ITERATIVE METHODS FOR THE
COMPUTATION OF A FEW EIGENVALUES
OF A LARGE SYMMETRIC MATRIX -

J. BAGLAMA®, D. CALVETTTI? and L. REICHEL?

!Department of Mathematics and Computer Science, Kent State University,
Kent, OH 44242. E-mail: jbaglama@mecs.kent.edu

?Department of Mathematical Sciences, Stevens Institute of Technology,
Hoboken, NJ 07030. E-mail: na.calvetti@na-net.ornl.gov

*Department of Mathematics and Computer Science, Kent State University,
Kent, OH 44242. E-mail: reichel@mcs.kent.edu

Dedicated to Ake Bjorck on the occasion of his 60th birthday

Abstract.

The task of computing a few eigenvalues and associated eigenvectors of a large sparse
symmetric matrix arises in many applications. We present new iterative methods de-
signed for the determination of a few extreme or non-extreme eigenvalues and associ-
ated eigenvectors. Our methods are based on the recursion formulas of the Implicitly
Restarted Lanczos method introduced by Sorensen [37], but differ from previous appli-
cations of these formulas in the selection of accelerating polynomial. The methods of
the present paper require very little computer storage. Numerical examples illustrate
that the methods can give rapid convergence.

AMS subject classification: 65F15

Key words: Restarted Lanczos method, Leja points, polynomial acceleration.

1 Introduction.

The determination of a few, say k, eigenvalues and associated eigenvectors of
a large sparse symmetric matrix 4 € R**" n > k, is an important computa-
tional problem that arises in many applications. A large number of algorithms
for the solution of this problem are based on the Lanczos process. However,
when applying the basic Lanczos method, one may encounter the following dif-
ficulties: i) large storage requirement for the Krylov subspace basis generated,
ii) low accuracy of the computed approximate eigenvalues and eigenvectors due
to loss of orthogonality of the computed Krylov subspace basis, and iti) poor or

*Received March 1995. Revised February 1996.
tThis work was supported by NSF grants F377 DMR-8920147 ALCOM, DMS-9409422 and
DMS-9205531.

2 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

no convergence towards eigenvalues in the interior of the spectrum unless the
Lanczos process is combined with inverse iteration. Inverse iteration requires fac-
torization of the matrix 4 — 27 into triangular matrices, and possibly a diagonal
matrix, for some z € R close to the desired eigenvalues.

This paper presents new iterative methods for the computation of a few se-
lected eigenvalues of a large sparse symmetric matrix A. These methods do not
require the factorization of matrices of the form A — 21, z € R.. Tterative meth-
ods of this kind are of interest because the computational effort required for the
factorization may be prohibitive when the order n of A is large. Also, the storage
requirement for the factors may make their computation and use unattractive.
An example that arises in the computation of equilibrium configurations of liquid
crystals is described in Example 5.2 of Section 5.

The difficulties associated with applying the basic Lanczos method to the
computation of a few extreme eigenvalues and associated eigenvectors of A have
spurred considerable research aimed at improving the method or at developing
alternative methods; see, e.g., [6, 13, 14, 23, 25, 27, 28, 29, 35] and references
therein. Recently, Sorensen [37] proposed the Implicitly Restarted Lanczos (IRL)
method for the computation of a few eigenvalues of a large sparse symmetric
matrix, and the closely related Implicitly Restarted Arnoldi (IRA) method for
the computation of a few eigenvalues of a large sparse nonsymmetric matrix.
These methods can be regarded as curtailed QR algorithms for the symmetric
and nonsymmetric eigenvalue problems, respectively. Similarly, as in the QR
algorithms, the choice of shifts is crucial for the performance of the IRIL and
TRA methods. However, the Rayleigh or Wilkinson shifts, popular choices of
shifts for the QR algorithm, cannot be applied in the IRL and IRA methods,
because the data required to compute these shifts is not available. Therefore
other shift selection strategies have been studied by Sorensen [37] for the IRL
and IRA methods, and by Calvetti et al. [4] for the IRL method.

The IRL and IRA methods require the user to select a strategy for choosing
a sequence of Krylov subspaces used to determine the invariant subspace as-
sociated with the desired eigenvalues. Similarly as the QR algorithm, the IRL
and IRA methods have to be supplemented with deflation techniques in order to
make the computation of multiple eigenvalues possible. Lehoucq and Sorensen
[18, 19] describe deflation techniques applicable to the subspace selection strate-
gles described in [4, 37].

The present paper describes modifications of the methods in [4, 37] for the
computation of a few eigenvalues and associated eigenvectors of a large sparse
symmetric matrix. We use the recursion formulas of the IRL method, but pro-
pose a new strategy for choosing the sequence of Krylov subpaces in the course
of the computations. When a few extreme eigenvalues are desired, then our shift
selection strategy is closely related to the one proposed in [4]. We also describe
a new shift selection strategy applicable when a few non-extreme eigenvalues are
desired. Our choices of subspaces and shifts avoid the difficulties i)-1ii) of the
basic Lanczos method discussed above. The storage requirements of the algo-
rithms of the present paper are smaller than for previously described algorithms

EXTREME AND INTERIOR EIGENVALUES 3

based on the IRL recursions.

The computations for the algorithms of this paper proceed as follows. We
apply m steps of the Lanczos method to an initial basis vector vy, where m
typically is chosen to be slightly larger than the number of desired eigenvalues
k,e.g., m =k + 2. Orthogonality of the m basis vectors of the Krylov subspace
generated by the Lanczos method is secured by reorthogonalization whenever
necessary. In general only one reorthogonalization is necessary; this has been
shown by Bjorck [1], see also the results by Hoffmann [15]. Assume first that
we are interested in the k smallest eigenvalues and associated eigenvectors of A.
The recursion coefficients of the Lanczos process then yield an m x m symmetric
tridiagonal matrix 7,,, whose eigenvalues are used to determine an interval K
on the real axis that does not contain the k desired eigenvalues. Assume that no
eigenvalue of 7}, approximates any of the desired eigenvalues of A with sufficient
accuracy. We then use the recursion formulas of the IRL method to apply an
accelerating polynomial ¢,,(A4) to vy by using the orthogonal Krylov subspace
basis, without evaluating new matrix-vector products with the matrix 4. The
purpose of the accelerating polynomial is to produce a vector ¥m(A)vy in the
invariant subspace associated with the & desired eigenvalues. The zeros of ¥,
are the shifts mentioned above; their choice affects the rate of convergence of the
algorithm. We choose the m shifts as Leja points for the set K. Having applied
these m shifts, we carry out m steps of the Lanczos process with initial vector
¢m (A)Ul.

If instead & non-extreme eigenvalues and the associated invariant subspace of
A are desired, then we use the recursion coefficients generated by the Lanczos
process to determine two symmetric tridiagonal matrices of order m and m + 1,
respectively. Eigenvalues of these matrices are used to determine a set K that
consists of two intervals, and does not contain any of the k& desired eigenvalues.
The shifts, i.e., the zeros of v¥,,, are chosen to be Leja points for K. Our
algorithm only requires the user to provide a subroutine for the evaluation of
matrix-vector products with the matrix 4. In particular, the computation of
maftrix-vector products of the form (A — zI)~u is not necessary, and therefore
factorization of matrices of the form A—z1 is not required. Algorithms described
in the literature for the computation of a few non-extreme eigenvalues require
the factorization of A — zI for one or several values of z € R; see [8, 27, 33, 39].

Numerical examples illustrate that the iterative methods of the present pa-
per can give rapid convergence. They require only O(mn) storage locations in
addition to the storage space required for the matrix A.

Polynomial acceleration for eigenvalue computation was first used by Flanders
and Shortley [10], who applied Chebyshev polynomials. A more recent applica-
tion is described by Saad [34]. The algorithms of the present paper differ from
the schemes in [10, 34] both in the organization of the computations and in the
selection of accelerating polynomials. A restarted Lanczos method is described
by Karush [16]. Applications that require the computation of a few eigenvalues
of a large symmetric matrix are discussed in [5, 24, 30, 38, 40]. The recursion
formulas of the Implicitly Restarted Lanczos method have recently also been

4 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

applied by Bjorck et al. [2] for the solution of ill-posed problems.

This paper is organized as follows. In Section 2 we review the Lanczos method
and the recursion formulas of the IRL method. Section 3 describes our strategies
for subspace and shift selections, and Section 4 presents the algorithms that
result. Illustrative numerical examples are displayed in Section 5, and concluding
remarks are found in Section 6.

2 The implicitly restarted Lanczos method.

The Lanczos process is a computational method for reducing an n x n sym-
metric matrix A to tridiagonal form, given an initial basis vector v;, which we
may assume to be of unit length. If we truncate the Lanczos process after m < n
steps, then we obtain the truncated reduction of A to tridiagonal form

(2.1) AV = Vi Ton + fimel

where V,, € R™™, Ve = vy, V"{Vm =1, T, € R™™ is a symmetric
tridiagonal matrix, and f,, € R satisfies V.I f,, = 0. Throughout this paper ¢;
denotes the jth axis vector of appropriate dimension, and I denotes an identity
matrix of suitable order. For future reference, we define

(2.2) P = {1 fmll;

where || - || denotes the Euclidean norm. Let 6 be an eigenvalue of the matrix T},
and let y be an associated eigenvector. Then @ is an approximate eigenvalue of
A, and is commonly referred to as a Ritz value of A. The vector & = V,,y is an
approximate eigenvector of A and is referred to as a Ritz vector of A. It follows
from (2.1) that the residual error Az — z6 associated with the Ritz pair {6, z}
satisfies

(2.3) 1Az — 20]| = [|(AVim = VinTn)yl = [Bmemyl.

Thus, the norm of the residual error can be determined without explicitly com-
puting the Ritz vector z, by evaluating the right-hand side of (2.3). When the
norm (2.3) is small, the Ritz value § is an accurate approximation of an eigen-
value of A. The determination of how well z approximates an eigenvector of A
requires further spectral information of A. In the basic Lanczos method, one
increases m until the right-hand side of (2.3) is sufficiently small, and then com-
putes the Ritz pair {6,z}. The latter requires that the matrix V,, be stored.
The storage of V;;, may require the use of secondary computer storage when the
matrix A is large.

This difficulty can be avoided by restarting the Lanczos process periodically.
The algorithms of the present paper use the recursion formulas of the IRL
method of Sorensen [37] for this purpose. Our algorithms define new polynomial
acceleration methods, in which the accelerating polynomials are determined by
using the spectral information of A gained by the Lanczos process. The purpose
of the accelerating polynomials is to determine a vector in the invariant subspace
spanned by the eigenvectors that are associated with the desired eigenvalues.

EXTREME AND INTERIOR EIGENVALUES 5

We describe the recursion formulas of the IRL method. Throughout this paper,
k denotes the number of desired eigenvalues. We assume that £ is fixed and small.
The number of steps of the Lanczos process taken between restarts is denoted
by m, where we assume that m > k. After m steps of the Lanczos process
with initial vector vy, we have determined the quantities in formula (2.1). We
now apply the following updating formulas, which are analogous to the explicitly
shifted QR algorithm.

Let z be a chosen shift and determine the QR factorization T}, — zI = QR,
where @, R € R™*™ QTQ = [and R is upper triangular. Putting V = V,
and T = T,,, we obtain

(2.4.1) (A—2D)V = V(T — zI) = fnel,
(24.2) (A-z2)V —VQR = frel,

(2.4.3) (A-2D)(VQ) = (VQ)(RQ) = fmey,Q,
(24.4) AVQ) - (VQ)RQ +zI) = frenQ.

Let V/ = VQ and T’ = RQ + zI. Then T’ is a symmetric tridiagonal matrix,
which is similar to 7. Multiplication of equation (2.4.2) by e, yields

(2.5) (A = zljvy = vip11,

where p1; = eT Re; and v} = V’e;. Equation (2.5) displays the relationship
between the initial Lanczos vector vy and v{. After applying the m — 1 shifts
21,22,...,%m~1, we obtain

(2.6) AV =V ITE + fael QT

where V¥ = (vf ,of,...,v}) = V,,Qt, Tt = (Q1)7T,,Qt and Qt =
1@z Qm-1. Here Q; denotes the orthogonal matrix associated with the
shift z;. Introduce the partitioning

+ ,3+6T
27 T+ = @y 1*1 >,
20 =

and equate the first column on the right-hand side and left-hand side of (2.6).
We then obtain

(2.8) Avt = ofaf + fiel,

where f1+ = v;ﬂf + fmel Qtey. It follows from wHTfF = 0 and ff €
span{v], Av]} that fi can be determined by the Lanczos process applied to
the matrix A with initial vector v{. The mth shift z, is applied according to

(2.9) of ¥ = S+ (af = zm)of

By construction, vf’*’ = ¥Pm(A)v1, where ¢, is a polynomial of degree m with
ZET0S 21,29, ..., %m. Note that v1++ has been computed from v; without evalua-
tion of matrix-vector products with the matrix A. Having computed v1++ in the
manner indicated, our algorithms set

(2.10) v = o /ffoy |

6 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

and restart the Lanczos process with the vector (2.10) as initial vector. The
algorithms proceeds in this manner to alternatively apply m steps of the Lanczos
process and m shifts until an initial vector vy has been determined that lies in the
invariant subspace associated with the &k desired eigenvalues. Since we only keep
at most m+1 orthogonal basis vectors of a Krylov subspace in memory during the
computations, we can afford to secure their orthogonality by reorthogonalization
whenever necessary.

As soon as an eigenvector has converged, it is stored, and subsequently gen-
erated Krylov subspace bases are orthogonalized against it. Assume that we
have determined j < k eigenvectors. Then the Lanczos process is only applied
m — j steps at a time, in order not to increase the memory requirement of
the algorithms. The orthogonalization of Krylov subspaces against converged
elgenvectors makes it possible to determine multiple eigenvalues.

Our algorithms differ from previous applications of the recursions of the IRL
method in that we apply as many shifts as possible, i.e., until only the vector
v] T remains. This makes deflation of converged eigenpairs trivial, and reduces
requirements of computer storage.

3 Selection of accelerating polynomial.

The rate of convergence of our iterative methods is determined by the ac-
celerating polynomial. We determine this polynomial by prescribing its zeros.
Sometimes we refer to the zeros as shifts, because as shown in Section 2, they
are shifts applied by a curtailed QR algorithm.

The description of the selection of zeros requires some notation. Let the set
K consist of one or two closed and bounded intervals on the real axis, and let
w(z) be a nonnegative continuous function on K. We refer to w(z) as a weight
function. Define a sequence {2;}$2; of points in K as follows. Let z; be a point
such that

(3.1) w(z1)|z1] = maxw(z)|z|, 7 €K,
zEK
and let z;, for j = 2,3,.. ., satisfy
j-1 i-1
(3.2) w(zj)H |zj — 21| = max w(z)H |z — 2|, zj € K.
=1 zeK =1

The points z; determined by (3.1)-(3.2) might not be unique. We call any
sequence of points {z;}$2; that satisfies (3.1)-(3.2) a sequence of weighted Leja
points for K, or sometimes briefly Leja points for K. Because we will use these
points as shifts in our algorithms, we also refer to them as Leja shifts. When
w(z) = 1, the weighted Leja points agree with the “classical” Leja points studied
by Leja [21], and probably first introduced by Edrei [7].

The sets K used in our algorithms are chosen so that they contain none of
the desired k eigenvalues and all or most of the n — & undesired ones. The
motivation for choosing the shifts to be Leja points for such sets is that we
want to dampen eigenvector components associated with undesired eigenvalues

EXTREME AND INTERIOR EIGENVALUES 7

in the initial Lanczos vectors vy determined by (2.10). We now describe how
the eigenvalues of the Lanczos matrices generated by the algorithms help us
determine such sets.

Assume first that we wish to compute the k£ smallest of the eigenvalues

(33) Als/\zs...S/\k</\k+1S...S)\n
of A, and let
(3.4) 91<92<...<9k<9k+1<...<(9m.

be eigenvalues of the matrix

a1 5 O

81 az B
B a3z f3

. : /Bm—l
O ,Bm—l am

defined by (2.1). By the Cauchy interlacing theorem,
)\k S aka gm S /\na

and therefore none of the k smallest eigenvalues of A lies in the interval [0 11, 0]
This suggests the following choice of the set K. The first time we determine a
tridiagonal matrix (3.5) by the Lanczos process, we compute its spectrum (3.4)
and define the endpoints of the interval K = [a, d] by

(3.6) a=0py1, d=0p.

We let the m shifts {z; };-”:1 be Leja points for K, i.e., we define the shifts by
(3.1)-(3.2). Application of the shifts as described in Section 2 yields a new
vector vy defined by (2.10). We now apply m steps of the Lanczos process to the
matrix A with this vector vy as initial vector. This gives rise to a new tridiagonal
matrix (3.5), defined by (2.1). The eigenvalues (3.4) of this tridiagonal matrix
are computed and the endpoints of K = [a, d] are updated according to

(3.7) a =041, d = max{d, 6,,}.
We then select m shifts zp41, Zmy2,--.,22m as Leja points for this new set
K = [a,d] in the presence of the points 21, 23,...,2m. More precisely, assume

that we already have determined the points {z;}7=;,. The next set of m points
{z ;ITH then is defined by the following algorithm. The weight function in
the algorithm is chosen to be

(3.8) w(z) = |z — Or+1]-

8 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

ALGORITHM 3.1. Compute m shifts as Leja points for K, given shifts {2;}7_,:

Input: Endpoints of K, r, m, {z;}}~;; Output: {z; ;l’ﬁ_l;

1. j:=r+1;
2. if j=1 then
zo := point of largest magnitude of K
else

Determine z; € K, such that

ji—-1 j-1
w(z)[] Iz — 2l = max w()[] Iz - «l,
1=1 :eK =1
where w(z) is defined by (3.8) or (3.17)
endif;

3. i=i+1
4. if] < r+m then go to 2 else stop; O

The determination of each Leja points, except zg, by Algorithm 3.1 requires
the maximization of a product over K. In order to reduce the computational
effort we replace K by a discrete point set.

We now describe the determination of the set K when k£ non-extreme eigen-
values of A are desired. We assume that A is indefinite and describe how to
compute k eigenvalues close to the origin. By shifting A by a suitable multiple
of the identity we can use the approach outlined to compute any set of k£ adjacent
eigenvalues of A. Let the index s satisfy

(3.9) A< <A1 <0< A <1< A,

where, as usual, the }; denote eigenvalues of A. For definiteness, assume that
we are interested in the ky largest negative eigenvalues and in the ko smallest
positive eigenvalues of A, where k = k1 + k2. An application of m steps of the
Lanczos process to the matrix A yields a tridiagonal matrix T, and a constant
Bm; see (2.1) and (2.2). We can form the (m + 1) x (m + 1) matrix

ar B O

6 az B
B az s

ﬂm—l
ﬁm—l Um ,Bm

O ﬂm é'fm—+-1

EXTREME AND INTERIOR EIGENVALUES 9

where the a; and §; are the same as in (3.5) and
Omt1 = ,%Le?nTn_.Llem.

We assume that m is such that the matrix 7}, is non-singular. Denote the
eigenvalues of (3.10) by o N
(3.11) 0 < b <...< byt

One can show, see below, that the matrix Tm+1 is singular. Thus, there is an
index ¢ such that R
(3.12) 6, = 0.

The spectra of the matrices T}, and Tm+1 can be used to determine a set K =
[a,b] U [c,d] that contains most or all of the n — k undesired eigenvalues of A
and none of the & wanted ones. In order to dampen eigenvector components
associated with the undesired eigenvalues in the Lanczos vectors, we let the
shifts be Leja points for K. The endpoints @ and d of K are determined as
above, i.e., by formulas (3.6) or (3.7). We now consider the determination of the
endpoints b and ¢. We would like them to be such that

(313) As—k,+i € [b,C], 0<i<ky+ko,

where the index s is given by (3.9). The following theorem sheds light on how
to select these endpoints. ~

THEOREM 3.1. Assume that the eigenvalues 6; ome+1 are ordered according
to (3.11), and let the index q be determined by (3.12). Then the interval [0,§q+i]
contains at least i cigenvalues of A for | < i < m+ 1 — q, and the interval

[04—i,0] contains at least i eigenvalues of A for 1< i< g—1. The matriz (3.10)
can be associated with a Gauss-Radau quadrature rule with a node at z = 0.

PrOOF: The intervals [0, ,;] and [0,—i,0] are Lehmann intervals discussed in
(17, 26, 27]. The theorem follows by combining results by Golub [12], Lehmann
[17], Morgan [22] and Paige et al. [26]. Details are presented in [3]. O

We are in a position to define the endpoints & and ¢ for the set K. It follows
from Theorem 3.2 that the choice

(3.14) b= éq—kl_P’ €= §q+k2+p

satisfies (3.13) for p > 1.

Thus, after the first m steps of the Lanczos process, we compute the eigenvalues
{6;}7L, and {6; };n=+11 of the tridiagonal matrices (3.5) and (3.10) generated, and
define the initial set K = [a, b] U [e, d] by

@ = 6, b=0,_,_p,
(3.15)

c = 6q+k2+p; d=20,

for some integer 1 < p < %(m— k1 —k2) — 1. We have found that p=1lorp = 2
are suitable choices of p; see the computed examples of Section 5. Note that

10 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

it may happen that the endpoints ¢ and b determined by (3.15) satisfy b < a.
Then we let K = [¢,d]. Analogously, we let K = [a,] if d < ¢. Our selection of
endpoints secures that the set K consists of at least one interval.

In the course of the iterations new symmetric tridiagonal matrices T, and
Tm-{-l are generated and their eigenvalues are computed. For each new set of
eigenvalues computed, we update the endpoints of K according to

a = min{a,b}, b:éq_kl_p,
(3.16)

¢ = Oythotp, d = max{d, 0,,}.
The shifts are determined by Algorithm 3.1 with the weight function

|2 =0yt —pl, if 2 € [a,8],
(3.17) w(z) =)

|Z - ‘9q+k2+p|’ ifz € [C,d].

We remark that it is not necessary to compute all eigenvalues of the matrices
T, and f‘m“; only the extreme eigenvalues are required, and this may reduce
the computational effort necessary. However, the work spent determining all
eigenvalues of Tp, and Ty, 41 is negligible when n >> m and therefore we will not
discuss this issue further in the present paper.

4 Algorithms.

We describe two algorithms: one for computing the k smallest eigenvalues

{)\j}le and associated eigenvectors {uj};?zl of a large symmetric matrix A,

s+ko—1

Jzsok close to

and another one for computing the k = ky + k3 eigenvalues {};}
the origin and associated eigenvectors {u; }jifﬁc}
matrix A, where the index s is defined by (3.9).
Let {0;, y; };."zl denote eigenvalue-eigenvector pairs of the symmetric tridiago-
nal matrix T;,, € R™*™ defined by (2.1), and assume that the eigenvalues are
ordered according to (3.4). We may assume that the off-diagonal elements 3; of
T are nonvanishing, because otherwise we have found an invariant subspace.
It follows from g; # 0, 1 < j < m, that the eigenvalues §; of T}, are distinct.
Let z; = V,,y; be a Ritz vector of the matrix A, associated with the Ritz

value ;. Then, analogously with (2.3), we obtain that

of a large indefinite symmetric

|Az; — 265 = |Bmelys1, 1<j<m,

where (3, is defined by (2.2). In our algorithms the computations are terminated
as soon as

4.1 T, 1<
(4.1) lrgjagklﬂmemyjl_e,

where € is a given positive constant. Formula (4.1) also is used to determine
whether an eigenvector has converged. We are in a position to describe our first
algorithm. The parameter icony counts the number of converged eigenvalues,
and r counts the number of Leja shifts that have been applied.

EXTREME AND INTERIOR EIGENVALUES 11

AvrcorIiTHM 4.1. Computation of k smallest eigenvalues:
Input: A, k, m, vy, €; Output: {/\j}le, {uj};?zl;
1. icony :=0;,r:=0;

2. Apply m steps of the Lanczos process to the matriz A with initial unit
vector vy := v1/||v1|| in order to determine the matrices 1., and V,, and
the vector fm, in (2.1);

3. Compute the eigenvalues (3.4} of Try;
4. It (4.1) is satisfied then done;

5. Determine whether any new eigenpairs have converged. Assume that
]ﬁme?;yjl < € for £ indices j. Leticony := tconv +&; m:=m—L; k:=k—¥;

6. If r = 0 then define the interval K = [a,d] by (3.6) else by (3.7);
7. Compute m Leja points {z; j’;:,”ﬂ for K by Algorithm 3.1;
8. Apply shifts {z; };i:”H according to (2.4)-(2.9). Compute vy by (2.10);

9. Orthogonalize vector vy against the feony converged eigenvectors.
Denote the vector so obtained also by vy. Let r:=r+m; Go to 2; O

We now turn to our second algorithm of this section. This algorithm is used
to determine the k = ki + ky eigenvalues {};}31%27! close to the origin and

j=s—k1
8+k2—1

associated eigenvectors {u;};Z(?% of a large indefinite symmetric matrix A,

where s is defined by (3.9).

ALGORITHM 4.2. Computation of & non-extreme eigenvalues:

Input: A: kl) k?; m, p, Vi, € OutPUt: {A]}jifi;}’ {UJ}:;;I:Q_;:’

1. k:=ki+ ko, iconv :=0; r:=0;

2. Apply m steps of the Lanczos process to the matriz A with initial unit
vector vy := v1/||v1|| in order to determine the matrices T, and Vi, and
the vector f, in (2.1) as well as the matriz Trqq given by (3.10);

3. Compute the eigenvalues (3.4) of T, € R™*™ and the eigenvalues (3.11)
Of Tm+1;

4. X (4.1) is satisfied then done;

5. Determine whether any new eigenpairs have converged. Assume that
|,8meglyj] < ¢ for £ indices j. Let icony = teonv + & m i =m—£; k:=k—{;

6. If r = 0 then define the set K := [a,b]U [¢,d] by (3.15) else by (3.16);

7. Compute m Leja points {z; };iﬁl for K by Algorithm 3.1;

12 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

8. Apply shifts {z; };i:"ﬂ according to (2.4)-(2.9). Compute vy by (2.10);

9. Orthogonalize vector vy against the ieopy converged eigenvectors.
Denote the vector so obtained also by vy. Let r:=r+m; Go to 2,0

The design of Algorithms 4.1 and 4.2 is motivated by their performance in
numerous numerical experiments, a few of which are reported in Section 5. The-
oretical results on the algorithms are incomplete. Difficulties in the analysis
stem from that the sets K keep changing during the iterations. Consider a mod-
ification of Algorithm 4.1, in which the updating formula (3.7) for the endpoint
a is replaced by a = min{a,8;}. Then the length of the interval K typically
Increases monotonically until K contains all undesired eigenvalues, and none of
the desired ones. When such a set K has been determined, the set remains
unchanged until all the wanted eigenvalues have been computed with desired
accuracy. The convergence results presented in [4] for fixed K are now appli-
cable. However, computed examples indicate that this modification generally
gives much slower convergence than Algorithm 4.1. We therefore have presented
the faster algorithm despite the lack of theoretical justification. The choice of
weight functions (3.8) and (3.17) also is motivated by numerical experiments;
the weight functions used give faster convergence than the choice w(z) = 1.

5 Computed examples.

This section describes some computed examples which illustrate the behav-
lor of Algorithms 4.1 and 4.2. The computations were carried out on an HP
9000/770 computer using double precision arithmetic, i.e., with approximately
15 significant digits.

Our first example compares Algorithm 4.1 with the subroutine DNLASO of
the FORTRAN package LASO2 by Scott [36] and with a subroutine in ARPACK
by Lehoucq, Sorensen and Vu [20]. The subroutine DNLASO implements the
Lanczos process with selective orthogonalization, see [29], and allows the user
to specify the maximal amount of computer storage available for the code to
use. Typically, the more storage available, the fewer restarts necessary and the
faster convergence to the desired eigenvalues and eigenvectors. The subroutine
allows the user to select block-size for the Lanczos process; if the block-size,
denoted by NBLOCK, is larger than one, then DNLASO implements a block
Lanczos algorithm. The parameter MAXJ of DNLASO specifies the order of
the largest symmetric block-tridiagonal Lanczos matrix generated by the algo-
rithm before restart. The largest order of this matrix is MAXJ*NBLOCK. The
storage requirement for the (block) Lanczos vectors generated by DNLASO is
nx*MAXJ*NBLOCK storage locations. The columns labeled “# Lanczos vec-
tors” in the tables display MAXJ«NBLOCK. The total storage requirement for
DNLASO is larger than n * (MAXJ+2)xNBLOCK in addition to the storage
needed to represent the matrix A.

The subroutine DNLASO is more advanced than our experimental code for
Algorithm 4.1 and has multiple stopping criteria. The iterations may terminate

EXTREME AND INTERIOR EIGENVALUES 13

before desired accuracy is achieved and this makes a comparison between the
subroutine DNLASO and our code for Algorithm 4.1 difficult. The performance
of DNLASO is therefore displayed in tables for different choices of the maximal
number of Lanczos vectors. The subroutine DNLASO allows the specification
of a parameter NFIG, the number of desired correct decimal digits in the com-
puted eigenvalue approximations. We show the performance of the DNLASO
for NFIG=4 and NFIG=10. The columns “# of matrix-vector products” dis-
plays the number of matrix-vector products with the matrix A. The number
of matrix-vector products shown in the tables is for vectors consisting of one
column only, also when the block-size is larger than 1. The tables also display
the magnitude of the errors in the computed eigenvalues. The stopping criterion
is seen to be more reliable for block-size 3 than for block-size 1.

The iterations with our code for Algorithm 4.1 were terminated when condition
(4.1) was satisfied. This stopping criterion gave in general at least —2log;q(€)
correct decimal digits in the computed approximate eigenvalues. In all computed
examples, the entries of the initial Lanczos vector v; were uniformly distributed
random numbers in an interval (0, p], where p > 0 is chosen so that [jv|| = 1.
The initial vector is the same for all runs with all codes in each example, but
it may differ between different examples. In experiments with DNLASO with
block-size larger than 1, the first vector in the initial block is the initial vector
used in experiments with block-size 1. The other vectors in the initial block
have randomly generated uniformly distributed entries. The column “# Lanczos
vectors” shows the parameter m in Algorithms 4.1 and 4.2; the algorithms require
storage of m + 1 vectors of length n.

From ARPACK we use a subroutine that implements the IRL method with
“exact shifts” as described by Sorensen [37] and Calvetti et al. [4]. We refer to
this method as ARPACK. Thus, when interested in computing the & smallest
eigenvalues of A, we use the m — k largest eigenvalues of the matrices T, gener-
ated as shifts z;. The application of exact shifts often requires m to be chosen
substantially larger than k. This phenomenon is discussed in Example 5.1 as
well as in [4].

EXAMPLE 5.1. We wish to compute the three smallest eigenvalues of the
matrix

(5.1) A = diag(1,2,3,...,n).

Tables 5.1-5.6 compare Algorithm 4.1 with DNLASO and ARPACK when the
matrices (5.1) are of order n = 2500. Table 5.1 shows the performance of Al-
gorithm 4.1. Figure 5.1 displays the number of matrix-vector products required
by Algorithm 4.1 for increasing values of m, and illustrates that the convergence
of Algorithm 4.1 is fairly insensitive to the choice of m. The figure also displays
the number of matrix-vector products required by ARPACK for different choices
of m. We can see that ARPACK requires a larger value of m, i.e., storage of
more n-vectors, in order to perform well. Analogous numerical experiments with
ARPACK are reported in [4].

Table 5.2 shows the number of matrix-vector products required by ARPACK.
The stopping criterion implemented in ARPACK is designed to terminate the

14 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

computations when |[A, — A;| < €]A.|, where A, and . denotes an exact eigen-
value and a computed approximation, respectively. With the choice ¢ = 1-1074%,
ARPACK gives an approximation of the smallest eigenvalue A; of about the
same accuracy as Algorithm 4.1. However, the computed approximations of A,
and A3 obtained by ARPACK were not as accurate as those determined by Al-
gorithm 4.1. ARPACK required the evaluation of more matrix-vector products
than Algorithm 4.1. Decreasing ¢, in order to obtain more accurate approxima-
tions of A» and A3, increases the number of matrix-vector products required by
ARPACK.

Table 5.3 displays the number of matrix-vector products required by the sub-
routine DNLASO when storage is limited to 10, 20 and 30 Lanczos vectors
and NFIG=10. The block-size is 1. The accuracy is seen to increase with the
storage size for the Krylov subspace basis. The storage requirement as well as
the number of matrix-vector products are much larger than for Algorithm 4.1.
The accuracy achieved in the computed approximations of A; and As when the
iterations were terminated is lower than for Algorithm 4.1.

The performance of the block Lanczos algorithm is illustrated by Table 5.4.
The accuracy achieved is higher than in Table 5.3, but so is the number of
matrix-vector products required.

Tables 5.5 and 5.6 differ from Tables 5.3 and 5.4 only in the choice of NFIG.
The tables show that even when much lower accuracy is demanded, the subrou-
tine DNLASO still requires the evaluation of a substantial number of matrix-
vector products and fairly large storage space.

Figure 5.2 compares Algorithm 4.1 and ARPACK when the order n of the
matrix (5.1) is increased from 1000 to 10000. We let m = 10, i.e., we keep the
dimension of the largest Krylov subspace used fixed, and compute the 3 smallest
eigenvalues for each one of the matrices. The figure shows that the number of
matrix-vector products required for both Algorithm 4.1 and ARPACK increases
with n, but the rate of increase is faster for ARPACK.

EXAMPLE 5.2. In this example we wish to determine the minimum energy
equilibrium configuration of liquid crystals in a slab

Q={(z,9,2):0<2<a,0<y<h0<z< e}

with surface JQ2. Using the Landau-de Gennes formulation, the free energy can
be expressed in terms of a tensor order parameter field Q; see Gartland [1 1] and
Priestly et al. [31]. The free energy is given by

(5:2) F(Q) = Foor(Q) + Fourt(Q) = /ﬂ Foor(Q)AV + /a fun(Q)dS,

where Q@ = Q(p), p € Q, is a 3x 3 symmetric traceless tensor, which is represented

EXTREME AND INTERIOR EIGENVALUES 15

by

10 0 01 0
Qp) = e[0 0 0 |4+q@p@E| 1 00
00 —1 0 0 0
0 0 1 00 0
+ga3(p)| 0 0 O J+qp)| 0 1 0
1 0 0 0 0 —1

0 0 0

+gs(p) | 0 0 1

0 1 0

and the g¢; are real valued functions on Q. The ¢; are to be determined so that
the free energy (5.2) is minimal. The representation

fea(@) = %LlQaﬁﬁQaﬁﬁ + %LZQaﬂ,ﬁQamv + %LSQaﬁ,an%ﬁ
+1 4 trace(Q?) — LB trace(@3) + 1C trace(Q?)?
+£D trace(Q?)trace(Q®) + + M trace(Q%)% + %MI trace(Q3)?

Ay pae HaQapHp — A, EaQaplp

uses the conventions that summation over repeated indices is implied and indices
separated by commas represent partial derivatives. Here Li, Ly and L3 are
elastic constants; A, B, C, D, M and M’ are bulk constants; and H, A, ., F
and A, . are field terms and the constants associated with the magnetic and
electrical fields, respectively. Moreover,

fsurf(Q) = Wtrace((Q - QO)Z):

where W is a constant and the tensor o is determined by the boundary condi-
tions for the functions ¢;. We impose the boundary condition

(53) Fsurf(Q) = fsurf(Q)dS = 0)
o0

which implies that the values of the ¢; are prescribed on 952. This boundary con-
dition models strong anchoring of the liquid crystals on the surface 9. Details
can be found in [9, 11, 31].

The minimum energy equilibrium configuration of the liquid crystals is deter-
mined by solving the Euler-Lagrange equations associated with (5.2) and (5.3).
These equations yield a boundary value problem for a system of nonlinear partial
differential equations for the ¢;. Discretization by finite differences gives rise to
a system of nonlinear equations of finite, but large, order. We solve this system
by Newton’s method. Each iteration by Newton’s method requires the solution
of a linear system of equations, the matrix of which is the Jacobian obtain from

16 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

the discretized Euler-Lagrange equations. The purpose of the computations is
to track the minimal energy equilibrium configuration as the temperature of the
liquid crystals is varied. For this reason it is essential to determine a few of the
eigenvalues closest to the origin of the Jacobian matrix. In order to reduce the
storage space required, we do not store all the nonzero entries of the Jacobian
matrix simultaneously. We use Maple V to manipulate the formulas for the
Jacobian, and to generate FORTRAN code for the evaluation of matrix-vector
products with the Jacobian matrix. The FORTRAN code only requires that a
few of the entries of the Jacobian matrix be stored in fast computer memory at
any given time. This approach is motivated by the fact that the order of the
Jacobian matrices of interest is very large; we discretize 2 by a 40 x 40 x 40
grid and obtain a Jacobian matrix of order 296,595. The smallest eigenvalues
of the Jacobian used in the present example are, roughly, Ay = —1.2 - 1072,
Ay = 2.2-107! and Az = 2.3- 107!, We used Algorithm 4.1 with e = 1-107%
and m = 5 to compute accurate approximations of these eigenvalues. This re-
quired the evaluation of 649 matrix-vector products with the Jacobian matrix.
For comparison, we note that 664 matrix-vector products are required when
m = 10. Thus, increasing the value of m does not decrease the computational
work required. Due to the large size of the matrix, only a basis of a Krylov sub-
space of small dimension can be stored in fast computer memory. In particular,
inverse iteration is unfeasible. This examples illustrates that Algorithm 4.1 can
determine eigenvalues of a very large matrix by using a Krylov subspace of low
dimension only.

EXAMPLE 5.3. Let A = diag(ay,as,...,a100) with entries a; = %’0, 1<i<
100. The computation of the three smallest eigenvalues and associated eigenvec-
tors by Algorithm 4.1 with € = 1.1073 requires 243 matrix-vector products when
m = 5, and 264 matrix-vector products when m = 9. Similarly as in Example
5.1 and Example 5.2, the number of matrix-vector products is fairly insensitive
to the choice of m.

The computation of the six smallest eigenvalues of A with m = 8 and ¢ = 1 -
1073 requires 456 matrix-vector products by Algorithm 4.1. The poor separation
between the smallest eigenvalues is responsible for the large number of shifts that
have to be applied in order to determine these eigenvalues. For comparison,
Algorithm 4.1 requires only the evaluation of 114 matrix-vector products to
determine the six smallest eigenvalues of the matrix —A for m = 8 and ¢ =
1-1073, because the smallest eigenvalues of —A are better separated than the
smallest eigenvalues of A.

EXAMPLE 5.4. The nontrivial entries of the 500 x 500 diagonal matrix A used
in this example are equidistant points in the interval [1,10]. The computation
of the four smallest eigenvalues by Algorithm 4.1 with m = 6 and ¢ = 1 -10~3
requires 211 matrix-vector products. Increasing the parameter m to 8 increases
the number of matrix-vector products to 242. Thus, the solution effort does not
always decrease as m increases.

EXAMPLE 5.5. Let A be the matrix obtained by discretizing the 2-dimensional
negative Laplace operator on the unit square by the standard 5-point stencil

EXTREME AND INTERIOR EIGENVALUES 17

with Dirichlet boundary conditions. We wish to determine the two smallest
eigenvalues of A by Algorithm 4.1 and choose ¢ = 1-10~%. When A4 is of order
900 the number of matrix-vector products required is 104, both for m = 4 and
m = 8. Thus, the performance of the algorithm is quite insensitive to the choice
of m.

The next examples illustrate the behavior of Algorithm 4.2 for the computation
of a few eigenvalues close to the origin of a symmetric indefinite matrix. A few
eigenvalues close to any value 1 between the largest and smallest eigenvalues of
A can be determined by applying Algorithm 4.2 to the matrix A — 1.

ExaMPLE 5.6. Let A = diag(ai, as,. .., aseo) with as; = Viand as_1 = -V,
1 <7 < 250. We want to compute the smallest positive and largest negative
eigenvalues of A and corresponding eigenvectors by Algorithm 4.2, with m = §
and € = 1-1073. We select the third largest negative and the third smallest
positive Ritz values as endpoints closest to the origin of the set K used to
determine Leja shifts, i.e., we let k3 = k3 = 1 and p = 2. The computation of
the desired eigenpairs requires 291 matrix-vector products with the matrix A.
We remark that a larger separation between the eigenvalues of interest and those
corresponding to eigenvector components that we want to damp will yield faster
convergence. For example, the computation of the eigenpairs corresponding to
the two smallest positive and two largest negative eigenvalues of A by Algorithm
4.2, withm =10,k; = ko =2, p=2and ¢ = 1.1073, requires 282 matrix-vector
products.

EXAMPLE 5.7. In this example we consider the 800 x 800 matrix

- (e Y)

where M = diag(mi,ma, ..., mago) with entries

o i ifl<i<4,
TE 44 if 5 << 400.

Matrices of the form (5.4) arise, for example, when solving constrained least
squares problems. The matrix A has 400 positive and 400 negative eigenvalues

given by
1
:i:\/z%—mf, 1 < i< 400.

The computation of the two smallest positive and the two largest negative eigen-
values of A, and corresponding eigenvectors, using Algorithm 4.2 with m = 12,
k1 =k:s=2,p=1and ¢ = 11073 requires 231 matrix-vector products with
A. If instead m = 16, then the number of matrix-vector products required is
reduced slightly to 222.

The computation of the eigenpairs corresponding to the smallest positive and
largest negative eigenvalues of A, withm = 6,ky = ks =1, p=1lande=1-10"3
requires 218 matrix-vector products. If we increase the value of m to 8, the two
desired eigenpairs can be computed with 165 matrix-vector products. However,

Ati =

N —

18 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

if we further increase m, the number of matrix-vector products needed remains
essentially unchanged. This example illustrates that the number of matrix-vector
product evaluations is fairly insensitive to the choice of m, for m slightly larger
than k = ky + k.

6 Conclusion.

The paper describes new algorithms for the computation of a few eigenvalues
of a large symmetric matrix. A comparison of Algorithm 4.1 with the subroutine
DNLASO in the LASO2 package and ARPACK shows our algorithm to be com-
petitive. Both Algorithms 4.1 and 4.2 require only very little computer storage
in addition to storage used for the desired eigenvectors and for a representation
of the matrix A.

REFERENCES

1. A. Bjdrck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra Appl.,
197-198 (1994), pp. 297-316.

2. A. Bjorck, E. Grimme and P. Van Dooren, An implicit shift bidiagonalization algo-
rithm for ill-posed problems, BIT, 34 (1994), pp. 510-534.

3. D. Calvetti and L. Reichel, An adaptive Richardson iteration method for indefinite
linear systems, Numerical Algo., to appear.

4. D. Calvetti, L. Reichel and D. C. Sorensen, An implicitly restarted Lanczos method
for large symmetric eigenvalue problems, Elec. Trans. Numer. Anal., 2 (1994), pp.
1-21.

5. A. K. Cline, G. H. Golub and G. W. Platzman, Calculation of normal modes of
oceans using the Lanczos method, in Sparse Matrix Computations, J. R. Bunch and
D. J. Rose, eds., Academic Press, New York, 1976, pp. 409-426.

6. J. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigen-
value Computations, Vol. 1, Birkhauser, Boston, 1985.

7. A. Edrei, Sur les déterminants récurrents et les singularités d’une fonction donnée
par son développement de Taylor, Composito Math., 7 (1939), pp. 20-88.

8. T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the nu-
merical solution of large sparse generalized symmetric eigenvalue problems, Math.
Comp., 35 (1980), pp. 1251-1268.

9. P. A. Farrell, A. Ruttan and R. R. Zeller, Finite difference minimization of the
Landau-de Gennes free energy for liquid crystals in rectangular regions, Comp.
Appl. Math., I, C. Brezinski and U. Kulish, eds., Elsevier, Amsterdam, 1992, pp.
137-146.

10. D. A. Flanders and G. Shortley, Numerical determination of fundamental modes,
J. Appl. Phys., 21 (1950), pp. 1326-1332.

11. E. C. Gartland, On some mathematical and numerical aspects of the Landau-de
Gennes minimization problem for liguid crystals, Report, Institute for Computa-
tional Mathematics, Kent State University, Kent, 1993.

12. G. H. Golub, Some modified matriz eigenvalue problems, SIAM Review, 15 (1973),
pp. 318-334.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

EXTREME AND INTERIOR EIGENVALUES 19

. G. H. Golub, R. Underwood and J. H. Wilkinson, The Lanczos algorithm for the
symmetric Az = ABz problem, Report STAN-CS-72-270, Department of Computer
Science, Stanford University, Stanford, 1972.

R. G. Grimes, J. L. Lewis and H. D. Simon, A shifted block Lanczos algorithm
for solving sparse symmetric generalized eigenproblems, SIAM J. Matrix Anal., 15
{1994), pp. 228-272.

W. Hoffmann, lterative algorithms for Gram-Schmidt orthogonalization, Comput-
ing, 41 (1989), pp. 335-348.

W. Karush, An iterative method for finding characteristic vectors of a symmetric
matriz, Pacific J. Math., 1 (1951), pp. 233-248.

N. J. Lehmann, Optimale Eigenwerteinschliessungen, Numer. Math., 5 (1963), pp.
246-272.

R. Lehoucq, Analysis and Implementation of an Implicitly Restarted Arnoldi Tter-
ation, Ph.D. Thesis, Rice University, Houston, 1995.

R. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly re-started
Arnoldi iteration, Report TR94-13, Department of Computational and Applied
Mathematics, Rice University, Houston, 1995.

R. Lehoucq, D. C. Sorensen and P.A. Vu, ARPACK: An implementation of the
implicitly restarted Arnoldi and the implicitly restarted Lanczos methods. Code
available from Netlib, in directory scalapack.

F. Leja, Sur certaines suits lies aur ensemble plan et leur application a la repre-
sentation conforme, Ann. Polon. Math., 4 (1957), pp. 8-13.

R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra
Appl., 154-156 (1991), pp. 289-309.

R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing
eigenvalues of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986),
pp. 817-825.

R. Natarajan and D. Vanderbilt, 4 new tterative scheme for obtaining eigenvectors
of large, real-symmetric matrices, J. Comp. Phys., 82 (1989), pp. 218-228.

C. C. Paige, Computational variants of the Lanczos method for the eigenproblem,
J. Inst. Math. Appl., 10 (1972), pp. 373-381.

C. C. Paige, B. N. Parlett and H. A. van der Vorst, Approzimate solutions and
eigenvalue bounds from Krylov subspaces, Numer. Lin. Alg. Appl., to appear.

B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,
1980.

B. N. Parlett and B. Nour-Omid, Towards a black box Lanczos program, Comput.
Phys. Comm., 53 (1989), pp. 169-179.

B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonaliza-
tion, Math. Comp., 33 (1979), pp. 311-328.

A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigen-
vectors of graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430-452.

E. B. Priestly, P. J. Wojyowicz, and P. Sheng, eds., Introduction to Liquid Crystals,
Plenum Press, New York, 1975.

L. Reichel, The application of Leja points to Richardson iteration and polynomial
preconditioning, Linear Algebra Appl., 154-156 (1991), pp. 389-414.

A. Ruhe, Rational Krylov sequence methods for eigenvalue computations, Linear
Algebra Appl., 58 (1984), pp. 391405,

20

34.

35.

36.

37.

38.

39.

40.

J. BAGLAMA, D. CALVETTI, AND L. REICHEL

Y. Saad, Iterative solution of indefinite symmetric linear systems by methods us-
ing orthogonal polynomials over two disjoint intervals, SIAM I. Numer. Anal., 20
(1983), pp. 784-811.

Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halstead Press, New
York, 1992.

D. S. Scott, LASO2 - FORTRAN implementation of the Lanczos process with
selective orthogonalization. Code and documentation available from Netlib.

D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357-385.

D. C. Sorensen, Minimization of a large scale quadratic function subject to an el-
lipsoidal constraint, Report TR94-27, Department of Computational and Applied
Mathematics, Rice University, Houston, 1994.

D. B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM
J. Numer. Anal., 25 (1988), pp. 1369-1375.

X. Yang, T. K. Sarkar and E. Arvas, A survey of conjugate gradient algorithms
for solution of extreme eigen-problems of a symmetric matriz, IEEE Trans. Acoust.
Speech Signal Proc., 37 (1989), pp. 1550-1555.

EXTREME AND INTERIOR EIGENVALUES

21

Table 5.1: Example 5.1. Algorithm 4.1: k=3, e =1-10"4

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A Ag Az
5 525 6.4-10"11 1 1.6.10°1 3.8.10°10
10 583 3.2-10710 1 9.4.10-12 2.5.10-11
15 497 2.8-1071 1 1.2.10"1¢ 9.5-10"11

Table 5.2: Example 5.1. ARPACK: k=3, e=1-10"*

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A1 As Az
5 3724 6.4-1071071.9.-1071 581077
10 904 5.5-10710 | 1.1-.107% 2.4-107°
15 614 5.7-10710 | 7.8.10"5 1.1-107*

Table 5.3: Example 5.1. DNLASO: NFIG=10, block-size = 1

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A Ag Az
10 1691 5.7-10"7 [5.6-10~7 1.7-10711
20 1922 1.6-1078 | 1.5.10"8 2.6-1071!
30 1721 1.3-107% | 1.2-10~° 6.1-107

Table 5.4: Example 5.1. DNLASO: NFIG=10, block-size = 3

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A As A3
18 3813 1.3-10"11 [83.10°12 4.7-10~11
30 2952 56-10~1 [1.2.10"1! 2.4.107 1
39 2274 9.3-10"12 | 5.9.10~12 1.3-10~1

Table 5.5: Example 5.1. DNLASO: NFIG=4, block-size = 1

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products Ay Ag A3
10 353 7.9-107* [71-10°°T 5.9-1071
20 709 43.1073 [9.4.10°3 7.2-1073
30 570 6.6-107* | 1.9-1074 3.5-10"%

22 J. BAGLAMA, D. CALVETTI, AND L. REICHEL

Table 5.6: Example 5.1. DNLASO: NFIG=4, block-size = 3

Lanczos | # matrix-vector | magnitude of error in computed approx. of
vectors products A1 As A3
18 2715 3.3-1075 | 2.7-10°5 4.1-10°°
30 1887 26-107% | 2.4.107° 1.5-107°
39 1050 6.4-107% | 7.8.10"° 1.5-107°
Number of computed eigenvalues k=3
4000 T T
3500,

n
3]
S
S

T

matrix-vector products
=)
I
g &
T

20
dimension of subspace

Figure 5.1: Number of matrix-vector products required by Algorithm 4.1 (—)
and ARPACK (- -) for computing the 3 smallest eigenvalues for the matrix of
Example 5.1 with n = 2500 as the dimension of the Krylov subspace is increased.

EXTREME AND INTERIOR EIGENVALUES 23

Dimension of subspace m=10
3500 T T T T T T T T

30001 . : [EAG

4 8 m
g g g

matrix—vector products
N

g

500F

0 1 L L L i L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
order of the matrix A

L L

Figure 5.2: Number of matrix-vector products required by Algorithm 4.1 (—)
and ARPACK (- -) for computing the 3 smallest eigenvalues for matrices (5.1)
as their order is increased.

