Practice -Exam 2

1. Find the inverse of the given matrices. Show ALL row operations that you used.
a) $A=\left[\begin{array}{ll}4 & -3 \\ 8 & -1\end{array}\right]$
b) $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 4 \\ 2 & 2 & 4\end{array}\right]$
c) Using the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 4 \\ 2 & 2 & 4\end{array}\right]$ from part b) above solve $A x=b$, where $b=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
-2 & -3 & -5 \\
2 & 1 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
1 & 4 & -2 \\
2 & 7 & -1 \\
2 & 9 & 7
\end{array}\right]
$$

2. Using cofactor expansion across the first row to compute the determinant of A.
3. Using cofactor expansion down last column to compute the determinant of B.
4. Using row operations combined with cofactor expansion, compute the determinant of A
5. Using row operations combined with cofactor expansion, compute the determinant of B
6. What is the determinant of $A B$? What is the determinant of A^{T} ?
7. Matrix A invertible? Matrix B invertible? Do the columns of A span \mathbf{R}^{3} ?

Are the columns of B linearly independent?
(Same matrices A and B from page 2)

$$
A=\left[\begin{array}{rrr}
1 & 2 & 4 \\
-2 & -3 & -5 \\
2 & 1 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
1 & 4 & -2 \\
2 & 7 & -1 \\
2 & 9 & 7
\end{array}\right]
$$

8. Compute the product $A B$.
9. Compute A^{T} and B^{T} and the product $(A B)^{T}$.
10. (Section 6.1) Let $u=\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$.

Compute $u^{T} u, u u^{T}, u^{T} v, v^{T} u, v u^{T}, u v^{T},\|u\|,\|v\|$, and the angle between u and v.

