4.5 The Dimension of a Vector Space

THEOREM 9

If a vector space V has a basis $\beta=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is a set of vectors in V where $p>n$. Then the coordinate vectors $\left\{\left[\mathbf{u}_{1}\right]_{\beta}, \cdots,\left[\mathbf{u}_{p}\right]_{\beta}\right\}$ are in \mathbf{R}^{n}. Since $p>n,\left\{\left[\mathbf{u}_{1}\right]_{\beta}, \cdots,\left[\mathbf{u}_{p}\right]_{\beta}\right\}$ are linearly dependent and therefore $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ are linearly dependent.

THEOREM 10

If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.
Proof: Suppose β_{1} is a basis for V consisting of exactly n vectors. Now suppose β_{2} is any other basis for V. By the definition of a basis, we know that β_{1} and β_{2} are both linearly independent sets.

By Theorem 9, if β_{1} has more vectors than β_{2}, then \qquad is a linearly dependent set (which cannot be the case).

Again by Theorem 9 , if β_{2} has more vectors than β_{1}, then \qquad is a linearly dependent set (which cannot be the case).

Therefore β_{2} has exactly n vectors also.

DEFINITION

If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\operatorname{dim} V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be 0 . If V is not spanned by a finite set, then V is said to be infinite-dimensional.

EXAMPLE: The standard basis for \mathbf{P}_{3} is $\{$ \}. So $\operatorname{dim} \mathbf{P}_{3}=$ \qquad .

$$
\text { In general, } \operatorname{dim} \mathbf{P}_{n}=n+1
$$

EXAMPLE: The standard basis for \mathbf{R}^{n} is $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the columns of I_{n}. So, for example, $\operatorname{dim} \mathbf{R}^{3}=3$.

EXAMPLE: Find a basis and the dimension of the subspace

$$
\begin{gathered}
W=\left\{\left[\begin{array}{c}
a+b+2 c \\
2 a+2 b+4 c+d \\
b+c+d \\
3 a+3 c+d
\end{array}\right]: a, b, c, d \text { are real }\right\} . \\
\text { Solution: Since }\left[\begin{array}{c}
a+b+2 c \\
2 a+2 b+4 c+d \\
b+c+d \\
3 a+3 c+d
\end{array}\right]=a\left[\begin{array}{c}
1 \\
2 \\
0 \\
3
\end{array}\right]+b\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
2 \\
4 \\
1 \\
3
\end{array}\right]+d\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],
\end{gathered}
$$ $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ where

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
4 \\
1 \\
3
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right] .
$$

- Note that \mathbf{v}_{3} is a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}, so by the Spanning Set Theorem, we may discard \mathbf{v}_{3}.
- \mathbf{v}_{4} is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. So $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a basis for W.
- Also, $\operatorname{dim} W=$ \qquad .

EXAMPLE: Dimensions of subspaces of R^{3}

0-dimensional subspace contains only the zero vector $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.

1-dimensional subspaces. $\operatorname{Span}\{\mathbf{v}\}$ where $\mathbf{v} \neq \mathbf{0}$ is in \mathbf{R}^{3}.

These subspaces are \qquad through the origin.

2-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}\}$ where \mathbf{u} and \mathbf{v} are in \mathbf{R}^{3} and are not multiples of each other.

These subspaces are \qquad through the origin.

3-dimensional subspaces. Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbf{R}^{3}. This subspace is \mathbf{R}^{3} itself because the columns of $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$ span \mathbf{R}^{3} according to the IMT.

THEOREM 11

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.

EXAMPLE: Let $H=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. Then H is a subspace of \mathbf{R}^{3} and $\operatorname{dim} H<\operatorname{dim} \mathbf{R}^{3}$. We could expand the spanning set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ to $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ to form a basis for \mathbf{R}^{3}.

THEOREM 12 THE BASIS THEOREM

Let V be a p-dimensional vector space, $p \geq 1$. Any linearly independent set of exactly p vectors in V is automatically a basis for V. Any set of exactly p vectors that spans V is automatically a basis for V.

EXAMPLE: Show that $\left\{t, 1-t, 1+t-t^{2}\right\}$ is a basis for \mathbf{P}_{2}.

Dimensions of Col A and Nul A

Recall our techniques to find basis sets for column spaces and null spaces.
EXAMPLE: Suppose $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8\end{array}\right]$. Find $\operatorname{dim} \operatorname{Col} A$ and $\operatorname{dim} \operatorname{Nul} A$.
Solution

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 7 & 8
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

So $\{[$
$],[$
$]\}$ is a basis for $\operatorname{Col} A$ and $\operatorname{dim} \operatorname{Col} A=2$.

Now solve $A \mathbf{x}=\mathbf{0}$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$
\begin{gathered}
{\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
2 & 4 & 7 & 8 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{lllll}
1 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]} \\
x_{1}=-2 x_{2}-4 x_{4} \\
x_{3}=0
\end{gathered}
$$

and

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-4 \\
0 \\
0 \\
1
\end{array}\right]
$$

So $\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-4 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for Nul A and
$\operatorname{dim} \operatorname{Nul} A=2$.
Note

$$
\begin{array}{|l|}
\hline \operatorname{dim} \operatorname{Col} A=\text { number of pivot columns of } A \\
\hline \operatorname{dim} N u l A=\text { number of free variables of } A .
\end{array}
$$

