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Abstract. Nutrient-phytoplankton-zooplankton models with general up-
take functions in which only the internal nutrient concentration is capable
of catalyzing cell growth and division for phytoplankton are proposed and
analyzed. For the constant nutrient input model, it is shown that extinction
or persistence of the population depends on its maximal growth rate relative
to the total removal rate. The same biological conclusions hold for the pe-
riodic nutrient input model. However, while extinction and persistence are
expressed in terms of convergence to steady states for the constant nutrient
input model, these biological phenomena are exhibited in terms of asymptotic
attraction to periodic solutions for the periodic nutrient input model.
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1 Introduction

A system was proposed in the late 1940’s by Riley et al. [24] for modeling the
profiles of marine plankton. Since then numerious nutrient-plankton models
have been constructed and studied by researchers in the area [1, 4, 5, 6, 9, 11,
13, 14, 17, 25, 29, 30, 34, 35]. The intensive investigation of nutrient-plankton
interactions is motivated in large part by their important and fundamental
role in the food webs.

One class of such models assumes spatial homogeneity and discusses
asymptotic or transient behavior of the interaction between populations. In
such models, it is frequently assumed that the growth rate of phytoplankton
is constantly proportional to the nutrient uptake rate, that is, the growth
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rate of the algae depends on the ambient nutrient available to the microor-
ganism. Such systems are examples of using the classical Monod kinetics to
model metabolism. However, experiments have demonstrated that algae can
uptake nutrient in excess of its immediate needs, so that when the nutrient
is depleted, the organism can still continue to grow and divide for some time
until the internal reserves are exhausted. Ketchum [19] was among the first
to document such a biological phenonemon.

One of the mathematical models that captures this biological observation
is the Droop model, also called the variable-yield model [7, 8]. In this type of
model it is assumed that a phytoplankton cell can store nutrient and that its
growth rate depends on the amount of stored nutrient, called the cell quota.
The cell quota may be viewed as the average amount of stored nutrient in
each cell of the algae. The uptake rate of the organism is then dependent on
the ambient nutrient concentration and perhaps the cell quota. Such models
have been shown to provide good fits for the data observed in experiments
[12, 20, 31].

Since the seminal work of Grover [13, 14] in the early 1990s, variable-yield
plankton models have received considerable discussion. The first mathemat-
ical analysis was performed by Lange and Oyarzun [21], where they studied
a single phytoplankton population in the chemostat with specific uptake and
growth functions, and later extended their results to general growth and up-
take functions [23]. Smith and Waltman analyzed a variable-yield model with
two populations competing in the chemostat [26]. By using the competitive
and cooperative properties of the system, they showed that competitive ex-
clusion principal remains valid in the model. Smith also examined a single
species variable-yield chemostat model with periodic nutrient input [28]. A
threshold condition was obtained beyond which phytoplankton population
can persist. Variable-yield nutrient-plankton models with specific grazing
rates in closed ecological systems were investigated by Jang [17, 18].

In this manuscript we propose a general class of variable-yield nutrient-
phytoplankton-zooplankton models to study the interaction between the nu-
trient and the organisms in an open ecological system. In these models, the
two plankton levels are modeled in terms of their nutrient or nitrogen con-
tent, and it is assumed that there is no net nutrient loss due to physiological
death or due to nutrient conversion. It is well known in population biology
that zooplankton feeds on phytoplankton for survival. However, motivated
by the consideration given in Ruan [25], we also discuss the case when the
zooplankton population may feed on the nutrient so that the population may

2



be facultative.
Aside from the physiological death of the algae, phytoplankton may lose

its nutrient content because of the exudation of organic substance. On the
other hand, cell sinking is known as an important loss of phytoplankton. This
is particularly true at the end of the spring bloom, which may drive the algal
population out of the system such as being buried in deep sediments. Also,
zooplankton mortality by higher predators can contribute to the death of the
population, which is frequently not explicitly modeled in nutrient-plankton
models due to intractibility of the analysis. The final destination of such dead
zooplankton will be either as the form of ammonium, fecal pellets, or dead
higher predators. Consequently, even under the assumption that there is no
net nutrient loss due to physiological death and nutrient conversion, there are
losses of nutrient or nitrogen content due to other causes so that the system
is never closed. Furthermore, for natural nutrient-plankton systems there is
usually a flux of nutrient in and out of the systems [6]. To incorporate these
biological observations, we use a constant washout rate to model the losses
amounting from various biological processes. For simplicity, the constant
washout rate is assumed to be the same for the nutrient and the plankton
populations.

We first present a general class of nutrient-plankton models with a con-
stant limiting nutrient input. To incorporate day/night or seasonal cycles,
nutrient-plankton models with a periodic limiting nutrient input will also be
proposed. For these models, sufficient conditions for the extinction of phy-
toplankton, and zooplankton are derived. Persistent conditions for each of
the populations are also given. Explicit criteria for the coexistence of both
populations are obtained, where the notion of coexistence is captured by the
concept of uniform persistence. For constant input nutrient models, persis-
tence and extinction are characterized by the convergence to steady states,
while for periodic nutrient input models, these biological consequences are
expressed in terms of asymptotic attraction to periodic solutions.

In the following section, a general class of nutrient-plankton models with
a constant limiting nutrient input is presented. The model with a periodic
nutrient input is studied in Section 3. Section 4 demonstrates these analytical
findings by numerical simulations. The final section provides a brief summary
and discussion.
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2 The model with constant nutrient input

We let N(t), P (t) and Z(t) denote the nutrient concentration, the concen-
tration (or number of cells) of phytoplankton and zooplankton population at
time t, respectively. Their units are nitrogen or nitrate per unit volume. It
is assumed that the algal cell is capable of storing nutrient. Therefore there
is a new state variable, Q(t), the cell quota. It is the average amount of
stored nutrient per algal cell at time t. As a result, Q(t) is dimensionless.
The growth rate of the phytoplankton depends on the cell quota, while the
uptake rate depends on the ambient nutrient, and possibly on the cell quota.
We let u(Q) be the per-capita growth rate and ρ(N, Q) the per-capita uptake
rate of phytoplankton, respectively. Motivated by the explicit examples of
functions u and ρ in the literature [7, 8, 13, 14, 21], we make the following
assumptions [17, 23, 26, 27, 28].

(H1) There exists Q0 > 0 such that u(Q0) = 0, u′(Q) > 0 and u′(Q) is
continuous for Q ≥ Q0.

(H2) ρ ∈ C1(N, Q) for N ≥ 0, Q ≥ Q0; ρ(0, Q) = 0 for Q ≥ Q0;
∂ρ

∂N
> 0 and

∂ρ

∂Q
≤ 0 for N ≥ 0, Q ≥ Q0.

The quantity Q0 is the minimum cell quota necessary to allow any cell
division. We let parameters δ > 0 and ε > 0 denote the death rate of phyto-
plankton and zooplankton respectively. The constant washout rate D > 0 is
assumed to be the same for the nutrient and both plankton populations. The
zooplankton may also uptake nutrient. We use general functions f(N) and
g(P ) to describe the nutrient uptake and herbivore grazing for zooplankton
respectively, which are assumed to satisfy the following hypotheses.

(H3) f ∈ C1([0,∞)), f(0) = 0, f ′(N) > 0 for N ≥ 0 and limN→∞ f(N) = 1.

(H4) g ∈ C1([0,∞)), g(0) = 0, g′(P ) > 0 for P ≥ 0 and limP→∞ g(P ) = 1.

Therefore, zooplankton’s uptakes increase with increasing food resource.
The positive constant input nutrient concentration is denoted by N 0. Pa-
rameters b ≥ 0 and c > 0 are the maximal nutrient uptake rate and ingestion
rate of zooplankton respectively, while d is the fraction of zooplankton graz-
ing conversion, 0 < d ≤ 1. Since the two plankton levels are modeled in
terms of their nutrient content and there is no nutrient loss due to death and
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nutrient conversion, our model takes the following form.

Ṅ = D(N0 − N) − Pρ(N, Q) + δPQ − bf(N)Z + c(1 − d)g(P )QZ + εZ,

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N, Q) − u(Q)Q, (2.1)

Ż = [bf(N) + dcg(P )Q− ε − D]Z,

N(0) ≥ 0, P (0) ≥ 0, Q(0) ≥ Q0, Z(0) ≥ 0.

Notice that when b = 0, there is no nutrient consumption by zooplank-
ton. As a consequence, phytoplankton is the only resource contributing to
the growth of zooplankton population and the population becomes obligate.
Since Ṅ |N=0 > 0, it follows that N(t) > 0 for t > 0. From (H1) and (H2) we
see that Q̇|Q=Q0

≥ 0 and thus Q(t) ≥ Q0 for t ≥ 0. Let U = N 0−N−PQ−Z.
It can be easily shown that U̇ = −DU and we can rewrite system (2.1) as

U̇ = −DU,

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N0 − U − PQ − Z, Q) − u(Q)Q, (2.2)

Ż = [bf(N0 − U − PQ − Z) + dcg(P )Q − ε − D]Z,

P (0) ≥ 0, Q(0) ≥ Q0, Z(0) ≥ 0, U(0) + P (0)Q(0) + Z(0) ≤ N 0.

Since limt→∞ U(t) = 0, the ω-limit set of (2.2) lies on the set U = 0.
Restricted to the set U = 0, we have the limiting system of (2.2) given
below.

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N0 − PQ − Z, Q) − u(Q)Q, (2.3)

Ż = [bf(N0 − PQ − Z) + dcg(P )Q − ε − D]Z,

P (0) ≥ 0, Q(0) ≥ Q0, Z(0) ≥ 0, P (0)Q(0) + Z(0) ≤ N 0.

Let ∆ = {(P, Q, Z) ∈ R3
+ : Q ≥ Q0, PQ + Z ≤ N0}.

Lemma 2.1 ∆ is positively invariant for (2.3) and solutions of (2.3) are
bounded.

Proof. Recall that Q(t) ≥ Q0 and N(t) ≥ 0 for t ≥ 0. Since Ṗ |P=0 =
Ż|Z=0 = 0, solutions of (2.3) satisfy P (t), Z(t) ≥ 0 for t ≥ 0. Moreover,
d
dt

(PQ + Z)|PQ+Z=N0 < 0 and thus P (t)Q(t) + Z(t) ≤ N 0 for t ≥ 0. We
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conclude that ∆ is positively invariant for (2.3). Furthermore, since Q̇ < 0
for Q large, Q(t) is bounded. Consequently, solutions of (2.3) are bounded.

Once we show that populations do not grow unboundedly large, we turn
to discuss steady state solutions. It’s easy to see that the trivial steady
state E0 = (0, Q∗, 0) always exists, where Q∗ satisfies ρ(N 0, Q) = u(Q)Q.
Since Q̇ ≤ ρ(N0, Q) − u(Q)Q, it follows that either Q(t) ≥ Q∗ for t ≥ 0 or
Q(t) ≤ Q∗ for all t large. If Q(t) ≥ Q∗ for t ≥ 0, then it is straightforward
to show that limt→∞ Q(t) = Q∗. As a result, since P (t) ≤ N 0/Q0 and
Z(t) ≤ N0 for t ≥ 0, system (2.3) is dissipative.

To obtain steady states on the interior of the coordinate planes, we set
Z = 0, Ṗ = 0, Q̇ = 0 and P 6= 0. Then u(Q) = δ + D and ρ(N 0 − PQ, Q) =
u(Q)Q, and a steady state E1 = (P1, Q1, 0) exists if and only if u(∞) > δ+D
and ρ(N0, Q1) > (δ+D)Q1. Note that in this case Q1 < Q∗ and steady state
of this form is unique.

Similarly, setting P = 0, Ż = 0, Q̇ = 0 and Z 6= 0, we have bf(N 0 −Z) =
ε + D and ρ(N0 − Z, Q) = u(Q)Q. Hence a steady state E2 = (0, Q2, Z2)
exists if and only if bf(N 0) > ε + D. Furthermore, such a steady state on
the interior of the positive Q-Z plane is unique if it exists, and also Q2 < Q∗.
On the other hand there is no steady state on the positive Q-Z plane if
zooplankton is obligate. We further remark that Q∗ in E0 and Q2 in E2 are
artificial as there are no phytoplankton populations present.

Our first result on the asymptotic behavior of (2.3) is given below.

Lemma 2.2 If u(Q∗) < δ + D, then limt→∞ P (t) = 0 for any solution
(P (t), Q(t), Z(t)) of (2.3).

Proof. If Q(t) ≤ Q∗ for t large, then Ṗ (t) ≤ P (t)[u(Q∗) − (δ + D)] ≤ 0 for t
large. Thus limt→∞ P (t) = P ∗ ≥ 0 exists. If P ∗ > 0, then limt→∞ Ṗ (t) 6= 0
and we obtain a contradiction. Hence limt→∞ P (t) = 0. On the other hand
if Q(t) ≥ Q∗ for t ≥ 0, then limt→∞ Q(t) = Q∗. We choose η > 0 such that
Q(t) ≤ Q∗ + η for t large and u(Q∗ + η) < δ + D. A similar argument as
above can be applied to show that limt→∞ P (t) = 0.

Since P (t) ≤ N0/Q0 for any solution of (2.3), the following lemma can
be shown analogously to Lemma 2.2.

Lemma 2.3 If bf(N 0) + dcg(N 0/Q0)Q
∗ < ε + D, then limt→∞ Z(t) = 0 for

any solution (P (t), Q(t), Z(t)) of (2.3).
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Theorem 2.4 If u(Q∗) < δ +D and bf(N 0) < ε+D, then E0 = (0, Q∗, 0) is
the only steady state for system (2.3) and solutions of (2.3) converge to E0.

Proof. If u(∞) ≤ δ + D, then clearly E1 doesn’t exist. If u(∞) > δ + D and
Q1 satisfies u(Q1) = δ + D, then Q∗ < Q1. Hence ρ(N 0, Q1) < (δ + D)Q1

and E1 doesn’t exist. Furthermore, since bf(N 0) < ε + D, E2 doesn’t exist
and there is no positive steady state. Consequently, E0 is the only steady
state for (2.3).

Observe that limt→∞ P (t) = 0 by Lemma 2.2. If Q(t) ≤ Q∗ for t large,
we can find η > 0 such that bf(N 0) + dcg(η)Q∗ < ε + D and P (t) ≤ η for t
large. Accordingly, Ż(t) ≤ Z(t)[bf(N 0) + dcg(η)Q∗ − ε − D] ≤ 0 for t large
and limt→∞ Z(t) = z∗ ≥ 0 exists. A contradiction to limt→∞ Ż(t) = 0 would
be obtained if z∗ > 0. Thus limt→∞ Z(t) = 0 and the ω-limit set of solutions
of (2.3) lies on the Q-axis. Therefore, E0 is globally asymptotically stable
for (2.3). The case when Q(t) ≥ Q∗ for t ≥ 0 can be treated similarly. This
completes the proof.

Note that if zooplankton is obligate, the condition bf(N 0) < ε + D de-
rived in Theorem 2.4 is trivially true. Therefore, it is more likely for both
populations to become extinct if zooplankton is obligate.

Lemma 2.5 If u(Q∗) > δ + D, then steady state E1 = (P1, Q1, 0) exists and
any solution (P (t), Q(t), Z(t)) of (2.3) with P (0) > 0 and Z(0) = 0 converges
to E1.

Proof. Since Q∗ > Q1, ρ(N0, Q1) > u(Q1)Q1 and thus E1 exists. We apply

the Dulac criterion on the P -Q subsystem by letting B(P, Q) =
1

P
for P >

0, Q ≥ Q0. As
∂(ṖB)

∂P
+

∂(Q̇B)

∂Q
= −

∂ρ

∂N
+

1

P

∂ρ

∂Q
−

u′(Q)Q

P
−

u(Q)

P
< 0

for P > 0, Q ≥ Q0, system (2.3) has no nontrivial periodic solution on the
positive P -Q plane and the conclusion follows.

The following theorem provides a sufficient condition for the extinction
of zooplankton population, whose proof is similar to that of Theorem 2.4.

Theorem 2.6 If u(Q∗) > δ + D and bf(N 0) + dcg(N 0/Q0)Q
∗ < ε + D, then

E0 = (0, Q∗, 0) and E1 = (P1, Q1, 0) are the only steady states for (2.3) and
solutions (P (t), Q(t), Z(t)) of (2.3) with P (0) > 0 converge to E1.

In particular, if zooplankton is obligate, then the second inequality given
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in Theorem 2.6 is easier to satisfy as b = 0. Consequently, the zooplankton
population would be more likely to become extinct. The following results
only valid when zooplankton is facultative and are parallel to Lemma 2.5
and Theorem 2.6. Their proofs are omitted.

Lemma 2.7 If bf(N 0) > ε+D, then steady state E2 = (0, Q2, Z2) exists and
solution (P (t), Q(t), Z(t)) of (2.3) with P (0) = 0, Z(0) > 0 converges to E2.

Theorem 2.8 If bf(N 0) > ε + D and u(Q∗) < δ + D, then E0 = (0, Q∗, 0)
and E2 = (0, Q2, Z2) are the only steady states for system (2.3) and solutions
(P (t), Q(t), Z(t)) of (2.3) with Z(0) > 0 converge to E2.

We now assume u(Q∗) > δ +D and bf(N 0) > ε+D so that steady states
E1 = (P1, Q1, 0) and E2 = (0, Q2, Z2) both exist. The case when zooplankton
is obligate to phytoplankton can be treated similarly. A direct computation
shows that the Jacobian matrix at E0 = (0, Q∗, 0) is

J(E0) =





u(Q∗) − δ − D 0 0

−Q∗ ∂ρ
∂N

∂ρ
∂Q

− u′(Q∗)Q∗ − u(Q∗) − ∂ρ
∂N

0 0 bf(N0) − ε − D



 ,

where ∂ρ
∂N

and ∂ρ
∂Q

are evaluated at (N 0, Q∗), and the Jacobian matrix at

E1 = (P1, Q1, 0) is given as

J(E1) =





0 P1u
′(Q1) −cg(P1)

−Q1
∂ρ
∂N

a22 − ∂ρ
∂N

0 0 a33



 ,

where a22 = −P1
∂ρ
∂N

+ ∂ρ
∂Q

− u′(Q1)Q1 − u(Q1), a33 = bf(N0 − P1Q1) +

dcg(P1)Q1 − ε − D and the arguments for ∂ρ
∂N

and ∂ρ
∂Q

are (N0 − P1Q1, Q1).

Similarly, the Jacobian matrix at E2 = (0, Q2, Z2) is

J(E2) =





u(Q2) − δ − D − cg′(0)Z2 0 0

−Q2
∂ρ
∂N

c22 − ∂ρ
∂N

c31 0 −bf ′(N0 − Z2)Z2



 ,

where c31 = −bQ2f
′(N0−Z2)Z2 +dcg′(0)Q2Z2, c22 = ∂ρ

∂Q
−u′(Q2)Q2−u(Q2)

and ∂ρ
∂N

and ∂ρ
∂Q

are evaluated at (N 0 − Z2, Q2).
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Suppose that the equations governing interacting populations are of the
form ẋi = fi(t, x1, · · · , xn), 1 ≤ i ≤ n. Then the system is said to be persis-
tent if lim inf t→∞ xi(t) > 0 for any population with xi(0) > 0, 1 ≤ i ≤ n. The
system is said to be uniformly persistent if there exists a positive constant
k0 such that lim inft→∞ xi(t) ≥ k0 for 1 ≤ i ≤ n for every trajectory with
positive initial condition. The explicit Jacobian matrices given above enable
us to obtain the following sufficient condition for population coexistence.

Theorem 2.9 Let u(Q∗) > δ + D and bf(N 0) > ε + D. If

bf(N0 − P1Q1) + dcg(P1)Q1 > ε + D (2.4)

and
u(Q2) − cg′(0)Z2 > δ + D (2.5)

hold, then system (2.3) is uniformly persistent and (2.3) has an interior
equilibrium E3 = (P̄ , Q̄, Z̄).

Proof. Since u(Q∗) > δ + D and bf(N 0) > ε + D, steady states E1 and
E2 both exist. Therefore, the left hand sides of (2.4) and (2.5) are well
defined. From the Jacobian matrix at E0, we see that E0 is a saddle point
with stable manifold lying in the Q-axis. It’s easy to see that E1 is also
a saddle point which is globally asymptotically stable in the positive P -Q
plane and is unstable in the positive direction orthogonal to the P -Q plane
by the Jacobian matrix at E1. Similary, E2 is a saddle point which is globally
asymptotically stable in the positive Q-Z plane and is unstable in the positive
direction orthogonal to the Q-Z plane. Therefore, system (2.3) is persistent
by [10]. As a result, since (2.3) is dissipative, (2.3) is uniformly persistent
by [33]. Finally, we apply Corollary of [3] and conclude that (2.3) has an
interior equilibrium E3 = (P̄ , Q̄, Z̄) with P̄ , Z̄ > 0 and Q̄ > Q0.

When zooplankton is obligate, by using the same argument as we did for
the proof of Theorem 2.9, it can be shown that system (2.3) is uniformly
persistent and also has an interior equilibrium if u(Q∗) > δ + D and (2.4)
holds for b = 0. We now exploit the extinction, persistence and coexistence
results on the limiting system to discuss the dynamics of the original system
(2.1). Since E0, E1 and E2 are hyperbolic for system (2.3) when they exist
and (2.3) possesses no cycle of steady states, using system (2.2) and a result
of Thieme [27, 32], the dynamics of (2.1) can be described below.

Theorem 2.10 The dynamics of system (2.1) are summarized as the follow-
ing.
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(1) If u(Q∗) < δ + D and bf(N 0) < ε + D, then E∗

0 = (N0, 0, Q∗, 0) is the
only steady state for (2.1) and solutions of (2.1) converge to E∗

0 .

(2) If u(Q∗) > δ + D and bf(N 0) + dcg(N0/Q0)Q
∗ < ε + D, then E∗

0 and
E∗

1 = (N1, P1, Q1, 0) are the only steady states for (2.1) and solutions
of (2.1) with P (0) > 0 converge to E∗

1 , where N1 = N0 − P1Q1.

(3) If u(Q∗) < δ+D and bf(N 0) > ε+D, then E∗

0 and E∗

2 = (N2, 0, Q2, Z2)
are the only steady states for (2.1) and solutions of (2.1) with Z(0) > 0
converge to E∗

2 , where N2 = N0 − Z2.

(4) If u(Q∗) > δ+D, bf(N 0) > ε+D, and (2.4) and (2.5) are satisfied, then
there exists δ̂ > 0 such that lim inf t→∞ P (t) ≥ δ̂ and lim inft→∞ Z(t) ≥ δ̂
for any solutions of (2.1) with P (0), Z(0) > 0. Moreover, (2.1) has an
interior equilibrium E∗

3 = (N̄ , P̄ , Q̄, Z̄), where N̄ = N0 − P̄ Q̄ − Z̄.

Recall that limt→∞(N(t) + P (t)Q(t) + Z(t)) = N 0 for any solution of
(2.1), and thus lim supt→∞

N(t) ≤ N0. Consequently, N 0 can be viewed as
the maximal long time sustainable nutrient concentration available to the
populations. Since Q∗ solves ρ(N 0, Q) − u(Q)Q = 0, Q∗ is the maximal
cell quota for phytoplankton and u(Q∗) becomes the maximal growth rate
of the algae. In addition to predation by zooplankton, phytoplankton pop-
ulation experiences losses due to its death and washout. Therefore, if the
maximal growth rate u(Q∗) is less than the sum of death and washout rates,
i.e., u(Q∗) < δ + D, then phytoplankton becomes extinct. Similarly, bf(N 0)
can be interpreted as the maximal growth rate of zooplankton from nutrient
consumption. Therefore if u(Q∗) < δ + D and bf(N 0) < ε + D, since phy-
toplankton cannot survive and the available nutrient also cannot sustain the
zooplankton population, both populations inevitably become extinct.

On the other hand, as the maximal phytoplankton population for the
model is N0/Q0, the maximal growth rate of zooplankton from consumption
of algae is dcg(N 0/Q0)Q

∗. Hence bf(N 0) + dcg(N 0/Q0)Q
∗ is the maximal

growth rate for zooplankton from consumption of both the nutrient and
algae. It follows that the zooplankton population becomes extinct if this
maximal growth rate is less than the total removal rate ε+D. Consequently,
phytoplankton population persists if the maximal growth rate u(Q∗) of the
population exceeds its total removal rate δ+D. This persistent phenomenon
is denoted by the convergence to a steady state as demonstrated in Theorem
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2.10 (2). Similar biological interpretations can be made for Theorem 2.10 (3)
if zooplankton is facultative.

Notice that when u(Q∗) > δ + D and bf(N 0) > ε + D, each individual
population can survive under the condition that there is no other species
present, i.e., we have two steady states E1 and E2 such that each of E1

and E2 is globally asymptotically stable on the positive P -Q and positive
Q-Z plane, respectively. This is possible because zooplankton also feeds
on the nutrient. Theorem 2.10 (4) states that under this circumstance both
populations can coexist if the maximal growth rate of each of the populations
exceeds its total removal rate when the population is near the steady state
for which the other population is absent.

We remark that when zooplankton is obligate, i.e., when b = 0, the con-
dition bf(N0) > ε + D derived in Theorem 2.10 (3) can never be satisfied.
Therefore it is impossible for the zooplankton population to survive without
the presence of the algal population. However, it is straightforward to show
that both populations can coexist with each other if we set b = 0 in inequal-
ity (2.4) and ignore bf(N 0) > ε + D and inequality (2.5) in Theorem 2.10
(4). Consequently, these conditions become a set of sufficient conditions for
coexistence when zooplankton is obligate to phyplankton. Similar biological
interpretations can be made for Theorem 2.10 (1) and (2) when b = 0.

3 The model with periodic nutrient input

To simulate the seasonal or day/night variations of the nutrient in a natural
environment, we assume that the input concentration of the limiting nutrient
varies periodically around a mean value N 0 > 0, with an amplitude a, a <
N0, and period τ ; that is, according to the law N 0 + ae(t), where e(t) is a
τ -periodic function of mean value zero and |e(t)| ≤ 1. We let < h(t) >=
1

τ

∫ τ

0

h(t)dt denote the mean value of a τ -periodic function h. Model (2.1)

with fluctuating nutrient input takes the following form.

Ṅ = D(N0 + ae(t) − N) − Pρ(N, Q) + δPQ − bf(N)Z + c(1 − d)g(P )QZ + εZ,

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N, Q) − u(Q)Q, (3.1)

Ż = [bf(N) + dcg(P )Q − ε − D]Z,

N(0) ≥ 0, P (0) ≥ 0, Q(0) ≥ Q0, Z(0) ≥ 0.
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We begin by considering the τ -periodic equation

Ṅ = D(N0 + ae(t) − N). (3.2)

It is straightforward to show that (3.2) has a unique τ -periodic solution

N∗(t) =
De−Dt

eDτ − 1

∫ t+τ

t

eDr(N0 + ae(r))dr and every solution of (3.2) can be

written as N(t) = N ∗(t)+(N(0)−N ∗(0))e−Dt. Thus limt→∞(N(t)−N∗(t)) =
0, where N0 − a ≤ N∗(t) ≤ N0 + a for t ≥ 0.

We now let V = N ∗(t)−N −PQ−Z. Then V̇ = −DV and system (3.1)
can be rewritten as

V̇ = −DV,

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N∗(t) − V − PQ − Z, Q) − u(Q)Q, (3.3)

Ż = [bf(N∗(t) − V − PQ − Z) + dcg(P )Q − ε − D]Z.

Observe that the ω-limit set of (3.3) lies to the set V = 0. Restricted to
V = 0, we have the following limiting system for (3.1).

Ṗ = P [u(Q) − δ − D] − cg(P )Z,

Q̇ = ρ(N∗(t) − PQ − Z, Q) − u(Q)Q, (3.4)

Ż = [bf(N∗(t) − PQ − Z) + dcg(P )Q − ε − D]Z,

P (0) ≥ 0, Q(0) ≥ Q0, P (0)Q(0) + Z(0) ≤ N ∗(0).

It follows that solutions of (3.4) satisfy P (t) ≥ 0, Q(t) ≥ Q0, Z(t) ≥ 0,
P (t)Q(t) + Z(t) ≤ N ∗(t) ≤ N0 + a for t ≥ 0, and system (3.4) is dissipative.

A variable-yield single species chemostat model with periodic nutrient in-
put was studied by Smith [28]. Let Γ = {(P, Q, Z) ∈ R3

+ : Q ≥ Q0, PQ+Z ≤
N∗(0)}. It is useful to consider the Poincaré map T induced by (3.4);
that is, T : Γ → Γ by T (P (0), Q(0), Z(0)) = (P (τ), Q(τ), Z(τ)), where
(P (t), Q(t), Z(t)) is the solution of (3.4) with initial condition (P (0), Q(0), Z(0)).
Since (3.4) is dissipative, T is also dissipative. Moreover, T has a global at-
tractor, that is, T has a maximal compact invariant subset X of Γ such that
limn→∞ T nx ∈ X for any x ∈ Γ.

To understand the dynamics of (3.4), it is natural to first discuss the
trivial τ -periodic equation

Q̇ = ρ(N∗(t), Q) − u(Q)Q, (3.5)

Q(0) ≥ Q0.
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It follows from Smith [28] that (3.5) has a unique τ -periodic solution Q∗(t)
which is moreover globally asymptotically attracting for (3.5). Consequently,
(3.4) always has a trivial τ -periodic solution (0, Q∗(t), 0). However, similar to
the autonomous system presented in the previous section, Q∗(t) is biological
irrelevent as there is no phytoplankton present.

Lemma 3.1 If < u(Q∗(t)) >< δ +D, then limt→∞ P (t) = 0 for any solution
of (3.4).

Proof. Since Q̇ ≤ ρ(N∗(t), Q) − u(Q)Q, it follows that Q(t) ≤ Q̂(t) for
t ≥ 0, where Q̂(t) is the solution of (3.5) with Q̂(0) = Q(0). By using
Q̂(t) − Q∗(t) → 0 as t → ∞, the first equation in (3.4) yields

P (t + τ) ≤ P (t)eτ/2 < u(Q∗(t)) − δ − D >

for t large. Thus limt→∞ P (t) = 0.

Note that as P (t)Q(t) ≤ N ∗(t) ≤ N0 + a and Q(t) ≥ Q0, then P (t) ≤
N0 + a

Q0
for all solutions of (3.4). The following lemma can be proved similarly

as Lemma 3.1.

Lemma 3.2 If < bf(N ∗(t))+dcg(N0+a
Q0

)Q∗(t) >< ε+D, then limt→∞ Z(t) =

0 for any solution of (3.4).

The following theorem provides a sufficient condition for the extinction
of both populations on the ω-limit set of (3.1).

Theorem 3.3 If < u(Q∗(t)) >< δ + D and < bf(N ∗(t)) >< ε + D, then
limt→∞P (t) = limt→∞ Z(t) = 0 and limt→∞(Q(t) − Q∗(t)) = 0 for any
solution of (3.4), i.e., (0, Q∗(t), 0) is globally attracting for system (3.4).

Proof. Since < u(Q∗(t)) >< δ + D, then limt→∞ P (t) = 0 by Lemma 3.1.
Thus for every ξ > 0, there exists t0 > 0 such that P (t) ≤ ξ for t ≥ t0. We
choose ξ > 0 such that < bf(N ∗(t)) + dcg(ξ)Q∗(t) >< ε + D. By a similar
argument as in Lemma 3.2 we can show that limt→∞ Z(t) = 0.

We now use the Poincaré map T introduced earlier. Since limt→∞ P (t) =
limt→∞ Z(t) = 0 and T has a global attractor X, X lies on the Q-axis.
Restricted to the Q-axis, T n(0, Q(0), 0) = (0, T n

1 (Q(0)), 0), where T1 is the
Poincaré map generated by (3.5). Since T1 has a unique fixed point Q∗(0)
which is moreover globally asymptotically stable for T1, it follows that T
has a unique fixed point (0, Q∗(0), 0) which is globally asymptotically stable
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for T . This shows that the trivial τ -periodic solution (0, Q∗(t), 0) is globally
attracting for (3.4).

Therefore both popultions are more likey to become extinct if zooplankton
is obligate to phytoplankton. Motivated by the observation that there would
be no zooplankton population at any future time if its initial population is
zero, we discuss the P -Q subsystem of (3.4).

Ṗ = P [u(Q) − δ − D],

Q̇ = ρ(N∗(t) − PQ, Q) − u(Q)Q, (3.6)

Q(0) ≥ Q0, P (0) ≥ 0, P (0)Q(0) ≤ N ∗(0).

By introducing a new state variable, (3.6) can be transformed into a com-
petitive system. Exploiting the competitive properties, Smith [28] obtained
the following result for system (3.6).

Lemma 3.4 If < u(Q∗(t)) >> δ + D, then system (3.6) has a unique τ -
periodic solution (P̄ (t), Q̄(t)) with P̄ (t) > 0 and Q̄(t) > Q0. Moreover, solu-
tion (P (t), Q(t)) of (3.6) with P (0) > 0 satisfies (P (t), Q(t)) → (P̄ (t), Q̄(t))
as t → ∞.

As a consequence of Lemma 3.4, system (3.4) has a unique τ -periodic
solution of the form (P̄ (t), Q̄(t), 0) if < u(Q∗(t)) >> δ + D, where P̄ (t) > 0
and Q̄(t) > Q0. The linearization of (3.4) corresponding to (0, Q∗(t), 0) gives
the linear periodic system Ẋ = A(t)X, with A(t) giving by





u(Q∗(t)) − δ − D 0 0

−Q∗(t) ∂ρ
∂N

∂ρ
∂Q

− u′(Q∗(t))Q∗(t) − u(Q∗(t)) − ∂ρ
∂N

0 0 bf(N∗(t)) − ε − D



 ,

where the arguments for ∂ρ
∂N

and ∂ρ
∂Q

are (N∗(t), Q∗(t)). From this we see

that the Floquet multipliers for the trivial τ -periodic solution (0, Q∗(t), 0)

are eτ<u(Q∗(t))−δ−D>, eτ< ∂ρ
∂Q

−u′(Q∗(t))Q∗(t)−u(Q∗(t))> < 1 and eτ<bf(N∗(t))−ε−D>.
Consequently, these multipliers can be used to show the following theorem
whose proof is postponed in the Appendix.

Theorem 3.5 If < u(Q∗(t)) >> δ + D and < bf(N ∗(t)) + dcg((N 0 +
a)/Q0)Q

∗(t) >< ε+D, then solution (P (t), Q(t), Z(t)) of (3.4) with P (0) > 0
satisfies (P (t), Q(t), Z(t)) → (P̄ (t), Q̄(t), 0) as t → ∞.
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If the zooplankton population is obligate, i.e., if b = 0, then the pop-
ulation cannot survive without the algae. However, when zooplankton is
faculative, the population may persist by consuming nutrient alone. There-
fore, since the positive Q-Z plane is invariant, we consider the Q-Z subsystem
of (3.4).

Q̇ = ρ(N∗(t) − Z, Q) − u(Q)Q,

Ż = [bf(N∗(t) − Z) − ε − D]Z, (3.7)

Q(0) ≥ Q0, 0 ≤ Z(0) ≤ N ∗(0).

We are able to show the existence of a unique τ -periodic solution in the inte-
rior of positive QZ-plane which is moreover globablly attracting for system
(3.7). Its proof is presented in the Appendix.

Lemma 3.6 If < bf(N ∗(t)) >> ε + D, then system (3.7) has a unique
τ -periodic solution (Q̂(t), Ẑ(t)) with Ẑ(t) > 0 and Q̂(t) > Q0. Moreover,
solutions of (3.7) with Z(0) > 0 satisfy (Q(t), Z(t)) → (Q̂(t), Ẑ(t)) as t → ∞.

It follows from Lemma 3.6 that system (3.4) has a unique τ -periodic
solution of the form (0, Q̂(t), Ẑ(t)) if < bf(N ∗(t)) >> ε + D, where Ẑ(t) > 0
and Q̂(t) > Q0. The following theorem can be proved similarly as Theorem
3.5 and the proof is omitted.

Theorem 3.7 If < u(Q∗(t)) >< δ + D and < bf(N ∗(t)) >> ε + D, then so-
lution (P (t), Q(t), Z(t)) of (3.4) with Z(0) > 0 satisfies (P (t), Q(t), Z(t)) →
(0, Q̂(t), Ẑ(t)) as t → ∞.

We now assume < u(Q∗(t)) >> δ + D and < bf(N ∗(t)) >> ε + D so
that both τ -periodic solutions (P̄ (t), Q̄(t), 0) and (0, Q̂(t), Ẑ(t)) exist. When
b = 0, there is no periodic solution of the form (0, Q̂(t), Ẑ(t)). However, the
same analysis given below can be used to treat the case.

The linearization of (3.4) with respect to (P̄ (t), Q̄(t), 0) produces the lin-
ear system Ẋ = B(t)X, with B(t) equal to





u(Q̄(t)) − δ − D P̄ (t)u′(Q̄(t)) −cg(P̄ (t))

−Q̄(t) ∂ρ
∂N

a22(t) − ∂ρ
∂N

0 0 a33(t)



 ,

where a22(t) = −P̄ (t) ∂ρ
∂N

+ ∂ρ
∂Q

− u′(Q̄(t))Q̄(t)− u(Q̄(t)), a33(t) = bf(N∗(t)−

P̄ (t)Q̄(t))+dcg(P̄ (t))Q̄(t)− ε−D, and ∂ρ
∂N

and ∂ρ
∂Q

are evaluated at (N ∗(t)−
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P̄ (t)Q̄(t), Q̄(t)). It follows from Lemma 3.4 that the Floquet multipliers
ρ1, ρ2 for (P̄ (t), Q̄(t)) are less than 1 in modulus. We apply Lemma 6.4 of
[27, chapter 3] and conclude that the Floquet multipliers for (P̄ (t), Q̄(t), 0)

are ρ1, ρ2 and eτ < a33(t) >.
Similarly, the linearization of (3.4) corresponding to (0, Q̂(t), Ẑ(t)) gives

the linear periodic system Ẋ = C(t)X, where C(t) is





u(Q̂(t)) − δ − D − cg′(0)Ẑ(t) 0 0

−Q̂(t) ∂ρ
∂N

∂ρ
∂Q

− u′(Q̂(t))Q̂(t) − u(Q̂(t)) − ∂ρ
∂N

b31(t) 0 b33(t)



 ,

with b31(t) = −bQ̂(t)f ′(N∗(t)−Ẑ(t))Ẑ(t)+dcg′(0)Q̂(t)Ẑ(t), b33(t) = bf(N∗(t)−
Ẑ(t)) − ε − D − bf ′(N∗(t) − Ẑ(t))Ẑ(t) and the arguments for ∂ρ

∂N
and ∂ρ

∂Q

are (N∗(t) − Ẑ(t), Q̂(t)). Analogous to Lemma 6.4 of [27, chapter 3], it
can be shown that the Floquet multipliers of (0, Q̂(t), Ẑ(t)) are s1, s2 and

eτ < u(Q̂(t)) − δ − D − cg′(0)Ẑ(t) >, where s1, s2 are the Floquet multipli-
ers of (Q̂(t), Ẑ(t)) for the subsystem (3.7) with |s1|, |s2| < 1 by Lemma 3.6.

By using these linear periodic systems and the associated Floquet multi-
pliers, we obtain a sufficient condition for the persistence of both populations
on the ω-limit set of system (3.1). The proof is given in Appendix.

Theorem 3.8 Let < u(Q∗(t)) >> δ + D and < bf(N ∗(t)) >> ε + D. If

< bf(N∗(t) − P̄ (t)Q̄(t)) + dcg(P̄ (t))Q̄(t) >> ε + D (3.8)

and
< u(Q̂(t)) − cg′(0)Ẑ(t) >> δ + D (3.9)

hold, then system (3.4) is uniformly persistent and (3.4) has a positive τ -
periodic solution (P 0(t), Q0(t), Z0(t)), where P 0(t), Z0(t) > 0 and Q0(t) >
Q0.

When zooplankton is obligate to phytoplankton, by using similar argu-
ments as in the proof of Theorem 3.8, it can be shown that system (3.4) is uni-
formly persistent and possesses a positive τ -periodic solution if < u(Q∗(t)) >>
δ +D and (3.8) is satisfied for b = 0. Once the dynamics of (3.4) are well un-
derstood, we are ready to discuss the dynamics of the original system (3.1).
One way to carry over the analysis to the full system is by considering the
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Poincaré map as we did for the proof of Theorem 3.5. For simplicity, we take
a different approach here. We consider the equivalent system of (3.1), (3.2).
Clearly, (3.2) is dissipative. We rewrite system (3.4) as Ẏ = F (Y, t) and
system (3.2) as Ẋ = F (X, t) + R(X, t). Then it is straightforward to show
that there exist C > 0 and ξ > 0 such that |R(X, t)| ≤ Ce−ξt for t ≥ 0 for
every solution X(t). Consequently, Lemma A.4 of Hale and Somolinos [15]
implies that the asymptotics of (3.2) and thus of (3.1) are the same as its
limiting system (3.4). Therefore, the dynamics of system (3.1) can be stated
below.

Theorem 3.9 The dynamics of (3.1) are summarized as the following.

(1) If < u(Q∗(t)) >< δ+D and < bf(N ∗(t)) >< ε+D, then limt→∞(N(t)−
N∗(t)) = limt→∞ P (t) = limt→∞ Z(t) = limt→∞(Q(t) − Q∗(t)) = 0
for any solution (N(t), P (t), Q(t), Z(t)) of (3.1), i.e., the τ -periodic
solution (N ∗(t), 0, Q∗(t), 0) is globally attracting for (3.1).

(2) If < u(Q∗(t)) >> δ +D and < bf(N ∗(t))+dcg((N 0 +a)/Q0)Q
∗(t) ><

ε + D, then (3.1) has a τ -periodic solution (N̄(t), P̄ (t), Q̄(t), 0) with
N̄(t), P̄ (t) > 0, Q̄(t) > Q0, and solutions (N(t), P (t), Q(t), Z(t)) of
(3.1) with P (0) > 0 satisfy (N(t), P (t), Q(t), Z(t)) → (N̄(t), P̄ (t), Q̄(t), 0)
as t → ∞.

(3) If < u(Q∗(t)) >< δ+D and < bf(N ∗(t)) >> ε+D, then (3.1) has a τ -
periodic solution (N̂(t), 0, Q̂(t), Ẑ(t)), where N̂(t), Ẑ(t) > 0 and Q̂(t) >
Q0 such that solutions (N(t), P (t), Q(t), Z(t)) of (3.1) with Z(0) > 0
satisfy (N(t), P (t), Q(t), Z(t)) → (N̂(t), 0, Q̂(t), Ẑ(t)) as t → ∞.

(4) If < u(Q∗(t)) >> δ + D and < bf(N ∗(t)) >> ε + D, and (3.8) and
(3.9) are satisfied, then there exists κ > 0 such that liminft→∞P (t) ≥
κ and liminft→∞Z(t) ≥ κ for any solution of (3.1) with P (0) >
0, Z(0) > 0. Moreover, system (3.1) has a positive τ -periodic so-
lution (N0(t), P 0(t), Q0(t), Z0(t)), where N 0(t), P 0(t), Z0(t) > 0 and
Q0(t) > Q0.

If we let T (t) denote the total nutrient concentration at time t, i.e.,
T (t) = N(t) + P (t)Q(t) + Z(t), then Ṫ = D(N0 + ae(t) − T ) and thus
limt→∞(T (t) − N∗(t)) = 0. Therefore, the possible maximal nutrient con-
centration available to the populations at any given time t is N ∗(t). Since

17



Q∗(t) > Q0 is the unique τ -periodic solution of (3.5) to which each solution
attracts, < u(Q∗(t)) > can be viewed as the maximal average growth rate
for the phytoplankton population. Thus, the phytoplankton population goes
extinct if this maximal average growth rate is less than the total removal rate
δ +D for the population. Consequently, < bf(N ∗(t)) > is the maximal aver-
age growth rate of zooplankton and both populations become extinct if this
maximal average growth rate is less than its total removal rate ε+D. In par-
ticular, the condition < bf(N ∗(t)) >< ε + D is trivially true if zooplankton
is obligate.

Since N∗(t) ≤ N0+a for all t, (N 0+a)/Q0 is the maximal possible phyto-
plankton population in the model. Accordingly, < dcg((N 0 + a)/Q0)Q

∗(t) >
is the maximal average growth rate of zooplankton from ingestion of the al-
gal population. As a result, the second inequality given in Theorem 3.9 (2)
becomes the maximal average growth rate of zooplankton by consumpton of
both nutrient and algae. If this growth rate is less than the total removal rate
ε + D, then zooplankton population becomes extinct. Therefore under this
circumstance, the phytoplankton population can persist in a periodic fashion
if its maximal average growth rate < u(Q∗(t)) > from consumption of nu-
trient exceeds its total removal rate δ + D. Similar biological interpretaions
can be made for Theorem 3.9 (3) if the zooplankton population is assumed
to be facultative.

Parallel to Theorem 2.10 (4), Theorem 3.9 (4) provides a criterion for
coexistence of both populations. Conditions (3.8) and (3.9) given in the
theorem require that the maximal average growth rate of each of the popu-
lations exceeds its total removal rate near the periodic solution for which the
other species is absent. When zooplankton is obligate, i.e., when b = 0, it
is also straightforward to show that both populations can coexist with each
other by applying the same idea as in the proof of Theorem 3.8 and the re-
mark stated before Theorem 3.9. However, the second inequality and (3.9)
presented in Theroem 3.9 (4) are omitted and b is zero in (3.8) as in this
situation zooplankton can never survive without the phytoplankton.

4 Numerical simulations

In this section we use numerical examples to illustrate our analytical results
derived in the previous sections. In particular, we restrict to the case when
zooplankton population is obligate to phytoplankton. Consequently, we as-
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sume b = 0 in this section.
We adopt growth rate u and uptake rate ρ taken from Grover [13, 14]

u(Q) = umax
(Q − Qmin)+

k + (Q − Qmin)+

, (4.1)

ρ(N, Q) = ρmax(Q)
N

N + 4
, (4.2)

where ρmax(Q) = ρhigh
max−(ρhigh

max−ρlow
max)

(Q − Qmin)+

Qmax − Qmin
and (Q−Qmin)+ denotes

the positive part of Q−Qmin. Specific parameter values are ρhigh
max = 15, ρlow

max =
0.9, Qmin = 3, Qmax = 30, umax = 2.16 and k = 2. The zooplankton’s grazing
rate is modeled by the function g(P ) = 1 − e−0.5P .

Limiting system (2.3) with above functional forms becomes

Ṗ = P [2.16
(Q − 3)+

2 + (Q − 3)+
− δ − D] − c(1 − e−0.5P )Z,

Q̇ = [15 − 0.522(Q − 3)+]
N0 − PQ − Z

N0 − PQ − Z + 4
− 2.16

(Q − 3)+Q

2 + (Q − 3)+
,(4.3)

Ż = [dc(1 − e−0.5P )Q − ε − D]Z,

P (0) ≥ 0, Q(0) ≥ 3, Z(0) ≥ 0, P (0)Q(0) + Z(0) ≤ N 0.

When N0 = 3.75, D = 0.4, δ = 0.7, c = 2, ε = 0.1 and d = 0.7, condi-
tions given in Theorem 2.10 (4) are satisfied. As a result, the full sys-
tem is uniformly persistent. Simulated numerically, system (4.3) has two
steady states on the PQ coordinate plane: E0 = (0, 5.510033752, 0), E1 =
(0.2108343004, 5.075471698, 0), and a unique positive steady state E3 =
(0.1420430870, 5.209340229, 0.03492216781). We plot solution (N(t), P (t), Z(t))
for the full system with initial condition P (0) = 0.5, Q(0) = 3 and Z(0) = 1
in Figure 1. The solution stabilizes to the positive steady state very rapidly.
Similar qualitative behavior for (N(t), P (t), Z(t)) is obtained with different
initial conditions. Therefore, numerical simulations suggest that E3 is glob-
ally asymptotically stable for the parameters given.

For periodic nutrient input model, we use N 0 = 3.75 as given above and
let a = 3. We choose the periodic function e(t) = sin(π/10t). Therefore, the
period is 20 for our example. We can calculate N ∗(t) explicitly as given in
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Section 3. The limiting system (3.4) now takes the following form.

Ṗ = P [2.16
(Q − 3)+

2 + (Q − 3)+
− δ − D] − c(1 − e−0.5P )Z,

Q̇ = [15 − 0.522(Q − 3)+]
N∗(t) − PQ − Z

N∗(t) − PQ − Z + 4
− 2.16

(Q − 3)+Q

2 + (Q − 3)+

,(4.4)

Ż = [dc(1 − e−0.5P )Q − ε − D]Z,

P (0) ≥ 0, Q(0) ≥ 3, Z(0) ≥ 0, P (0)Q(0) + Z(0) ≤ 3.75.

We use the same parameter values as in the constant nutrient input model
with the exception that δ = 0.65. With these parameters, conditions given
in Theorem 3.9 (4) are satisfied. Therefore, the corresponding full sys-
tem is uniformly persistent and has a positive periodic solution. Figure
2 plots a positive periodic solution. Numerical simulations with different
initial conditions suggest that the positive periodic solution is globally at-
tracting. Figure 3 plots trajectories (N(t), P (t), Z(t)) with initial condition
P (0) = 0.5, Q(0) = 3 and Z(0) = 1.
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Figure 1: Solution (N(t), P (t), Z(t)) is plotted. The solution quickly stabi-
lizes in a positive steady state fasion.
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Figure 2: A positive periodic solution (N(t), P (t), Z(t)) is plotted with time
as the horizontal axis.
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Figure 3: A 3-dimensional plot for the solution (N(t), P (t), Z(t)) with initial
condition (1.25, 0.5, 1).
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5 Discussion

Nutrient-phytoplankton-zooplankton models with many different biological
assumptions and complexity have been studied by numerious researchers.
The purpose of theoretical studies of such a model aims either to capture
the essence of some general feature of the system or to encompass the whole
system.

In the open ocean, plankton communities inhabit an environment which
is constantly changing, both as a result of predictible seasonal variations and
unpredictiable influences. In this manuscript we ignore the spatial distribu-
tion of both plankton populations and the nutrient concentration and pro-
pose simple nutrient-phytoplankton-zooplankton models with general uptake
functions to study nutrient-plankton interaction in open ecological systems.
The two plankton levels are modeled in terms of their nutrient content. We
assume that there is no nutrient loss due to physiological death or nutrient
conversion. For natural systems, however, there are always losses because of
other biological reasons. We use a constant washout rate to model the loss of
nutrient and both plankton populations amounting from various biological
processes other than physiological death and nutrient conversion. In section
2 we studied the system with a constant limiting nutrient input. We also
investigated a model with a periodic nutrient input in section 3 to account
for seasonal or day/night variations. The zooplankton population in both of
these environments may be obligate or facultative.

The nutrient-plankton models discussed here separate the nutrient con-
centration in the internal nutrient pool from the external nutrient concentra-
tion and only the internal nutrient concentration is capable of catalyzing cell
growth for phytoplankton. Explicitly we adopt the Droop model mechanism
for phytoplankton. Threshold conditions are then derived for population
extinction, persistence, and coexistence.

The dynamics of the constant limiting nutrient input model (2.1) were
shown to depend on the maximal growth rates of the populations. If the
total removal rate of phytoplankton exceeds its maximal growth rate, then
phytoplankton becomes extinct, and as a result bf(N 0) becomes the maximal
growth rate of the zooplankton. Therefore, both populations go extinct if the
maximal growth rate of zooplankton is also less than its total removal rate.
This conclusion is independent of whether zooplankton is obligate or faculta-
tive. When phytoplankton’s maximal growth rate exceeds its total removal
rate, then phytoplankton can survive and thus bf(N 0) + dcg(N0/Q0)Q

∗ be-
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comes the maximal growth rate of the zooplankton. Zooplankton becomes
extinct if its total removal rate exceeds this maximal growth rate, and as
a result only phytoplankton persists. When the maximal growth rate of
phytoplankton exceeds its total removal rate and zooplankton is obligate,
then both populations can coexist with each other if in addition the maxi-
mal growth rate of zooplankton is greather than its removal rate when the
population is near the steady state for which phytoplankton popoulation is
present. Similar biological interpretations can be drawn when zooplankton
is facultative.

The dynamics of the nutrient-plankton model (3.1) with a periodic nutri-
ent input were also shown to depend on the maximal average growth rates
of the populations. We can make the same biological conclusions as we did
for the constant nutrient input model (2.1). However, due to the periodicity
of the environment, the expression of survivability of each of the individual
populations is captured by asymptotically attracting to periodic functions
instead of converging to steady states.

A Appendix

Proof of Theorem 3.5 We consider the Poincaré map T : Γ → Γ defined
earlier. Since limt→∞ Z(t) = 0 by Lemma 3.2 and T has a global attrac-
tor X, X lies on the P -Q plane. Restricted to the P -Q coordinate plane,
T n(P (0), Q(0), 0) = (Sn(P (0), Q(0)), 0), where S is the Poincaré map in-
duced by system (3.6). Consequently, T has two fixed points (0, Q∗(0), 0) and
(P̄ (0), Q̄(0), 0). It remains to be shown that limn→∞ T n(P (0), Q(0), Z(0)) =
(P̄ (0), Q̄(0), 0) if P (0) > 0. Our analysis given here is similar to that used
in [28]. Let A = {(P, Q, Z) ∈ Γ : P = 0}. Then A is a closed subset of
Γ. Our assumption implies that the maximal compact invariant subset of
A is M = {(0, Q∗(0), 0)} which is moreover isolated in the P -Q plane. The
Jacobian derivative J of T at (0, Q∗(0), 0) is given by Φ(τ), where Φ(t) is the
fundamental matrix solution of Ẋ = A(t)X. It follows that the stable set
W s(M) of M , {x ∈ Γ : limt→∞ T nx ∈ M}, lies on A. Therefore, T is uni-
formly persistent with respect to A by Theorem 4.1 of Hofbauer and So [16],
i.e., there exists η > 0 such that lim infn→∞ d(T n(P (0), Q(0), Z(0)), A) > η
for any (P (0), Q(0), Z(0)) ∈ Γ with P (0) > 0. Accordingly, any sub-
sequential limit of T has the form (P, Q, 0) with P > η. Consequently,
T n(P (0), Q(0), Z(0)) → (P̄ (0), Q̄(0), 0) as n → ∞ if P (0) > 0 and the proof
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is now complete.

Proof of Lemma 3.6 Note that Ż can be decoupled from Q̇ in (3.7) as given
below:

Ż = [bf(N∗(t) − Z) − ε − D]Z, (A.1)

0 ≤ Z(0) ≤ N ∗(0).

Consider the Poincaré map R : [0, N ∗(0)] → [0, N∗(0)] by Rz0 = Z(τ, z0),
where Z(t, z0) is the solution of (A.1) with Z(0, z0) = z0. Clearly R0 = 0

and Ṙz0 =
∂Z(τ, z0)

∂z0

= v(τ), where v(t) satisfies

v̇ = [bf(N∗(t) − Z) − ε − D − bf ′(N∗(t) − Z)Z]v

v(0) = 1.

Since

v(t) = e

∫ t

0

[bf(N∗(s) − Z(s, z0)) − ε − D − bf ′(N∗(s) − Z(s, z0))Z(s, z0)]ds
,

we have Ṙz0 = v(τ) > 0 for 0 ≤ z0 ≤ N∗(0). Hence R is strictly increasing on
[0, N∗(0)]. In particular, Ṙ0 > 1 by our hypothesis. Since RN ∗(0) < N∗(0),
R has at least one positive fixed point Ẑ(0), where Ẑ(0) < N∗(0). Observe
from (A.1) that a periodic solution Z(t) satisfies < bf(N ∗(t)−Z(t)) >= ε+D.
Thus if (A.1) has two positive τ -periodic solutions Z̄(t) and Ẑ(t), then there
exists t0 ∈ (0, τ) such that Z̄(t0) = Ẑ(t0) and consequently Z̄(t) = Ẑ(t) for
all t. We conclude that the positive fixed point Ẑ(0) of R is unique. It is then
straightforward to show that limn→∞ Rnz0 = Ẑ(0) if z0 ∈ (0, N∗(0)]. Indeed,
Rz0 > z0 if z0 ∈ (0, Ẑ(0)) and thus {Rnz0}∞n=0 is an increasing sequence
which is moreover bounded above by Ẑ(0). Therefore, Rnz0 must converge
to a positive fixed point of R. Since the positive fixed point is unique, this
shows that limn→∞ Rnz0 = Ẑ(0). The argument for z0 ∈ (Ẑ(0), N∗(0)] is
similar. We conclude that (A.1) has a unique τ -periodic solution Ẑ(t) with
0 < Ẑ(t) < N∗(t) which is globally attracting for (A.1) in (0, N ∗(0)].

We now discuss system (3.7). If (3.7) has two τ -periodic solutions (Qi(t), Zi(t))
with Zi(t) > 0 and Qi(t) > Q0, i = 1, 2, then since Zi(t) is a τ -periodic so-
lution of (A.1) it follows that Z1(t) = Z2(t) for all t. It follows from the first
equation of (3.7) that there exists t0 ∈ (0, τ) such that

ρ(N∗(t0) − Z1(t0), Q1(t0))

Q1(t0)
− u(Q1(t0)) =

ρ(N∗(t0) − Z2(t0), Q2(t0))

Q2(t0)
− u(Q2(t0)).
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If Q1(t0) < Q2(t0), then the left hand side of the above equality is greater
than the right hand side of the equality and vice versa if Q1(t0) > Q2(t0).
Therefore we conclude that Q1(t0) = Q2(t0) and (3.7) has at most one pos-
itive τ -periodic solution. We next show the existence of such a periodic
solution. We consider the τ -periodic equation

Q̇ = ρ(N∗(t) − Ẑ(t), Q) − u(Q)Q, (A.2)

Q(0) ≥ Q0,

where N∗(t) − Ẑ(t) > 0 and is τ -periodic. We define the Poincaré map
F : [Q0,∞) → [Q0,∞) by F (q0) = Q(τ, q0), where Q(t, q0) is the solution of
(A.2) with Q(0, q0) = q0. By a similar argument as for R, we can show that F
is strictly increasing, F (Q0) > Q0, and F (Q) < Q for all Q large. Therefore,
it can be shown that (A.2) has a unique τ -periodic solution Q̂(t), Q0 <
Q̂(t), and as a result (3.7) has a unique τ -periodic solution (Q̂(t), Ẑ(t)) with
Ẑ(t) > 0 and Q̂(t) > Q0. Consequently, (3.7) has two τ -periodic solutions
(Q∗(t), 0) and (Q̂(t), Ẑ(t)). Since (3.7) is competitive, every solution of (3.7)
is asymptotic to a τ -periodic solution [27]. Therefore the result follows as
every solution Z(t) of (A.1) with Z(0) > 0 attracts to Ẑ(t).

Proof of Theorem 3.8 Since < u(Q∗(t)) >> δ + D and < bf(N ∗(t)) >>
ε + D, the τ -periodic solutions (P̄ (t), Q̄(t), 0) and (0, Q̂(t), Ẑ(t)) both exist.
Therefore the left hand sides of (3.8) and (3.9) are well defined. We apply
Theorem 3.1 of Butler and Waltman [2] to show uniform persistence of (3.4).
Let F be the continuous flow generated by (3.4) and ∂F be F restricted
to the boundary ∂Γ. We first claim that ∂F is isolated and acyclic. Let
M0 = {(0, Q∗(t), 0)|0 ≤ t ≤ τ}, M1 = {(P̄ (t), Q̄(t), 0)|0 ≤ t ≤ τ}, M2 =
{(0, Q̂(t), Ẑ(t))|0 ≤ t ≤ τ}, and let Λ+(x) denote the ω-limit set of x. Then
the invariant set of ∂F , Ω(∂F) = ∪x∈∂ΓΛ+(x), is {M0, M1, M2}. Clearly ∂F
is acyclic as M0, M1 and M2 are globally attracting on the positive Q-axis,
the positive P -Q plane and the positive Q-Z plane respectively so that no
subset of {M0, M1, M2} forms a cycle. It remains to be shown that each Mi

is isolated for ∂F and for F , respectively, for i = 0, 1, 2. We only claim that
M0 is isolated for F as the remaining assertion can be shown similarly.

Let ĉ = maxP∈[0,(N0+a)/Q0]g
′(P ). Since < u(Q∗(t)) >> δ + D, we choose

ρ > 0 such that

1/τ

∫ τ

0

[u(Q∗(t) − ρ) − (δ + D + cĉρ)]dt > 0.

27



Let N = {(P, Q, Z) ∈ Γ : d((P, Q, Z), M0) < ρ}, where d is the usual
Euclidean metric on R3. We show that N is an isolating neighborhood of
M0 in Γ, i.e., M0 is the maximal invariant set in N . If not, then there exists
an invariant set V in Γ such that M0 ⊂ V ⊂ N and V \M0 6= ∅. Since M1 and
M2 are globally attracting in the positive P -Q and Q-Z planes respectively,
we can find x(0) = (P (0), Q(0), Z(0)) ∈ V \ M0 such that P (0), Z(0) > 0.
Then x(t) ∈ V for all t. But V ⊂ N implies

Ṗ

P
= u(Q) − δ − D −

cg(P )

P
Z

≥ u(Q∗(t) − ρ) − δ − D − cĉρ

and thus

P (t) ≥ P (0)e

∫ t

0

[u(Q∗(s) − ρ) − δ − D − cĉρ]ds
.

As a consequence, P (t) → ∞ as t → ∞. We obtain a contradiction and

conclude that M0 is isolated for F . Therefore, ∂F is isolated. Let
◦

Γ denote
the interior of Γ. It follows from (3.8), (3.9) and the Floquet multipliers of
the τ -periodic solutions (0, Q∗(t), 0), (P̄ (t), Q̄(t), 0) and (0, Q̂(t), Ẑ(t)) that

W+(Mi)∩
◦

Γ= ∅ for i = 0, 1, 2, where W +(Mi) denotes the stable set of Mi.
We apply Theorem 3.1 of [2] and conclude that (3.4) is uniformly persistent.
Since (3.4) is also dissipative, Theorem 4.11 of Yang and Freedman [36]

implies that (3.4) has a τ -periodic solution in
◦

Γ. Accordingly, (3.4) has a
positive τ -periodic solution.
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