 + x∗(r)−∆
− (γ + ∆0)

]
dr

for all t large and thus lim
t→∞

ye(t) = ∞. We obtain a contradiction and

conclude that M0 is isolated for F .
Since e ∈ W+

w (M0) \W+(M0) and M0 is isolated for F , Theorem 4.1 of
Butler and Waltman [1] implies that there exists ē ∈ Λ+(e) ∩ (W+(M0) \
M0) = Λ+(e) ∩ (A \M0). But then Λ+(e) is unbounded by Lemma 2.3. We
obtain a contradiction and therefore lim inf

t→∞
y(t) > 0 is shown.

Theorem 2.5 If σ0 > 0, then system (2.1) has a τ -periodic solution of the
form (x̄(t), ȳ(t), 0), where x̄(t), ȳ(t) > 0 for 0 ≤ b ≤ 1.

Proof. Since the positive xy-plane is positively invariant, it is enough to
show that the xy-subsystem of (2.1) has a τ -periodic solution (x̄(t), ȳ(t)) with
x̄(t), ȳ(t) > 0. We consider the Poincaré map T induced by the xy subsystem
of (2.1), T : R2

+ → R2
+ by T (x0, y0) = (x(τ), y(τ)), where (x(t), y(t), z(t)) is

the solution of (2.1) with initial condition (x0, y0, 0). Since (2.1) is dissipa-
tive, {T n(x0, y0)}∞n=0 has a convergent subsequence for each (x0, y0) with the
subsequential limit in the interior of R+

2 by Lemma 2.4. Also T is orientation
preserving and a diffeomorphism, Massera’s fixed point theorem [15] implies
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that T has a fixed point (x̄, ȳ) in the interior of R2
+. Consequently, (2.1) has

a τ -periodic solution (x̄(t), ȳ(t), 0) with x̄(t), ȳ(t) > 0.

Theorem 2.5 asserts the existence of a τ -periodic solution of the form
(x̄(t), ȳ(t), 0) with x̄(t), ȳ(t) > 0 when σ0 > 0. In the following we show that
such a τ -periodic solution is unique when k = γ.

Suppose k = γ. We rescale system (2.1) by letting x̂ = x/x0, ŷ =
y/αx0, ẑ = z/αx0, m̂1 = αm1, â = a/x0, â1 = a1/x

0 and â2 = a2/αx0. After
incorporating these new state variables and parameters, and ignoring all the
hats, system (2.1) takes the form

ẋ = k(1 + ae(t)− x)− m1xy

a1 + x

ẏ =
m1xy

a1 + x
− m2yz

a2 + y + bz
− ky (2.4)

ż =
βm2(y + bz)z

a2 + y + bz
− m2bz

2

a2 + y + bz
− δz

x(0), y(0), z(0) ≥ 0.

We will use system (2.4) to study (2.1).

Theorem 2.6 If σ0 > 0 and k = γ, then system (2.1) has a unique τ -periodic
solution (x̄(t), ȳ(t), 0) with x̄(t), ȳ(t) > 0. Moreover, solutions (x(t), y(t), z(t))
of (2.1) with z(0) = 0 and y(0) > 0 satisfy lim

t→∞
|x(t) − x̄(t)| = lim

t→∞
|y(t) −

ȳ(t)| = lim
t→∞

z(t) = 0 for 0 ≤ b ≤ 1, i.e., (x̄(t), ȳ(t), 0) is globally attracting in

the interior of the positive xy-plane.

Proof. It is enough to show that system (2.4) has the desired property. Since
z(t) = 0 for t ≥ 0 as z(0) = 0, we consider the xy-subsystem of (2.4)

ẋ = k(1 + ae(t)− x)− m1xy

a1 + x

ẏ =
m1xy

a1 + x
− ky (2.5)

x(0), y(0) ≥ 0.

We let N = x̂∗(t) − x − y, where x̂∗(t) is the unique τ -periodic solution of
ẋ = k(1 + ae(t)− x). Then Ṅ = −kN , and system (2.5) can be rewritten as

Ṅ = −kN

ẏ =

[
m1(x̂

∗(t)−N − y)

a1 + x̂∗(t)−N − y
− γ

]
y. (2.6)
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Since lim
t→∞

N(t) = 0, the ω-limit set of (2.6) lies on the set N = 0. Restricted

to the set N = 0, we have

ẏ =

[
m1(x̂

∗(t)− y)

a1 + x̂∗(t)− y
− k

]
y (2.7)

0 ≤ y(0) ≤ x̂∗(0).

It is easy to see that y(t) ≤ x∗(t) for t ≥ 0 for any solution of (2.7).
We consider the Poincaré map S induced by (2.7), S : [0, x̂∗(0)] →

[0, x̂∗(0)] by Sy0 = y(τ, y0), where y(t, y0) is the solution of (2.7) with

y(0, y0) = y0. Note that S0 = 0, Sx̂∗(0) < x̂∗(0) and Ṡy0 =
∂y(τ, y0)

∂y0

= v(τ),

where v(t) satisfies

v̇ =

[
m1a1y

(a1 + x̂∗(t)− y)2
+

m1(x̂
∗(t)− y)

a1 + x̂∗(t)− y
− k

]
v

v(0) = 1.

Since v(t) > 0 for t > 0, we see that S is strictly increasing on [0, x∗(0)]. In
particular, Ṡ0 > 1 by our assumption. Thus S has at least one positive fixed
point. If S has two fixed points, or equivalently if (2.7) has two positive τ -
periodic solution ȳi(t) > 0, i = 1, 2, it follows from (2.7) that ȳ1(t0) = ȳ2(t0)
for some t0 ∈ (0, τ). Consequently, y1(t) = y2(t) for all t and (2.7) has a
unique positive τ -periodic solution ȳ(t), 0 < ȳ(t) < x̂∗(t).

It is then straightforward to show lim
n→∞

Sny0 = ȳ(0) for 0 < y0 ≤ x̂∗(0).

Indeed, Sy0 > y0 if 0 < y0 < ȳ(0) and {Sny0} is an increasing sequence which
is bounded above. Thus lim

n→∞
Sny = ȳ, where ȳ > 0 is a fixed point of S by

the continuity of S. But then lim
n→∞

Sny0 = ȳ(0). Similarly, lim
n→∞

Sny0 = ȳ

if ȳ(0) < y0 ≤ x∗(0). Thus (2.7) has a unique positive τ -periodic solution
ȳ(t) which is globally asymptotically stable for (2.7). We apply Lemma A.4
of Hale and Somolinos [6] and conclude that (2.6) has a globally attracting
τ -periodic solution (0, ȳ(t)). As a result, (2.5) has a τ -periodic solution
(x̄(t), ȳ(t)) where x̄(t) = x̂∗(t) − ȳ(t) > 0 and is globally attracting in the
interior of positive xy-plane for system (2.5). Therefore, (2.1) has a unique
τ -periodic solution (x̄(t), ȳ(t), 0), which is globally attracting for system (2.1)
on the interior of the positive xy-plane.

We now assume σ0 > 0 and k = γ so that system (2.1) has a unique
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τ -periodic solution (x̄(t), ȳ(t), 0) where x̄(t), ȳ(t) > 0. We let

σ1 =
1

τ

∫ τ

0

[
βm2ȳ(t)

a2 + ȳ(t)
− δ

]
dt.

Theorem 2.7 Let σ0 > 0 and k = γ. If σ1 < 0, then solution (x(t), y(t), z(t))
of (2.1) with y(0) > 0 satisfies lim

t→∞
(x(t) − x̄(t)) = lim

t→∞
(y(t) − ȳ(t)) =

lim
t→∞

z(t) = 0 for 0 ≤ b ≤ 1.

Proof. Similar to the proof of Theorem 2.6 we consider the rescaled system
(2.4). We first claim that lim

t→∞
z(t) = 0. Letting v(t) = x̂∗(t) − x(t) − y(t),

then v̇(t) = −kv +
m2yz

a2 + y + bz
and thus

v(t) = e−kt

[
v(0) +

∫ t

0

ekrm2y(r)z(r)

a2 + y(r) + bz(r)
dr

]
.

It follows that either there exists t1 > 0 such that v(t) ≥ 0 for t ≥ t1
or v(t) ≤ 0 for t ≥ 0. For the latter case, we let w = z − v. Then ẇ ≤
−δz + kv ≤ −k̂(z − v), where k̂ = min{δ, k} > 0. Thus lim

t→∞
w(t) = 0. Since

z(t),−v(t) ≥ 0, we conclude that lim
t→∞

z(t) = 0. For the former case, since

x(t)+y(t) ≤ x̂∗(t) for t ≥ t1 and solutions of system (2.7) are asymptotically
attracted to ȳ(t), we have lim inf

t→∞
(ȳ(t) − y(t)) ≥ 0. Thus for every ε > 0,

there exists t2 ≥ t1 such that y(t) ≤ ȳ(t) + ε for t ≥ t2. We choose ε > 0

such that
1

τ

∫ τ

0

[
βm2(ȳ(t) + ε)

a2 + ȳ(t) + ε
− δ

]
dt =

σ1

2
< 0. Then ż ≤ (

βm2y

a2 + y
− δ)z

implies

z(t) ≤ z(0)e

∫ t2

0

[
βm2y(s)

a2 + y(s)
− δ

]
ds

e

∫ nτ+t2

t2

[
βm2(ȳ(s) + ε)

a2 + ȳ(s) + ε
− δ

]
ds

= z(0)e

∫ t2

0

[
βm2y(s)

a2 + y(s) + ε
− δ

]
ds

e

1

2
nσ1τ → 0 as t →∞.

Thus lim
t→∞

z(t) = 0 is shown.

We now use the Poincaré map induced by system (2.4) to study global
attractibility. Defining P : R3

+ → R3
+ by P (x0, y0, z0) = (x(τ), y(τ), z(τ)),
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where (x(t), y(t), z(t)) is the solution of system (2.4) with x(0) = x0, y(0) =
y0 and z(0) = z0 where y0 > 0. Since (2.4) is dissipative, P is also dis-
sipative. Moreover, P has a global attractor, that is, there is a maximal,
compact invariant set X such that lim

n→∞
P nx ∈ X for any x ∈ R3

+. Since

lim
t→∞

z(t) = 0, X lies on the xy-coordinate plane. Restricted to the xy-

plane, P n(x(0), y(0), 0) = (Sn(x(0), y(0)), 0), where S is the Poincaré map
induced by system (2.5). Consequently, P has two fixed points (x̂∗(0), 0, 0)
and (x̄(0), ȳ(0), 0). We wish to show lim

n→∞
P n(x(0), y(0), 0) = (x̄(0), ȳ(0), 0).

Recall that A = {(x, y, z) ∈ R3
+ : y = 0} is a closed subset of R3

+.
Clearly M = {(x∗(0), 0, 0)} is the maximal compact invariant set in A and
it is isolated in X. The stable set of M is A by the proof of Lemma 2.4 as
σ0 > 0. Thus it follows from Theorem 4.1 of Hofbauer and So [7] that P
is uniformly persistent with respect to A, i.e., there exists ζ > 0 such that
lim inf
n→∞

d(P n(x, y, z), A) > ζ for all (x, y, z) ∈ R3
+ with y > 0. Therefore any

subsequential limit of P has the form (x, y, 0), where y > 0. We conclude
that lim

n→∞
P n(x, y, z) = (x̄(0), ȳ(0), 0) and the proof is now complete.

It follows from Theorem 2.7 that intratrophic predation has no effect on
the dynamics of system (2.1) if σ0 > 0, k = γ and σ1 < 0. Let σ0 > 0, k = γ
and σ1 > 0. The linearization of (2.1) with respect to (x̄(t), ȳ(t), 0) gives the
linear periodic system Ẋ = B(t)X, where

B(t) =




−k − m1a1ȳ(t)

(a1 + x̄(t))2

−m1x̄(t)

a1 + x̄(t)
0

αm1a1ȳ(t)

(a1 + x̄(t))2

αm1x̄(t)

a1 + x̄(t)
− k

−m2ȳ(t)

a2 + ȳ(t)

0 0
βm2ȳ(t)

a2 + ȳ(t)
− δ




.

It follows from Lemma 6.4 of [17] that the Floquet multipliers of (x̄(t), ȳ(t), 0)

are s1, s2 and e

∫ τ

0

[
βm2ȳ(t)

a2 + ȳ(t)
− δ

]
dt

, where s1, s2 are the Floquet multipliers
of (x̄(t), ȳ(t)) for the xy-subsystem of (2.1). Note that |s1|, |s2| < 1 by
Theorem 2.6. Since σ1 > 0, we have

e

∫ τ

0

[
βm2ȳ(t)

a2 + ȳ(t)
− δ

]
dt

> 1.
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Therefore (x̄(t), ȳ(t), 0) is unstable with stable set lies on the xy-plane.

Theorem 2.8 Let σ0 > 0, k = γ and σ1 > 0. Then system (2.1) is uniformly
persistent and (2.1) has a positive τ -periodic solution (x̂(t), ŷ(t), ẑ(t)) for
0 ≤ b ≤ 1.

Proof. We apply Theorem 3.1 of Butler and Waltman [1]. Let ∂F be F
restricted to ∂Γ, the boundary of Γ. Then Ω(∂F) = {Λ+(e) : e ∈ ∂Γ} =
{M0,M1}, where M1 = {(x̄(t), ȳ(t), 0) : 0 ≤ t ≤ τ}. Clearly ∂F is acyclic as
M0 and M1 are globally attracting on the positive xz and xy-plane respec-
tively so that no subset of {M0,M1} forms a cycle. Since σ0, σ1 > 0, M0 and
M1 are isolated for F respectively. Similarly, we can show that M0 and M1

are also isolated for ∂F respectively. Therefore ∂F is isolated and acyclic

with acyclic covering {M0,M1}. Observe that W+(Mi)∩
◦
Γ= ∅ for i = 0, 1

as σ0, σ1 > 0, where
◦
Γ denotes the interior of Γ. Theorem 3.1 of Butler and

Waltman [1] implies that (2.1) is uniformly persistent. Using Horn’s results
concerning interior fixed points of Poincaré maps, Yang and Freedman [21]
established explicit existence criteria of interior periodic solutions for certain
ecological models. Since system (2.1) satisfies each of these conditions given

in [21], (2.1) has a τ -periodic solution in
◦
Γ and we conclude that (2.1) has a

positive τ -periodic solution.

3 Numerical Simulations

In this section we use numerical examples to study system (2.1). Although
there are evidence suggesting that input nutrient varies periodically, to our
knowledge there are no specific periodic functions that modeling a realistic
system in the literature. Therefore, we choose

e(t) = sin

(
πt

10

)
and a = 5.

Then the input nutrient concentration is periodic with amplitude 5 and pe-
riod 20. The parameter values for the model are a1 = a2 = 1, k = 0.5, x0 =
10,m1 = m2 = 0.8, γ = 0.5 and β = 0.8 for all simulations. These param-
eter values are within the range of the parameter values studied in several
nutrient-plankton models [4, 5]. The wide range of the parameter values
cited in the literature on one hand reflects uncertainties associated with the
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natural systems. On the other hand, different natural systems have different
biological complexity and as a result their parameter values may differ.

Our analysis in the previous section is carried out only when the func-
tional responses of both prey and predator are Michaelis-Menten. This par-
ticular functional response was also used in [13] in their study of intratrophic
predation. System (2.1) with these parameter values and functionals then
takes the following form.

ẋ = 0.5(10 + 5 sin(
πt

10
)− x)− 0.8xy

1 + x

ẏ =
0.8αxy

1 + x
− 0.8yz

1 + y + bz
− 0.5y (3.1)

ż =
0.64(y + bz)z

1 + y + bz
− 0.8bz2

1 + y + bz
− δz

x(0), y(0), z(0) ≥ 0.

The periodic solution (x∗(t), 0, 0) can be obtained analytically. When α = 1,

σ0 =
1

20

∫ 20

0

(
0.8x∗(t)
1 + x∗(t)

− 0.5

)
dt = 0.2212 > 0. Therefore (x∗(t), 0, 0) is

unstable. We use α = 1 for the remainder of the simulations. Since k = γ =
0.5, (3.1) has a unique 20-periodic solution (x̄(t), ȳ(t), 0) for which solutions
of (3.1) with y(0) > 0 asymptotic to when

σ1 =
1

20

∫ 20

0

[
0.64ȳ(t)

1 + ȳ(t)
− δ

]
dt < 0.

This is true if δ = 0.561. When σ1 > 0, system (3.1) has a positive 20-periodic
solution (x̂(t), ŷ(t), ẑ(t)). The linearlization about the positive periodic solu-
tion yields the linear periodic system Ż = A(t)Z, with A(t) given below.

A(t) =




−0.5− 0.8ŷ(t)

(1 + x̂(t))2

−0.8x̂(t)

1 + x̂(t)
0

0.8ŷ(t)

(1 + x̂(t))2
a22

−0.8ŷ(t)(1 + ŷ(t))

(1 + ŷ(t) + bẑ(t))2

0
0.64ẑ(t) + 0.8bẑ(t)2

(1 + ẑ(t) + bẑ(t))2
a33




,

where a22 =
0.8x̂(t)

1 + x̂(t)
− 0.5− 0.8ẑ(t)(1 + bẑ(t))

(1 + ŷ(t) + bẑ(t))2
, and
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a33 = 0.64
(y + 2bz)(1 + y + bz)− bz(y + bz)

(1 + y + bz)2
−0.16bz(1 + y + bz)− 0.8b2z2

(1 + y + bz)2
−

δ, with y = ŷ(t) and z = ẑ(t). The fundamental matrix Φ(t) of the linear
system Ż = A(t)Z is obtained via numerical interpolations. We start from
the situation when there is no introtrophic predation b = 0, and vary δ so
that the eigenvalues of Φ(20) has modulus 1. Denote the minimum value of
δ by δ0 for which the positive periodic solution is non-hyperbolic, and deter-
mine whether the positive periodic solution is stable when δ > δ0 or when
δ < δ0. We then increase b and look for δ0. The bifurcation diagram with b
as our bifurcation parameter is presented in Fig.1. The figure demonstrates
that intratrophic predation can increase the stability of the positive periodic
solutions even when such a mechanism is very small. The mean values of the
corresponding stable positive periodic solutions are plotted in Fig. 2, 3, and
4. The graphs clearly indicate that intratrophic predation can increase the
mean values of the prey population and decrease the mean values of both
the nutrient concentration and predator population of the stable positive
periodic solutions.

Put Figures 1-4 here

Although from Figure 1 we can conclude that intratrophic predation can
produce larger stability region for the positive periodic solution, it does not
provide any information as to what happens when the periodic solution is
unstable. To further illustrate the stabilizing effect of intratrophic predation,
we first demonstrate that model (3.1) has aperiodic solutions when b = 0.
See Figures 5-7 for nutrient, prey and predator populations of the solution,
respectively. In these figures, α = 1 and δ = 0.30016 are used. We next fix
every other parameters but increase b to b = 0.92. Then system (3.1) has a
stable positive periodic solution as was demonstrated in Figure 1. Figure 8
shows the nutrient concentration x(t) of the periodic solution.

Put Figures 5-8 here

We next test for sensitive dependence on initial conditions when b = 0.
We use the same initial condition as in Figure 5 and compare the solution with
the initial condition by adding 0.01 to the nutrient concentration, while both
prey and predator populations are kept at the same level. The dotted line
in Figure 9 is the solution with new initial condition. The figure illustrates
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the x-component of the two solutions. It is clear from Figure 9 that the
model is sensitively dependent on initial conditions when b = 0. This is
an indication of chaos. When b = 0.92, since the positive periodic solution
is locally asymptotically stable as given in Figure 1, the two solutions look
alike. See Figure 10 for the case when b = 0.92.

Put Figure 9, 10 here

From our numerical simulations of model (3.1) so far we know that intrat-
rophic predation can make the system more stable and eliminate the sensitive
dependence on initial conditions as was found when there is no intratrophic
predation. We now use b, the intensity of intratrophic predation, as our
bifurcation parameter and numerically plot the last 25 minimum values of
x-component of the solutions of system (3.1) after ignore the first 20000 iter-
ations. From Figure 10 it is clear that intratrophic predation can avoid the
chaotic behavior of this three species food chain.

4 Discussion

In this manuscript we study a nutrient-prey-predator model with periodic
nutrient input to incorporate day/night or seasonal variations of the natural
systems. Moreover, the predator population is assumed to be either canni-
balism or may consist of several different species and some of the species may
prey on other species of the same population. This consideration in particular
models the realistic plankton system, where different species of larger zoo-
plankton may prey on smaller species of zooplankton, and all the zooplankton
species are considered as a single population. Our modeling methodology of
intratrophic predation is similar to that considered by Kohlmeier and Eben-
hoh [11], Pitchford and Brindley [13], and Jang and Baglama[10]. We use a
parameter b, 0 ≤ b ≤ 1, to specify the intensity of intratrophic predation.
The motivation for this three trophic level food chain is based on the study
given by Kohlmeier and Ebenhoh [11], in which North Sea benthic ecosystem
was considered.

It was shown that the dynamics of this simple food chain depend on the
thresholds σ0 and σ1. The threshold σ0 can be regarded as the average net
reproductive number of the prey. If σ0 < 0, then the system has only a
unique periodic solution E0 = (x∗(t), 0, 0) and all solutions are asymptotic to
E0. We conclude that intratrophic predation has no effect on the dynamics
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of the system. This phenomenon is due to the extinction of the prey. Since
the nutrient concentration cannot sustain the prey population, the predator
population also becomes extinct and consequently intratrophic predation of
the predator has no impact on the system.

If threshold σ0 > 0, then the periodic solution E0 = (x∗(t), 0, 0) is un-
stable. System (2.1) has a periodic solution of the form E1 = (x̄(t), ȳ(t), 0).
When k = γ, then such a periodic solution on the xy-plane is unique and glob-
ally attracting on the xy-plane. We can define another threshold σ1, where
σ1 can be viewed as the net reproductive number of the predator when the
prey population is stabilized at ȳ(t). If σ1 < 0, then the prey population
cannot sustain the predator and the predator becomes extinct independent
of b. Therefore solutions with positive initial prey population all asymptotic
to E1 and intratrophic predation has no influence on the dynamics of the
system.

The more interesting case is when σ0 > 0 and σ1 > 0. This is the case
when both prey and predator populations can persist as shown by Theorem
2.8. We then use b, the intensity of the intratrophic predation, as our bifurca-
tion parameter. The bifurcation given in Figure 1 clearly demonstrates that
intratrophic predation has the stabilization effect even when b > 0 is very
small. Since positive periodic solutions depend on δ, we calculate numerically
the critical value δ0 such that the positive periodic solution is nonhyperbolic
when δ = δ0. Numerical simulations in this study suggest that intratrophic
predation can increase the mean values of the prey populations of the stable
positive periodic solutions and decrease the mean values of the nutrient con-
centration and predator population of the stable positive periodic solution.

Our study of intratrophic predation in this three trophic level food chain
with periodic nutrient input illustrates that intratrophic predation has the
effect on the system only if the net reproductive numbers of the prey and
predator are greater than zero. Under these circumstances, intratrophic pre-
dation can stabilize the system. That is, intratrophic predation can change
the stability of the coexisting periodic solutions, and it has the effect of
elevating the prey population of the coexisting periodic solutions. Conse-
quently, the mechanism of intratrophic predation also decreases the nutrient
concentration of the positive periodic solutions. Moreover, our numerical
simulations demonstrated that a moderate degree of intratrophic predation
can eliminate the chaotic behavior of the system.
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Figure 1: We use α = 1 and plot the stable and unstable regions of the
positive periodic solutions by using the intensity of the intratrophic predation
b as our bifurcation parameter.

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

b

δ = 0.55 α = 1 

Mean value of X(t) ^ 

Figure 2: The mean values of the nutrient concentration for the stable posi-
tive periodic solutions are plotted when δ = 0.55.
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Figure 3: The mean values of the prey population for the stable positive
periodic solutions are plotted by using b as the independent variable.
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Figure 4: The mean values of the predator population for the stable positive
periodic solutions are given in the figure. The mean values decrease as the
parameter b increases.
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Figure 5: The nutrient concentration x(t) is plotted against t when b = 0
and δ = 0.30016. The x component of the solution is aperiodic.
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Figure 6: The prey population y(t) is plotted against t when b = 0 and
δ = 0.30016. The plot also reveals that the predator population is aperiodic.

26



1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Z

t

δ = 0.30016 

Figure 7: This is the predator population for the aperiodic solution with
b = 0 and δ = 0.30016.
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Figure 8: As we increase b to b = 0.92, system (3.1) has a locally asymptoti-
cally stable positive periodic solution as demonstrated in Figure 1. The plot
provides the nutrient concentration of the stable positive periodic solution.
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Figure 9: We use two very similar initial conditions to test for sensitive
dependence on initial condition for model (3.1) when b = 0. Both prey and
predator have the same population level. The dotted line is the nutrient
concentration with initial concentration only 0.01 more than the other one.
It is clear that two nutrient concentrations behave quite differently even when
time t is small.
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Figure 10: This is the figure when b = 0.92. The plot on the bottom uses
initial condition almost exactly same as the top plot except x(0) is increased
by 0.01. From the figure it can be seen that the nutrient concentration of
the two solutions are asymptotically the same.
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Figure 11: This is a bifurcation diagram using b as a bifurcation parameter.
The figure plots 25 minimum values of x-component of the solutions of (3.1)
after transitive behavior has been removed.
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