6

Orthogonality and Least Squares

6.1

INNER PRODUCT, LENGTH, DISTANCE, AND ANGLE between vectors

INNER PRODUCT

- If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then we regard \mathbf{u} and \mathbf{v} as $n \times 1$ matrices.
- The transpose \mathbf{u}^{T} is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^{T} \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $\mathbf{u}^{T} \mathbf{v}$ is called the inner product of \mathbf{u} and \mathbf{v}, and it is written as $u \cdot v$.
- This inner product is also referred to as a dot product.

INNER PRODUCT

- If $\mathrm{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$,
then the inner product of \mathbf{u} and \mathbf{v} is
$\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}$.

THE LENGTH OF A VECTOR

- If \mathbf{v} is in \mathbb{R}^{n}, with entries v_{1}, \ldots, v_{n}, then the square root of $v \cdot v$ is defined because $v \cdot v$ is nonnegative.
- Definition: The length (or norm) of \mathbf{v} is the nonnegative scalar $\|\mathrm{v}\|$ defined by
$\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$, and $\|v\|^{2}=\sqrt{v \cdot v}$
- Suppose \mathbf{v} is in \mathbb{R}^{2}, say, $\mathbf{v}=\left[\begin{array}{l}a \\ b\end{array}\right]$

THE LENGTH OF A VECTOR

- If we identify \mathbf{v} with a geometric point in the plane, as usual, then $\|\mathrm{V}\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v}.
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

Interpretation of $\|\mathbf{v}\|$ as length.

- For any scalar c, the length $c v$ is $|c|$ times the length of v. That is,

$$
\|c \mathrm{v}\|=|c|\|\mathrm{v}\|
$$

THE LENGTH OF A VECTOR

- A vector whose length is 1 is called a unit vector.
- If we divide a nonzero vector \mathbf{v} by its length-that is, multiply by $1 /\|\mathrm{v}\|$-we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is $(1 /\|\mathrm{v}\|)\|\mathrm{v}\|$.
- The process of creating \mathbf{u} from \mathbf{v} is sometimes called normalizing \mathbf{v}, and we say that \mathbf{u} is in the same direction as \mathbf{v}.

THE LENGTH OF A VECTOR

- Example 2: Let v = (1,-2,2,0). Find a unit vector u in the same direction as \mathbf{v}.
- Solution: First, compute the length of \mathbf{v} :

$$
\begin{aligned}
\|\mathrm{v}\|^{2} & =v \cdot v=(1)^{2}+(-2)^{2}+(2)^{2}+(0)^{2}=9 \\
\|\mathrm{v}\| & =\sqrt{9}=3
\end{aligned}
$$

- Then, multiply \mathbf{v} by $1 /\|\mathrm{v}\|$ to obtain

$$
\mathrm{u}=\frac{1}{\|\mathrm{v}\|} \mathrm{v}=\frac{1}{3} \mathrm{v}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2 \\
0
\end{array}\right]=[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
2 / 3 \\
0
\end{array} \underbrace{}_{\text {Silde } 6.1-7}
$$

DISTANCE $\mathbb{N} \mathbb{R}^{n}$

- To check that $\|\mathrm{u}\|=1$, it suffices to show that $\|\mathrm{u}\|^{2}=1$.

$$
\begin{aligned}
\|u\|^{2} & =u \cdot u=\left(\frac{1}{3}\right)^{2}+\left(-\frac{2}{3}\right)+\left(\frac{2}{3}\right)^{2}+(0)^{2} \\
& =\frac{1}{9}+\frac{4}{9}+\frac{4}{9}+0=1
\end{aligned}
$$

- Definition: For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as $\operatorname{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $u-v$. That is,

$$
\operatorname{dist}(u, v)=\|u-v\|
$$

DISTANCE $\mathbb{I N} \mathbb{R}^{n}$

- Example 4: Compute the distance between the vectors $u=(7,1)$ and $v=(3,2)$.
- Solution: Calculate

$$
\begin{aligned}
u-v & =\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right] \\
\|u-v\| & =\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{aligned}
$$

- The vectors \mathbf{u}, \mathbf{v}, and $\mathbf{u}-\mathrm{v}$ are shown in the figure on the next slide.
- When the vector $\mathbf{u}-\mathrm{V}$ is added to \mathbf{v}, the result is \mathbf{u}.

DISTANCE $\mathbb{I N} \mathbb{R}^{n}$

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

- Notice that the parallelogram in the above figure shows that the distance from \mathbf{u} to \mathbf{v} is the same as the distance from $\mathbf{u}-\mathrm{V}$ to $\mathbf{0}$.

ANGLES IN \mathbb{R}^{2} AND \mathbb{R}^{3}

- If \mathbf{u} and \mathbf{v} are nonzero vectors in either \mathbb{R}^{2} or \mathbb{R}^{3}, then there is a nice connection between their inner product and the angle ϑ between the two line segments from the origin to the points identified with \mathbf{u} and \mathbf{v}.
- The formula is

$$
\begin{equation*}
u \cdot v=\|\mathrm{u}\|\|\mathrm{v}\| \cos \vartheta \tag{2}
\end{equation*}
$$

- To verify this formula for vectors in \mathbb{R}^{2}, consider the triangle shown in the figure on the next slide with sides of lengths, $\|\mathrm{u}\|,\|\mathrm{v}\|$, and $\|\mathrm{u}-\mathrm{v}\|$.

ANGLES $\operatorname{IN} \mathbb{R}^{2}$ AND \mathbb{R}^{3}

The angle between two vectors.

- By the law of cosines,

$$
\|\mathrm{u}-\mathrm{v}\|^{2}=\|\mathrm{u}\|^{2}+\|\mathrm{v}\|^{2}-2\|\mathrm{u}\|\|\mathrm{v}\| \cos \vartheta
$$

which can be rearranged to produce the equations on the next slide.

ANGLES $\operatorname{IN} \mathbb{R}^{2}$ AND \mathbb{R}^{3}

$$
\begin{aligned}
\|\mathrm{u}\|\|\mathrm{v}\| \cos \vartheta & =\frac{1}{2}\left[\|\mathrm{u}\|^{2}+\|\mathrm{v}\|^{2}-\|\mathrm{u}-\mathrm{v}\|^{2}\right] \\
& =\frac{1}{2}\left[u_{1}^{2}+u_{2}^{2}+v_{1}^{2}+v_{2}^{2}-\left(u_{1}-v_{1}\right)^{2}-\left(u_{2}-v_{2}\right)^{2}\right] \\
& =u_{1} v_{1}+u_{2} v_{2} \\
& =u \cdot v
\end{aligned}
$$

- The verification for \mathbb{R}^{3} is similar.
- When $n>3$, formula (2) may be used to define the angle between two vectors in \mathbb{R}^{n}.
- In statistics, the value of $\cos \vartheta$ defined by (2) for suitable vectors \mathbf{u} and \mathbf{v} is called a correlation coefficient.

