SELF-MAPS OF P? WITH INVARIANT ELLIPTIC CURVES

ARACELI M. BONIFANT AND MARIUS DABIJA

ABSTRACT. We discuss the geometric and dynamical properties of the holo-
morphic self-maps of P2 that leave invariant an elliptic plane curve.

1. INTRODUCTION.

Given an elliptic plane curve (), we consider the problem of constructing holo-
morphic self-maps f of P? that leave () invariant. In section 2, we state the criterion
for a self-map of @ to extend to P2. We look in section 3 at the singular points of Q.
In contrast with the smooth case, most singular elliptic curves do not admit non-
trivial self-maps. The obstructions given by the singular points of () are discussed in
section 3. We define two invariants, in terms of Weierstrass’ ¢ and ¢ functions, and
state an invariance criterion for the elliptic plane curves with ordinary singularities.

In section 4, we prove that do not exist self-maps of P2, for which () is critical
and invariant.

We prove in section 5 that the backward orbit of any point of @) is dense in the
Julia set of f.

In section 6 we discuss the case when @ is a smooth cubic. The classic tangent
process on () provides examples of self-maps that leave () invariant. If we require
f to leave invariant a line of lines, () must be isomorphic to the Fermat cubic. We
also discuss in this section the case when f has minimal degree 2.

When an elliptic plane curve has enough symmetries, the invariants associated
to its singular points can be calculated easily. The simplest case is the dual of
a smooth cubic (section 7). In section 8, we consider special families of elliptic
quartics with two singular points. Computer-generated pictures illustrate tangent
processes on such curves.

2. PRELIMINARIES.

Let C; denote the space of homogeneous polynomials of degree d in three vari-
ables. A rational self-map f of P2, of algebraic degree d(f) = d is given by three
polynomials pg, p1, p2 in C4 with no common divisors, according to the formula

flzo, 21, 2] = [po(z0, 21, 22), p1(T0, T1,T2), p2(20, 1, T2)] - Let I(f) denote the set
of indeterminacy of f, formed by the common zeroes in P? of the polynomials p;.
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When I(f) = @, f is regular (holomorphic). We denote by deg(¢) the topological

degree of a map ¢. When P2 -2 P? is regular, deg(f) = d(f)2.

Every effective divisor D on P? of degree deg(D) = e is given by an equation
(p = 0), with 0 # p € C. determined by D up to a multiplicative constant. We
denote by ~ the linear equivalence of divisors, and also the isomorphism of line
bundles. Two divisors on P? are linearly equivalent iff they have the same degree.
The pull-back of a divisor D through a map f is denoted by f*D. Given a rational
self-map f of P? and a divisor D = (p = 0) on P? whose support does not contain
the image of f, f*D = (p(f) = 0), with deg(f*D) = d(f) deg(D). Let Op2(d) denote
the line bundle on P2 whose global holomorphic sections vanish on effective divisors
of degree d. Its restriction to a plane curve () is denoted Og(d). (By “curve”, we
mean a one-dimensional irreducible variety.)

Remark 2.1. Let f be a non-constant rational self-map of P2. If () is plane curve
with I(f) N Q = 0, then C := f(Q) is a curve. If Q <% C denotes the restriction

of f to Q, then g*Oc(1) = Og(d(f)), hence E@ = o8}

Proof. Since I(f)NQ = 0, Q is not contracted by f. Let C — P2 be the embedding
map. By Bertini, the pull-back f*I of the generic line I in P? meets @ transversely,
and its trace on ) equals (ig)*l. We get g*Oc (1) ~ (i9)*Op2(1) =~ Og(d(f)). O

Definition 2.2. A plane curve @ is invariant for a rational self-map f of P2 iff
I(fn@Q = 0 and f(Q) = Q. Given a regular self-map g of @, a regular (resp.
rational) extension of g to P2 is a regular (resp. rational) self-map f of P? that
leaves () invariant and satisfies fio = g.

Given a plane curve @, the degree d divisors on P? cut out on @ a complete
linear system. This yields a criterion for a self-map of @ to extend to P2.

Proposition 2.3. Given a plane curve Q and an integer d > deg(Q), a self-map
Q —% Q has regular extensions P2 L P2 with d(f) =d iff g*Og(1) ~ Og(d).

Proof. Write Q = (¢ = 0), with ¢ € C,, e = deg(Q). Let i = [so, 51, S2] denote
the embedding of @ in P2, where s; € ['(Q,Og(1)) are global sections in Og(1).
Then ig = [g"s0,9" 51,9 52], 9”55 € [(Q, 9"Oq(1)). The map Cz 2 T'(Q, Og(d)),
B(p) = p(so,s1,82) is an epimorphism. For all ¢ € Q, B(p)(c) = 0 iff p(c) = 0.
Consequently, p € ker(f) iff ¢ divides p.

If g*Og(1) ~ Og(d), there exist p; € Cy4 with g*s; = B(p;). For all ¢ € Q,
pj(c) = 0 iff s;(g(c)) = 0. Since sg, s1, $2 have no common zeros, pg, p1, p» have
no common zeros on (. Since pg, p1, p2 and ¢ have no common zeros, for generic
7; € Ca—e, [ := [po + qro,p1 + qr1,p2 + gr2] is a regular self-map of P2. We have
ig = [9"s0,9"51,9%s2] = [B(po), B(p1), B(p2)] = [B(po + gro), B(pr + gr1), B(p2 +
qr2)] = [po + qro,p1 + qri,p2 + qra] o [so, 1, 52] = fi.

1t P2 L5 P2 satisfies fig = g, then, by Remark 2.1, g*Og(1) ~ Oq(d(f)). O

Remark 2.4. Given any integer d > 0, Q %5 @ has rational extensions f with
d(f) =diff g*Og(1) ~ Og(d). Assuming this, let e = deg(Q)). When d < e, g has
a unique rational extension f with d(f) = d. When d > e, the regular extensions f

of g with d(f) = d form a Zariski open subset of C3V, with N = (d - ; + 2> ]
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Proof. The first statement follows from the proof of Proposition 2.3. When d < e,
the evaluation map f3 is an isomorphism. When d > e, dim (ker(3)) = N. Now, let
f =[po,p1,p2] and f = [Po, P1, P=] be rational extensions of g with d(f) = d = d(f).
The map @ LN P,k = 2—;, is independent of j, hence it does not have zeros or
poles, i.e. it is constant. We may assume k = 1, and then p; — p; € ker(8). O

Remark 2.5. Given a plane curve @, an integer d > deg(Q), a map Q - Q with
g*0g(1) ~ dOg(1), and a point a € P? \ Q, there exist regular extensions of g to
P? for which a is an attracting fixed point.

Proof. Write @@ = (¢ = 0), with ¢ € C.. We may assume that a = [1,0,0] and
¢(1,0,0) = 1. Fix a rational extension of g, f = [fo,P1, 2], with d(f) = d. Take
m € C; with m(1,0,0) = 0 so that p; and ps have no common factors, where
pj = p; — p;(1,0,0)287¢q — m?¢q. Let B C P! denote the finite set of common
zeros of p1 and po. Note that a € B. Take [ € C; so that 1(1,0,0) =1 and [(b) # 0
for all b € B. For k € C, put py = po — kl%~¢q, and define fi, = [po,p1,p2]- If
b € I(fr), then b € B, q(b) # 0 and k = po(b)/(1%7¢(b)q(b)). Therefore, for all but
finitely many values of k, fj is regular. Clearly, fr(a) = a. For large k, a is an
attracting fixed point of fy. O

A curve @ with self-maps of degree greater than 1 must be rational or elliptic.
Given a rational plane curve @, it is easy to find regular self-maps f of P2 for which
() is invariant and critical. In this paper we discuss the case when () is elliptic.

Fix a normalization map C' - @, and a group structure C 1) (C,+,0). Given
QL Q,let C Ly C be its lifting through v, vh = gv. There exist m, n € C so
that h[t] = [mt — n] for all ¢t € C. The multiplier m(g) := m does not depend on v
or [-], and deg(g) = |m|?. Let Z(C) denote the ring formed by the multipliers of the
self-maps of C, and U(C) the group of units in Z(C). Given a rational self-map f
of P? that leaves () invariant, mq(f) denotes the multiplier of its restriction to Q.
Given 0 # m € Z(C), we wish to construct self-maps of P? that leave () invariant,
with mg(f) = m. To do this, we must find n € C so that the self-map [t] — [mt—n)]
of C induces through v a regular self-map g of Q with g*Og(1) =~ Og(|m|?).

Definition 2.6. Given 0 # m € Z(C), Rg(m) denotes the set of points [n] € C
with the property that the self-map [t] — [mt—n] of C induces through v a self-map
of ) that admits rational extensions to P2. Let rg(m) be the cardinality of Rg(m).

With a choice of normalization v and group structure [], Rg(m) is identified
with the set of self-map of @ with multiplier m that extend rationally to P2.

3. SINGULARITIES.

3.1. Multiplicities. Denote by m,(A) the multiplicity, and by T,(A) the tangent
of an irreducible curve germ (4,a) C (C2,a).
Lemma 3.1. Let (A,a) C (C?,a) and (B,b) C (C2,b) be irreducible curve germs,
with normalizations (4,a) 22 (A, a) and (B,b) 22 (B,b). Let (C2,q) N (C2,b)
be a finite map germ with f(A,a) = (B,b). Denote by (A,a) - (B,b) the restric-
tion of f, and by (A,a) g, (B, b) the lifting of g through v4 and vp.

1. If dj(a) # 0 then mq(A) < my(B), and m.(A) = my(B) iff df (a) |1, (a) # 0.



4 ARACELI M. BONIFANT AND MARIUS DABIJA

2. Ifdg(a) = 0 and my(A) < my(B), then df (a)|r,(a) = 0.

Proof. We explicite the Puisseux series of (A, a) and (B,b), and then identify the
coefficients in the Taylor series at @ of vg§ = fra.

Choose local coordinates (z,y) near a = (0,0) € €2, (u,v) near b= (0,0) € C?,
snear =0 € A, and t near b = 0 € B so that T,(A) = (y = 0), Ty(B) = (v = 0),
va(s) = (s, Omy1(s)), and vp(t) = (t7, Opya (1)), with m = me(A), p = my(B).
Here, Opy1(-) denotes a holomorphic function involving terms of degree at least
m + 1. Write f(z,y) = (u,v) = (az + By + O:2(z,y),7z + 6y + O2(z,y)), and
9(s) =t = ks+02(s). Calculate vgg(s) = (kPsP+ Ops1(5),0pt1(9)), and fra(s) =
(as™ + Om41(8),v8™ 4+ Opy1(s)). Therefore, as™ + Opmt1(s) = kPsP + Opya(s),
and vs™ + Om1(8) = Opta(s).

Assume first that dg(a) # 0, i.e. k¥ # 0. Then p > m, or else kPs? = Opy1(s). If
p = m, then @ = k? and v = 0, hence df (0)(0;) = ady + ¥0, = k™0y. If p > m,
then @ = v = 0, hence df(0)(8,) = 0.

If k=0 and m < p, then a = v = 0, hence df (0)(8;) = 0. O

Lemma 3.2. With the notations of Lemma 3.1, assume that (A, a) = (B,b).

1. If dj(a) acts on T5(A) as multiplication by k € C, then df (a) acts on T,(A)
as multiplication by k™=(4),
2. If f*(A,a) > (A,a) and my(A) > 1, then dg(a) = 0 and df*(a) =0

Proof. The first statement follows from the proof of Lemma 3.1. To show the second
statement, choose coordinates (z,y) near a € C?, and s near @ = 0 € A, so that
va(s) = (8™, 8"+0p41(8)), with 1 < m < n and n/m ¢ Z. Write §(s) = ks+0a(s),
and f(z,y) = (u,v), with u = az + By + O2(z,y), and v = vz + dy + O=2(z,y).

Since (A, 0) is defined by y™+Omt1(z,y), f*(A4,0) is defined by v™ + 0,41 (u, v).
Since f*(A4,0) > (A,0), we get v™ 4+ Opy1(u,v) = Y™ + Om41(z,y))01(z,y).
Therefore, v™ = Oy, 41(x, y), hence v = Oz(z,y), i.e. vy =0 =0.

Since v4G(s) = (k™s™ + Omy1(8), k™8™ + Opt1(8)), and fra(s) = (u(s™,s™) +
Ony1(8),v(s™,5™) + Oni1(8)), we get v(s™,s™) = k™s™ + O, 41(s). Assume k # 0,
and write v(z,y) = w(z) + yO1(x,y). Then w(s™) + Opgn(s) = k"s™ + Opi1(s),
hence w(s™) = k™s™ + Op41(s). Clearly, w # 0. Write w(z) = haP + Opy1(z), with
h#0andp > 2. If mp <n, then h =0. If mp =n, then n/m € Z.If mp > n, then
k = 0. In any case, we get a contradiction. Therefore, k = 0.

By (1), @ = k™, hence a = 0. It follows that df?(a) = (df(a))? = 0. O

Lemma 3.3. Let (Q,0) C (C?,0) be a curve germ with branches (A;,0) normalized
by (A;,a;) = (A;,0). Let (C2, ) SN ((C2 0) be a finite map germ that satisfies
f(Q:O) C (Q;O) inducing (AMO) (A]zJO) Let (Aiaai) e (Ajwéji) be the
lifting of g; through v;, vj;,. If dg;(a ,) # 0 for all i, then df (0)|1,(a;) # 0 for all i.

Proof. Since every (A;,0) is pre-periodic for f, replacing f by an iterate, we may
assume that f2(A;) = f(4;) for all i.

When f(A;) # A;, we have mo(f(4;)) = 1 = mo(4;) and df(0)7,(a;) # O-
Indeed, in this case f*(f(4;)) > f(A4;) + A; > f(A;), hence, by Lemma 3.2.2,
mo(f(A4;)) = 1. By Lemma 3.1.1, mo(A4;) < mo(f(4;)), hence mo(A4;) = 1, and
then df(o)\To(Az) ?é 0.

When f(A4;) = A;, Lemma 3.1.1 implies that df (0) z,(4;) # 0. O
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3.2. Torsion. Let C -1 (C,+,0) be a smooth elliptic curve. Given a divisor D

on C, let s(D) := Y ¢ (multiplicities are counted in all such sums and products
ceD
indexed by divisors). By Jacobi’s theorem, D ~ 0 iff deg(D) = 0 and s(D) = 0.

Given 0 # m € Z(C), let Cy, be the kernel of the morphism [t] — [mt], and
cm = 8(Cp)- Note that ¢, € Cpy N Ca. When m € Z or |m|? is odd, ¢, = 0.

Remark 3.4. Let D be a divisor on C with 0 # e := deg(D) and s(D) = 0. Given
0# m € Z(C) and n € C, the map C % C, g[t] = [mt —n)], satisfies g*D ~ |m[>D
iff e[mn] = ecy,. In this case, g(Cejm/2) C Cejm|2-

Proof. We calculate s(g*D) = e([mn] + ¢, hence s(g*D) = 0 iff e[mn] = ecp,.
Such g satisfies e|m|*[n] = 0, hence g(Ce|pm2) C Cejmj2- O

Given a divisor D on C, write D ~, 0 iff there exists a positive integer k so that
kD ~ 0. Let 7(D) be the smallest such k. When D %, 0, let 7(D) := +00. Given
a, b e C, write a ~, b iff (a) — (b) ~, 0. Let 7(a,b) := 7((a) — (b)).

Remark 3.5. Let C - C be a self-map of a smooth elliptic curve, 0 # m = m(h).
Given any points a and b in C, 7% < 7(h(a), h(b)) < 7(a,b).

2 |m|2

If /m| > 1 and a is pre-periodic for h, then a ~; b iff b is pre-periodic for h.

Proof. We may assume that h is a morphism of (C,+,0). If k(a — b) = 0, then
k(h(a) — h(b)) = h(0) = 0. If k(h(a) — h(b)) = 0, then k|m|*(a — b) = 0.

Let a be pre-periodic for h. Replacing h by an iterate, we may assume that
h2(a) = h(a), hence |m? — m|?a = 0. When |m| > 1, we get a ~, 0.

If b ~; a, then b ~. 0, i.e. kb = 0 for some 0 < k € Z. The h-orbit of b is
contained in the finite set of points ¢ € C' with k¢ = 0, hence b is pre-periodic. [

Most elliptic plane curves do not admit self-maps of degree greater than 1:

Proposition 3.6. Let Q be an elliptic plane curve with normalization C == Q.
Given Q - Q with deg(g) > 1, let C Ly C be the lifting of g through v. Then:
1. The singular branches of Q) are pre-periodic for h. If a and b are singular

branches of Q, then a ~, b.
2. If a and b are branches of Q with v(a) = v(b), then a ~, b.

Proof. Let S C C be the finite set of singular branches of Q. By Lemma 3.1.(1),
h(S) C S. Remark 3.5 finishes the proof of (1).

To prove (2), let ¢ = v(a) = v(b). If q is pre-periodic for g, then a and b are pre-
periodic for h, hence a ~. b. If ¢ is not pre-periodic for g, replacing g by an iterate
we may assume that (@, g(q)) is irreducible. Then h(a) = h(b), hence a ~, b. O

3.3. Ordinary singularities. Let () be an elliptic plane curve, with normalization

C - @ and group structure C ﬂ) C. A germ (Q,q) is an ordinary singularity iff
m4(Q) = 2 and the proper transform of (Q,g) through the blow-up of P? at g is
smooth. In suitable local coordinates near g, an ordinary singularity (@, g) is either
the cusp (y? = z?) or the node (zy = 0).

Lemma 3.7. Given C -2 P!, let 9 := ¢pv~' be defined on the smooth locus of Q.
If 1 is regular on Q, the following conditions are satisfied:

1. If [a] is a singular branch of Q, then [a] is critical for ¢.
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2. If v[a] = v[b], then ¢[a] = @[b].

When @ has ordinary singularities, these conditions imply that ¥ is regular on Q.

Proof. Assume 1) is regular on @, so that ¢Yv = ¢. If v[a] = v[b], clearly ¢[a] = ¢[b].
The singular branches of @ are critical for v, hence they are critical for ¢.

Assume that C has ordinary singularities. Given a node v[a] = v[b], let 14, ¥
be the restrictions of ¢ to the branches [a], [b] (respectively). Clearly, 1, and 1, are
regular. If ¢[a] = ¢[b], then v, (v[a]) = 1p(v[a]), hence ¢ is regular at v[a]. Given a
cusp v[a], in suitable local coordinates ¢ near [a] and (z,y) near v[a], v(t) = (t2,1%).
If [a] is critical for ¢, then @(t) is a holomorphic function of ¢? and #3. O

Lemma 3.8. Given C' — C, let g := vhv™! be defined on the smooth locus of Q.
If g is regular on Q, the following conditions are satisfied:

1. If [a] is a singular branch of @, then hla] is also singular.
2. If v[a] = v[b], then vh|a] = vh[b].
When @QQ has ordinary singularities, these conditions imply that g is reqular on Q).

Proof. Assume g is regular on @, so that gv = vh. If v[a] = v[b], clearly vhla] =
vh[b]. If [a] is a singular branch, Lemma 3.1 (1) implies that h[a] is also singular.
Assume that C has ordinary singularities. Given a node v[a] = v[b], let gq, gs
be the restrictions of g to the branches [a], [b] (respectively). Clearly, g, and g
are regular. If vh[a] = vh[b], then g,(v[a]) = gs(v[a]), hence g is regular at v[a]. If
h(v[a]) is a cusp, choose, as before, local coordinates ¢ near [a] and (z,y) near v[a],
so that v(t) = (#2,t%). Since [a] is critical for vh, vh(t) is a holomorphic function of
t? and #3, hence g is regular at v|a). O

3.4. Invariants at singular points. Recall the definition and basic properties
of the Weierstrass functions o, ( and P. Let Q be a lattice in C, with associated

elliptic curve C ﬂ) C/Q = (C,+,0). Fix a positively oriented basis (A1, A2) in Q.

Given two lattice points w; = a; A1 + biA2 € Q, det(wy,ws) := Zl 21
2 b
The odd entire function o(t) :=¢ [] (1—L)exp (L + 3(%)?) has the transla-

0A£weR
tion property ”(Ut(t)w) = e(w) exp(3n(w)w) exp(n(w)t), for all t € C and w € . Here,
() = 1, when w € 2Q
W= -, when w ¢ 2Q

, and Q@ =5 C is a group morphism that satisfies the

. nwi) wi | _ 5 .
Legendre relation nws) ws | = 2midet (w1, ws).
The odd meromorphic function ¢ := (logo)' = 1 + X (ﬁ + % + wt—g) has

0A£weEN
the translation property ((t + w) = {(t) + n(w), for all t € C and w € Q.

The function P:=(' = —-% — ) ((t_lw)2 — 1) is even and Q-periodic.
(

0£weN
Given a divisor A on C, let [A] := Y ([a]), and s(A) := ) a. When [A] ~ 0, the
a€A a€A
meromorphic function ®4(t) := exp(n(s(4))t) [[ o(t — a) is Q-periodic, inducing
acA

an elliptic function C LZN P!, with principal divisor (¢4) = [A].

Lemma 3.9. Let D be an effective divisor on C = C/Q, with deg(D) := e and
s(D) = 0. Given 0 # m € Z and n € C with emn € Q, consider the self-map
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c C, h[t] := [mt — n], and the meromorphic function C 2, P, d(t) =
exp(tn(emn)) [] % Then ® is Q-periodic, inducing on C an elliptic func-
wcD 7 -

tion C' -5 P! with (¢) = h*D — m?D.

Proof. Let A = emn, and fix w € Q. Since m € Z and s(D) = 0, the translation
property of ¢ and the Legendre identity imply that

bt +w) ol e(mw) exp(%mwn(mw)) exp((mt —n —a)n(mw))
Tow P LT ) exp(Emaon(@) expm? — ayn)
exp(wn(A) — An(w)) exp((m? — m)s(D)n(w)) = 1. O

Let  be an elliptic plane curve of degree e. Choose a normalization C' — Q,
and a group structure C A, C/Q = (C,+,0) so that s(v*Og(1)) = 0. Given a line
lin P2, let Io := (iu)t\l, where ) 3 P? is the inclus/i\on map. Give/r\l a divisor D
on C with s(D) = 0, D denotes a divisor on C with [D] = D and s(D) = 0.

Definition 3.10. Given two points a, b in C and a line  in P2 not passing through
v([a] or v[b], define

a(@l):==3 (la—t) and afa,bl) =[]

—

telc tele

ola—1)
alb—1t)’

The translation properties of ¢ and ¢ imply that a(a,!) and a(a,b,!) do not depend
on the choice of divisor I on C satisfying [I¢] = l¢ and s(l¢) = 0.

Remark 3.11. (3.4) The translation properties of a come from those of ¢ and o.

Given w, A € Q, a(a + w,l) — a(a,l) = en(w), W = exp (en(w)(a — 1)),

and 2 — (L) exp (5 (5(w)w — n(N)A)) exp (e(n(w)a — 1)) -

Recall that P? denotes the space of lines in P2. Given p # ¢ in P2, L(p, ¢) is the
line passing through p and ¢. Given p € P2, p:={l € P2: pel}.

Proposition 3.12. When v[a] = v[b], a(a,b,l) is independent of | € P2 \ v]a]".
When [a] is a singular branch of Q, afa,l) is independent of I € P2\ v[a]".

Proof. Fix two lines ly # I, in P? not passing through ¢ := v[a], and let p := lgNl,

Iy := L(p,q). Let C N D be the central projection ¢[z] := L(p, v[z]). Given ! € p, a
local study near the intersection of @ with I shows that ¢*(I) = l¢. Pick coordinates

—

in p = P! with [p = 0 and I, = 00. Let A := (ly)c — @ Clearly, deg(A) = 0 and
s(A) = 0. Since (¢4) = (lo)c — (o) = (@), there exists 0 # k € C with ¢ = kda.
If v[b] = g, then @la] = $[B] = 1, hence Zepyoel = 24l = 2l — 1.
If [a] is a singular local branch of @, then ¢*(I1) = (l)c = v*i*li > v*q > 2[a],

ie. ¢'la] = 0. We get afa,ly) — a(a,le) = i—li[a] = %[a] =0. O

Definition 3.13. Let 0 #m € Z and [n] € Cep,.
Given a singular branch [a] of @ so that [ma — n] is also singular, define

m.n(a) := ma(ma —n) — m>a(a) + n(emn).
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Given two branches [a], [b] of @ with v[a] = v[b] and v[ma — n] = v[mb — n], define
a(ma —n,mb—n)
a™(a, b)

Clearly, am n(a) and au, ,(a,b) are well-defined, and depend only on [a], [b], [1].
Moreover, am,n(a,b)amn(b,a) = 1.

amn(a,b) == -exp((a — b)n(emn)).

Theorem 3.14. Let () be an elliptic plane curve of degree e. Choose a normaliza-

tion C = Q, and a group structure C i, C/Q = (C,+,0) so that s(v*Og(1)) = 0.
Assume that @ has ordinary singularities. Then, given 0 # m € Z, Rg(m) is
formed by the points [n] € Cep, with the following properties:
1. If [a] is a singular branch of Q, then [ma — n] is singular and o, [[a] = 0.
2. If v[a] = v[b], then v[ma — n] = v[mb —n] and ay, )([a],[b]) = 1.

Proof. Given 0 # m € Z and [n] € C, let h[t] := [mt — n], and define g := vhy~!
on the smooth locus of Q. Fix a generic line [ in P?, and let lg := i*l, lc := v*lg.

If [n] € Rg(m), g extends rationally to P2. By Remark 2.4, g*lg ~ m?2lg.
Since gv = vh, h*lc ~ m?lc. By Remark 3.4, [n] € Cep. By Lemma 3.8, if [a]
is a singular then h[a] is singular. If v[a] = v[b], then vh[a] = vh[b]. Now, there
exists Q 2y P! with (¥) = g*lg — m?lg, hence (yv) = h*lc — m?lc. By Lemma
3.9 applied to lo, we may assume that @v is induced by the Q-periodic function
®(t) := exp(tn(emn)) [] glmi—n—a) By Lemma 3.7, if [a] is a singular, then

1 om%(t—a)
a€lc

®'(a) = 0,i.e. ap,[p[a] = 0.If v[a] = v[b], then ®(a) = ®(b), i.e. am,n([a],[b]) = 1.
Assume that [n] € Ce,, satisfies the two conditions. Since the singularities of
Q are ordinary, g is regular, by Lemma 3.8. By Remark 3.4, h*lc ~ m?lc. Let

C -2 P! be induced by ®, with & defined as above. By Lemma 3.7, ¢ := ¢v~!
is regular on Q. Since (¢) = h*lc — m?lc, we get (¢) = g*log — m?lg, hence
g*lg ~ m?lg. Remark 2.4 finishes the proof. O

Remark 3.15. Given any elliptic plane curve @, Rg(m) C Cep,, and the points of
Rg(m) satisfy the properties stated in Theorem 3.14.

As an application of Theorem 3.14, we have the following.

Corollary 3.16. With the notations of Theorem 3.14, assume that Q is singular,
and that the singularities of Q) are ordinary cusps. If 0 # k € Z has the property
that k[a] = O for all cusps [a], then, given m € Z with |m| > 1, Rg(m) C Rgo(m+k).

Proof. Fix [n] € Rg(m). Given a cusp [ag], let ajy1 := ma; —n, for j > 0. Since
mi—1

[a;] is a cusp for all j, [as] = [a,] for some 0 < s < r. Clearly, a; = m7ay — n

m—1"""
By Remark 3.5, there exists such k. Let w; := ka;, w := kn, and a; := £a(a;).

Since am nla;] = 0, we get ajy1 = ma; — n(w). By Remark 3.4, kn(a, — as) =

ap —ag = (m"™ —m®)(ag — %), hence ag = n(wo).
We calculate E(mk—+k)am+k,n(a0) = 2a(a; + wo) — (m + k)ag + n(w) = a1 +
kn(wo) — (m + k)n(wo) + n(w) = 0. O

4. INVARIANT CRITICAL COMPONENTS.

In this section we prove that, given an elliptic plane curve @, there do not exist
self-maps of P2 for which Q is critical and invariant.
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Theorem 4.1. Given a plane curve Q, the following are equivalent:

1. There exist self-maps of P2 for which Q is invariant and critical.
2. The curve @) is rational.

Proof. Assume that @) is invariant and critical for a rational self-map f of P2. By
Remark 2.1, @) is rational or elliptic. Assume that @ is elliptic. Fix a normalization
map C — @, and consider the incidence surface S := {(c,1) € C x P2 : v(c) €1},
with canonical projections S =+ C, p(c,1) = ¢, and S P2, w(c,1) = l. Clearly,
S is smooth, S -+ C' is a ruled surface, and 7 is finite, with deg(m) = deg(Q) := e.
Fix r € P2, and let L be the graph of the projection C 3 ¢ + L(r,v(c)) € P2. For
generic r, we have m*# = L, hence L? = e.

By Lemma 3.1 and Lemma 3.2, () cannot have singular branches, hence the
curve Q dual to Q has degree 2e in P2. Let T be the graph of the map dual to v,
Cocm Tyec€ P2, We see that LT = deg(Q) = 2e.

Given g € @, the differential df (¢) has 1-dimensional kernel X, which we identify
with the line in P? whose tangent space at ¢ is X,. Let X be the graph of the map
C 3 cr X, € P2 Clearly, XT = 0.

Now, L, T and X are sections in the ruled surface S -2 C. Let H be a minimal
section of S, with H? := n, and denote by F the class of the fibers of p, modulo the
numerical equivalence ~ of divisors on S. For some non-negative integers [, t, x, we
have L~ H+IF, T ~H+tFand X ~H+zxzF,withn+2l=e,n+1+t=2e
andn+xz+4+t=0.Wegetn=e—2l,t =1+e and z =1 — 2e. Since t > 0, we have
T # H, hence —x =n+t=TH > 0. Therefore, x = 0, ] = 2e and n = —3e. Since
[ >0, wehave L # H, hence LH > 0. But LH = —e < 0, a contradiction.

Vice versa, assume that @ is rational of degree e, with normalization P* - Q.

Fix a rational map P? 2 Pl of algebraic degree d > 2, that satisfies I(¢) N Q = 0.
The rational self-map f := v¢ of P? is degenerate with image Q, has d(f) = de > 2e,
and satisfies I(f) N @ = (). Adding to the components of f generic multiples of h?,
where h is the homogeneous equation of ), we obtain regular self-maps of P? for
which @ is invariant and critical. O

5. JULIA SET.

A domain D in a complex manifold M is hyperbolically embedded in M iff for
any two sequences (2 )n, (Yn)n of points in D, if ,, — 2z € M, y, — y € M, and

dp(zn,yn) — 0, then z = y. Here, dp denotes the Kobayashi pseudo-distance.
n

Given two complex spaces X and Y, let Hol(X,Y") denote the space of holomor-
phic maps from X to Y, endowed with the compact-open topology. In [9] it is shown
that if D C M is relatively compact and hyperbolically embedded, then, given any
complex manifold U, Hol(U, D) is relatively compact in Hol(U, M).

An irreducible complex space X is Brody hyperbolic iff it admits no non-constant
holomorphic maps C — X. We will use Green’s results on the hyperbolicity of the
complement of a hypersurface.

Theorem 5.1 ([7]). Let M be a compact complex manifold and H C M a hyper-
surface, with irreducible components H;, 1 < i < m. Assume that:
1. M\ H is Brody hyperbolic;

2. ( H;\ U Hj is Brody hyperbolic for every partition I'1J = {1,--- ,m}.
icl jed
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Then M \ H is completely hyperbolic, and hyperbolically embedded in M.

Theorem 5.2 ([6], [10]). Let M be a projective manifold and C" Ly M a holo-
morphic map that omits at least dim(M) + 2 ample hypersurfaces in M. Then the
image of f is contained in some hypersurface of M.

A quasi-projective irreducible curve Qg is hyperbolic iff its normalization Qg is
a hyperbolic Riemann surface. )¢ is hyperbolic iff there are no nonconstant maps
from C to Q. We will use the following result.

Theorem 5.3 ([1]). Let C be a plane curve with at least four irreducible compo-
nents, at least one of them irrational. Then there are at most finitely many irre-
ducible curves B C P? with the property that B\ C is not hyperbolic.

Given a self-map P" N P" J(f) denotes its Julia set. When n = 1, all but
at most two points have the property that J(f) is contained in the closure of their
backward orbit. When n = 2, it may happen that no point has this property. (For
example, when f has a chaotic completely invariant line.)

Theorem 5.4. If an elliptic plane curve Q) is invariant for a map P2 s B2 with
d(f) > 1, then J(f) equals the closure of the backward f-orbit of any point on Q.

Proof. Forn > 0,let Q, := f~™(Q). Denote by J the closure of |J,,~., @n- Since @
is elliptic, J is the closure of the backward orbit of any point on @, and J C J(f).
We need to show that the sequence of iterates of f is normal on Q = P2\ 7. It
suffices to find some ng such that P? \ Q,, is hyperbolically embedded in P2.

The irreducible components of (), are mapped by f" to @, hence they are
irrational. Note that (), has at least n + 1 irreducible components. This can easily
be seen by induction, since no irrational plane curve is completely f-invariant ([5]).

By Theorem 5.3, we deduce that when n > 3 there are at most finitely many
irreducible curves B C P? with the property that B\ @, is not hyperbolic.

We show that for every irreducible curve B C P? there exists some positive
integer n so that B\ @, is hyperbolic. Assume this is not true, and let B denote
the finite set of irreducible curves B C P? with the property that B\ @,, is not
hyperbolic for all n > 0. Since f(B\ Qn+1) C f(B) \ Qn, f acts on B. Pick an
f-periodic curve B € B. Replacing f by an iterate, we may assume that f(B) = B.
Let B -5 B denote the map induced by f. Note that B is rational, since any Zariski
open subset of an irrational curve is hyperbolic. Let P! —» B be a normalization,
and P! -4 P! the lifting of g through v. The backward g-orbit of v~ (B N Q)
contains at most two points, P! \ {three points} being hyperbolic. Replacing f by
an iterate, we may assume that the points of v~ (BNQ) are completely g-invariant,
hence critical for g.

Now, for all p € BN Q, T,(B) # Tp(Q)- Indeed, let (B,p) be a local irre-
ducible component of (B, p), and (Q,p) one of (Q,p). Since g(B,p) = (B,p) and
dg(v—'(p)) = 0, Lemma 3.1 (2) implies that df (p) 1, (s,) = 0. Since f(Q,p) C (Q,p)

and @ is elliptic, Lemma 3.3 implies that df (P)\TP(Q) # 0. Consequently, Tp,(Q)) #
Tp(B).
The local intersection number of B and @) at any p € BN Q is then m,(B, Q) =
mp(B)my(Q). By Bézout, deg(B)deg(Q) = Y- my(B)m,(Q). For all p € B,
pEBNQ

mp(B) < deg(B). Given two distinct points p and g in B, m,(B)+m4(B) < deg(B).
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Recall that BN(Q consists of either one or two points. In both cases we immediately
get a contradiction.

This means that B is empty. It follows that, for some large enough ng, B \ @n,
is hyperbolic for all irreducible curves B C P2.

By Theorems 5.2 and 5.1, P2\ ), is hyperbolically embedded in P2. O

We will use the following simple remark, to generate computer pictures of Julia
sets as basin boundaries.

Remark 5.5. Assume that P2 —L5 P? leaves invariant an elliptic plane curve @ and
aline L. If f has an attracting point a € L and if some point r € Q N L is repelling
for the restriction of f to L, then J(f) equals the boundary of the basin of a.

Proof. Denote by L —%4 L the restriction of f, and by A the basin of a. It is clear
that J(f) D 0A. Since r € J(¢), we deduce that r € JA. The backward f-orbit of
r is dense in J(f), hence J(f) C 0A. O

6. SMOOTH CUBICS.

6.1. Invariance. Given a smooth cubic C, pick the group structure C l) (C,+,0)
so that s(O¢(1)) = 0. Three points on C are collinear when their sum is 0, and 0
is a flex of C.

Proposition 6.1. Given a smooth plane cubic C and a multiplier 0 # m € Z(C),
Rc(m) = {[n] € C : 3[mn] = ¢}, hence rc(m) = 9|m|?. Given [n] € Rc(m), the
self-map C -5 C, g[t] = [mt — n), admits regular extensions to P2. Moreover, the
flexes of C' are pre-periodic for g.

Proof. The first statement follows from Remark 2.4 and Remark 3.4. Since C5 U
9(C3jm2) C Csjm)2, the flexes of C' are pre-periodic for g. When |m/|? > 3, the generic
extension of g is regular. Lemma 6.2 below concludes the proof when |m|? =2. O

6.2. Algebraic degree 2. We find in this subsection the self-maps of P? of alge-
braic degree 2 that leave invariant a smooth cubic.

Lemma 6.2. If a rational self-map f of P? with d(f) = 2 leaves invariant a smooth
plane cubic, then f is regular.

Proof. Let C be an f-invariant smooth cubic, and C -2 C the restriction of f.

We see that f does not contract curves. Indeed, assume that F is an irreducible
plane curve so that f(E \ I(f)) is a point ¢ € P2. Since ENC # 0, ¢ € C.
Since E is contracted by f, deg(E) < d(f), hence E is a line or a conic. Given
p € ENC, df(p)r,g = 0 and df (p);1,c # 0. Therefore, E meets C transversely.
Since ENC C g~ 1(q), we get 2 = deg(g) > deg(E) deg(C) > 3, a contradiction.

Clearly, f(P?\ I(f)) is Zariski dense in P2. (Otherwise, f(P2\ I(f)) = C. Given
aline L in P2, f would induce an isomorphism from L onto C'.)

Let @ be an irreducible component of f*C — C. Then deg(Q) < 3. Since f
induces a surjective map from @ to C, @ is irrational. Therefore, ) is a smooth
cubic, and f*C' = C + Q. The support of f*C must contain I(f), hence Q # C

and I(f) C Q. Let C = P? and Q —%» P2 be the inclusion maps, and Q - C
the restriction of f. Given a line L in P2, the divisors j* f*L and h*i* L coincide on
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Q\ I(f). When LN h(I(f)) = @, the support of h*i* L does not meet I(f), hence
J*f*L=h**L+ > n;(L)(i), with 0 < n;(L) € Z.
i€I(f)
Assume I(f) # 0. Taking degrees, we get deg(h) =1 and > n;(L) = 3. Now,
i€I(f)
fix a point ¢ € C \ (f(C N Q)Uh(I(f))), and two lines L and M in P? that pass
through ¢ and do not meet h(I(f)). Then (f*L)-(f*M) > g*(q) +h*(¢) + >, (3),
€I(f)

hence I(f) consists of one point, I(f) = {i}, and f*L and f*M meet transversely
at i. Since n; (L) = 3 = ny (M), we get T;(f*L) = T;(Q) = T;(f*M), hence f*L and
f*M are tangent at 4. This contradiction shows that f is regular. O

Given C C P2, let Autc(P?) := {4 € Aut(P?) : A(C) =C}.

Lemma 6.3. Let C be the set of pairs (f,C), where f is a reqular self-map of P>
with d(f) = 2, and C is an f-invariant smooth plane cubic. Let Aut(P?) act by
conjugation on C, A% (f,C) = (AfA~", AC). Then card (C/Aut(P?)) = 20.

Proof. Given A in the Siegel figure, pick a cubic Cy ~ C/(Z + Z)). Fix (f,C) € C.
There exist A and A € Aut(P?) with A(C) = C), hence we may assume C = Cl. Let
F be the set of flexes of C. Pick a group structure C SR (C,+,0) with [0] € F. Let
m :=mo(f) and [n] := — f[0]. Since |m|? = 2, A € {i,iv2, YT} and m € M()),
where M(i) = {+1 + i}, M(iv2) = {#iv2}, and M(LEVT) = (LT} By
Remark 3.4, [n] € N'(m) := ([3]+ F) U ([152] + F) . Identify with N(m) the set
of self-maps of P2 of algebraic degree 2 that leave C' invariant and have multiplier m
on C. Similarly, Autc(P?) is identified with A := U(C) x F, A = (mc(A), —A[0]).
Now, A acts by conjugation on N'(m), (u, [v]) * [n] = [un + (1 —m)v]. When X =i,
Ax[3] = N(m). When X = 1+12—‘ﬁ, the orbits of A on N(m) are A*[5], Ax[52].
When A = iv/2, the orbits of A on NV (m) are Ax[1], Ax[152], Ax[1], Ax[1=22]. O

Given ) € {i,iv/2, 1+i2‘ﬁ}, m € M()), [n] € N(m) as in the proof of Lemma 6.3,
let f,(n) be the extension to P? of the self-map [z] — [mz — n] of Cj.
Given two points p # ¢ in P2, let L(p, q) be the line passing through p and q. As

usual, P2 ~ P? denotes the space of lines in P2,

Lemma 6.4. Given a self-map f of P2 with d(f) = 2 that leaves invariant a smooth
cubic C C P2, let £ := {L € P2 : deg(f(L)) =1}, and P := {f(L) : L € L}.
Then L and P are smooth cubics in ]Ph, and L is isomorphic to C. Moreover, L and
P have the same set F of flezes, F depends only on C, and {f(L) : L € F} =F.
Finally, L =P iff P is isomorphic to C iff f has either 2 or 4 invariant lines.

Proof. We may assume that C = C, with A € {i,iv/2, 1++ﬁ}, and f = f, [n), With
m € M(X) and [n] € N(m). We see that £ = {L(p,q) : p # q & f(p) = f(q)},
hence £ is a curve of degree 3 in P2. Let L[2] := L([z+1], [z +5™]) = L[z+2]. One
of the components of £ is the elliptic curve Lo := {L[z] : [2] € C}, hence £ = Ly is
a smooth cubic in P2. The map £ N C, ¢¥(L[z]) = [mz], is an isomorphism. Since
LIZINL[ZINL[3+ 2] = {[0]}, 0(¥+O£(1)) = [0]. Therefore, three lines L[z;] concur
iff 37 25] € {[0], [Z]}. Tt follows that the set of flexes of £ is F := {L[z] : [z] € F}.

When [2] € F, L[z] = L([z + %], [z + 3]), hence F does not depend on m or [n].



INVARIANT ELLIPTIC CURVES 13

Let P[z] := L([z+ 2 —n],[z+ 2 +2n]). Then f(L[z]) = P[mz] = f(L[z+ 3Z2]),
and P = {P[z] : [z] € C}, a smooth cubic in P2. Let C —» C be the quotient
map associated to the translation [z] — [z 4+ 3n]. The map P N C, ¥(Plz]) = [/z\],

is an isomorphism. Since P[n — 2] N P[-2] N P[252] = {[0]}, 0(4.Op (1)) = [/O\]
It follows that three lines P[z;] concur iff [} 2;] € {[0],[3n]}, and then the set of
flexes of P is also F. There are five cases to consider:

1. A=iand [n] = [}],

2. A =iv2and [n] € {[3], 521},
3. A =iv2 and [n] € {[3], [==222]},
4. A:#amd[n]:[%,

5. A= VT and [n] = [L52].

For all [2] € F, P[z] = L[z + 3] in case (3), and P[z] = L[z] in all other cases. It
follows that f permutes the lines in F. For further reference, let F £ F denote

this permutation, and define F -2 F, ¢ := YFy~1. Then ¢[z] = [mz + 7], where

[7] = [%] in case (3), and [r] = [0] in the other four cases. Note that £ = P iff

(2] = [3n] iff X = # and [n] = [15™], which is case (5). In this case, f has
|m — 1|2 invariant lines. In the other four cases, let [ be the sequence of lengthes of
the f-cycles of lines, ordered increasingly. Then [ = (1,8) in the cases (1) and (4),
1=(1,1,1,2,2,2) in case (2), and [ = (3,6) in case (3). O

Lemma 6.5. There are no self-maps of P? of algebraic degree 2 that leave invariant
two smooth cubics.

Proof. We keep the notations from (the proof of) Lemma 6.4. Assume that f leaves
invariant a smooth cubic C' # C. Since C ~ £ ~ (', there exists A; € Aut(P?)
with A;(C") = C. Since A; fA;" leaves C invariant, there is Ay € Autc(P?) with
Ag A fATIASY = fmr ) i= f', where m' € M(X), [n'] € N(m/). If A := AyA,,
then AfA~! = f' and A(C) # C. Given B € Autc(P?) with Bf = fB, we may
replace A by AB. In the cases (1), (2), (4) and (5), we have fM = M f, where
M € Autc(P?), M[2] := [—2]. In the cases (2) and (3), we have fT = T f, where
T € Autc(P?), T[z] := [z — L.

Let £’ be the curve of lines that are mapped to lines by f’, and similarly define
P!, F' 4" and ¢'. Clearly, {A(L): L€ L} =L, and {A(P): P € P} =P’. Define
L =5 L', a(L) := A(L). Then (F) = F, and oF = F'a on F. Define C N C,
B:=v'ap=1. Then B(F) = F, and B¢ = ¢' 3. Write ([z] = [uz —v], with u € U(C)
and [v] € F. Then [u(mz + 7) —v] = [m/(uz — v) + 7'] for all [z] € F. We get
m = m', hence £L = L', ¢ = ¢, and [(m — 1)v] = [r' — ur]. It suffices to show
B = 1¢, since then a = 1., and A = 1p2, contradicting A(C) # C.

In the cases (5) and (4), [7] = [0] = [7'], hence [v] = 0. Since fM = M f, we may
assume u = 1, i.e. 8= 1¢.

In the cases (3) and (2), [/ —ur] € Z[%] and [(m — 1)v] € Z[Z], hence
[ —ur] = [0] and [v] € Z[™%EL]. Since fT =T f, we may assume that [v] = 0, and
then [7'] = [u7]. In case (3), we get [7'] = [%] = [7] and u = 1, hence 8 = 1¢. In
case (2), since fM = M f, we may assume u =1, i.e. 8 =1¢.
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FIGURE 1. Self-map of degree 2 with an invariant smooth cubic.
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In case (1), f = f', [r] = 0, [v] = 0. Since L[0] is the only f-invariant line,
Bl0] = [0]. Since L[Z] = f*L[0] — L[0], A[3] = [3]. Therefore, v = *1. Since
fM = Mf, we may assume u = 1, i.e. 8= 1¢. O

Proposition 6.6. Up to conjugation by a Mébius transformation, there are 20
self-maps of P2 of algebraic degree 2 with an invariant smooth cubic.

Proof. Assume Afy, (A~ = fi [n]- By Lemma 6.5, ACx = Cx/, hence A = X. It
follows that m = m’, and then [n] = [n]. O

Remark 6.7. Given (f,C) € C, the ramification divisor R of f is a smooth cubic
isomorphic to P, and RNC = F. The branching curve B := f(R) is the dual of P.

Proof. Note that R is a cubic in P2. Since f(L[z]) = f(L[z + 2Z2]), the map
C - R, r[z] := L[] N L[z + ¥Z2], is well-defined. Its fibers are the orbits of the
translation 7[2] = [2+222], and the same is true for the map C' 3 [2] = P[mz] € P.
Therefore, R ~ C/7 ~P. When [z] € F, r[z + 1] = [2], hence RN C = F.

Given z € R, the differential df (z) has 1-dimensional kernel L,, or else £ would
contain the pencil of lines through z. Clearly, L, € L. Let L # L, be another line
in £ that passes through z. If z is not critical for the restriction of f to R, then
f(L) = Tt(y)B. Therefore, P is the dual of B. O

Remark 6.8. When A = Y7 and [n] = [17], we have £ = P, ie. f:= fo[n];

m = ilf‘ﬁ, leaves invariant the smooth cubic of lines £, inducing on L the self-

map g(L[z]) = L[mz]. The map £ x £ —— P2, (L1, Ly) = Ly N Lo, is regular,
and 7(g,g9) = fm. It follows that f is strictly critically finite, with J(f) = P2
The ramification R is isomorphic to C, and the branching B is the dual of L.
Moreover, f*B = B + 2R. Such maps with an invariant smooth cubic of lines
appear in Proposition 7.2. The self-maps with an invariant curve of plane curves
are discussed in [4].

Example 6.9. The smooth cubic y?z = z(z — 2)(z — b*z), where b = 1 + /2,
is given in the Siegel figure by iv/2. Pick the origin at [0,1,0]. Then f; Va[L01] =



INVARIANT ELLIPTIC CURVES 15

£
£,

FI1GURE 2. Tangent process on the Fermat cubic.

[y? + (3b + 2)z? — 2b%z2 — 322, —2(b+ 1)iy(x + bz),y? — (b — 2)z? + 2b%z2 — b322).
This self-map has five basins of attraction; by Remark 5.5, its Julia set equals their
common boundary. Figure 1 shows the traces of the Julia set on the lines (z = 0)
(left) and (z = 0.01iz) (right), near the flex [0,1,0].

6.3. Tangent processes. The classic “tangent process” on a smooth plane cubic
C maps p € C to the residual intersection g(p) of C with the tangent line T,(C').
Clearly, m(g) = —2, and g admits regular extensions to P2.

Definition 6.10. A tangent process on a (possibly singular) elliptic plane curve @
is a self-map of ) with multiplier —2 that admits regular extensions to P2.

In suitable coordinates, the classic tangent processes are given by Desboves’
tangent formula. Let [z;] be the coordinates in P?, j € Z/3. When k® # 1, the
cubic Cy == (hx = 0), by 1= 32, z3 — 3k I1; z;, is smooth. Every elliptic curve is
isomorphic to some Cy. The map D[z;] := [z; (23, —23,,)] is a rational extension of
the classic tangent process gj on C}. Self-maps that leave invariant arbitrarily many
of the curves C} can be obtained by adding multiples of [ ], hx to the components of
a large iterate of D. The extensions to P? of g are parametrized by 3 x 3 matrices
A = (aj1) of complex numbers, Dy, a[z;] = [z;(z3,, — 23,5) + (32, ajiz;) hi]. By
Remark 2.5, I(D) can be used to get regular extensions of g with attracting points.

Example 6.11. When the matrix A := diag(a;) is diagonal, the map Dy 4 com-

mutes with [2;] — [exp (Q?j ) x;], and the lines (z; = 0) are Dy 4-invariant. If

max(|aj+1 — 1],]aj42 + 1]) < |aj|, the fixed point P; := (zj4+1 = 0 = x;49) is
attracting. If, further assumed, max(|2 + 3(a; — aj+1)],12 + 3(ajy2 — a;)|) > 1,
Remark 5.5 implies that J(Dy, 4) is the boundary of the basin of P;. For example,
when A := diag (i,2i — 1,1 — 2i), the Julia set J(Dy, 4) is the common boundary of
the basins of [0,1,0] and [0, 0, 1]. Figure 2 shows the trace of J(Dog,4) on the line
(x +y = 0) near [1,—1,0] (left), and a zoom-in at the center (right).

When A = diag(a, 1, —1), a # 0, Dy, 4 leaves invariant the Fermat cubic Cy and
the pencil of lines through [1,0,0]. We discuss such maps in the next subsection.
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6.4. Elementary maps with an invariant smooth cubic. Given P € P2, a

map P? 7, P2 with d(f) > 1is elementary with center P iff it leaves invariant the
pencil P of lines passing through P, i.e. f(L) € P for all L € P.

Lemma 6.12. Let C be a smooth elliptic curve, and C -1 P! a non-constant
elliptic function. Assume that a self-map P* -2 P! with deg(g) > 1 lifts through

q to a self-map C LN C, gh = gq. Then there exists a smooth elliptic curve D, a
map C —— D, and a finite nontrivial group G < Aut(D), with associated quotient
map D - D/G = P*, so that q = sr.

Proof. Let B C P! be the branch locus of ¢, and R = ¢~'(B). Then C\R —% P!\ B
is an unramified covering, of degree n + 1. Let m := m(h). Since |m| > 1, we can
find an h-periodic point ¢g € C'\ R. Let ¢;, 1 < i < n, be the other points in the
fiber ¢~ (q(co)). Replacing g by an iterate, we may assume that h(co) = co and
h2(¢;) = h(c;). Let (C,co) - (C,¢;) be the transition maps on the sheets of g, i.e.
@vi = ¢. Since h?y;(co) = hyih(co) and q(h*v;) = q(hyih), we get h*y; = hy;h.

Fix a universal covering C —= C with u(0) = ¢o. Then h lifts through u to the
linear map C =5 C, H(z) = mz. Choose z; € u~(¢;), and let (C,0) REN (C,z) be
the lifting of ~; through . Let T';(2) = z; + m;z + Ej>2 m; ;27 be the Taylor series
at 0. Since |m| > 1 and uH?T'; = uHT;H near 0, we get m;; = 0 for all j > 2.

Therefore, C Liy C are affine, I';(2) = m;z + 2;. Let C L9 C be the identity map.
Identify the lattice @ = u~!(co) with a group of translations on C, C' with
C/Q, and C - C with the quotient map associated to the action of Q on C.
Consider the map C 9, P!, @ = qu, and the set A = {C Ic: gr= Q}
Clearly, A = Uy<;<,, OT'; and this union is disjoint. Therefore, A is a group of
affine self-maps of C, and () is a subgroup of A of index [A : Q] = n + 1. Note that
A(0) = Q71(Q(0)), and that the evaluation map A > T' — ['(0) € A(0) is bijective.
The translations in A form a normal subgroup 7 of A, with Q < 7. Since @
is non-constant, 7 C .A(0) is discrete in C, hence T is a lattice in C. Consider
the elliptic curve D = C/7, with quotient map C —— D. Let C -+ D be the
map induced by v through u, v = ru. The group G = A/T is a finite group of
automorphisms of D, of order k < n+ 1. Let D =+ D/G be the quotient map.
Clearly, Q induces through v a map D — P!, Q = av. We see that deg(a) = k.
(Indeed, o~ 1(Q(0)) has cardinality k, and Q(0) is not a branch point of a.) Clearly,

a induces through s a map D/G N P!, Bs = a. Since deg(a) = k = deg(s), 8 is
an isomorphism. We identify, via 3, the map a with the quotient map s. We get
qu = () = av = sv = sru, hence q = sr. O

If, in Lemma 6.12, deg(q) is a prime number, then r is an isomorphism; in this
case, we may assume that D = C and ¢ = s.

The Fermat cubic Cy := (2 + y® + 2% = 0) is the only smooth elliptic curve
with an automorphism ~ satisfying v = 1 and Fix(y) # 0. Let ¢, = [0,—1,1].
Then Aut.,(Co) ~ Z/6, generated by yolz,y, 2] := [1z, 2,y], with 7 = exp (% .
Let Go =< 72 > . Note that Fix(Go) = Cy - (x = 0). For c € C \ (z = 0), Go(c)
consists of three collinear points that determine a line passing through Py := [1,0, 0].
In other words, the quotient map Cy — Cy/Go can be identified with the map
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Co 2 P, that associates to ¢ € Cy the line joining Py to c¢. In homogeneous
coordinates, Cy — P! is the central projection go[z,y, 2] = [y, z].

Put Qg =Z + Z7, and let C ﬂ> C/€Q denote the quotient map. Fix an isomor-
phism Cy ~ C/Qy with [0] = ¢g. Then 7o[t] = [—7t], as follows from differentiating
7o at its fixed point co. Note that Fix(Go) = [T51Z].

Proposition 2.3 yields the following criterion for a self-map of Cy to admit an
elementary extension with center Pp.

Corollary 6.13. Given a map Co —= Co with d := deg(h) > 1, h extends to an
elementary map with center Py <= h(cg) € Fix(Go) <= h commutes with Gy.

Proof. Since m(h) € Qg = Z + Z, either ¢ € Z or 451 € Z, hence d > 3.

If h extends to an elementary map with center P, it induces through gg a map
P' %5 P!, goh = gqo- The critical points of gy are the three fixed points of Gy. Since
h is unramified and ¢y is critical for gg, h(co) is critical for go, i.e. h(co) € Fix(Gy).

Assume h(co) € Fix(Gy). For all v € Gy, hy(co) = vh(co)- Since m(hy) = m(vh),
hy = «vh. Therefore, h commutes with Gy.

If h commutes with Gy, it induces through g a self-map P! AN P, g = [g1,92],
9; € Cqly, z]. Then h*Oc¢,y (1) ~ h*q*Op1(1) ~ ¢*9*Op1(1) ~ ¢*Op1(d) ~ Oc¢, (d).
By Proposition 2.3, h extends to P2 EAN P2 f = [fo, f1, f2], fj € Calz,y, 2].

We have ¢*g*(y = 0) = ¢*(g1 = 0) = Co - (g = 0), and h*g*(y = 0) =
h*(Co-(y =0)) =Co- f*(y =0) = Co - (fr =0), hence the divisors (g1 = 0) and
(f1 = 0) leave the same trace on Cy. Therefore, there exists a constant 0 # a; € C
so that fi — @191 vanishes on Cy. Let e = 2% + y3 + 23. Then there exists a
polynomial 81 € Cyq_s[z,y,2] so that f; — a1g1 = efy. Similarly, there exist a
constant 0 # a2 € C and a polynomial 32 € Cq_3[2,y, 2] so that fo — azgs = efa.

Consider the rational self-map f of P2, f = [fo, @191, 29s]. Then I(f) C {co},
and ﬁCO = fic, = h. When fo(co) # 0, f is an elementary extension of h. When
fo(co) =0, [fo + x4 3e,a191,a292] is an elementary extension of h. O

Proposition 6.14. Let P? L5 P2 be an elementary map with center P, that leaves
invariant a smooth cubic C. Then there exists a Mdbius map M € Aut(P?) with
M(P) = Py and M(C) = Cy.

Proof. Let C 4 C be the restriction of f to C. Clearly, P ¢ C. Let C -5 P be
the regular map that associates to a point ¢ € C' the line joining P to c¢. Then ¢ has
topological degree 3, and h induces through g a map P! Pl gh = gq- By Lemma
6.12, there exists a group Z/3 ~ G < Aut(C), with Fix(G) # 0, whose orbits lie
on lines through P. Fix ¢ € Fix(@G), necessarily a flex of C. Pick an isomorphism
C & Cy with m(c) = co. As in the proof of Proposition 2.3, m extends to a
Moébius map M € Aut(P?). Since Z/3 = MGM~! < Aut.,(Co), MGM~! = G,.
Since M maps lines to lines and G-orbits to Gg-orbits, M (P) = Fy. O

Example 6.15. If a map Cj Ly ¢y with deg(h) = 3 (minimal) has an elementary
extension P> —L5 P2 with center Py, then +m(h) € {1—7,7—72,72—1}. We see that
h maps the set of flexes of Cy onto Fix(Gy), and is constant on Fix(Gg). Therefore,
up to Mobius conjugation, there are six one-parameter families of elementary self-
maps of P2 of algebraic degree 3, that leave invariant a smooth cubic.
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By Desboves’ secant formula, h[t] = [(7 — 1)#] is given in projective coordinates
by hlz,y,z] = [(1? — 1)zyz, 2° — 793, 4° — 72°]. The elementary extensions f, of h
are obtained by adding a(z® + y® + 23), with a # 0, to the first component of h.

Let S(f) be the support of the Green measure associated to a self-map P? N P2,
and R(f) the closure of the set of repelling periodic points of f.

Assume P2 L5 P2 i elementary with center P. Since f~}(P) = P, P is super-
attracting for f, and the basin of attraction of P, denoted A(f), is connected.

Proposition 6.16. If an elementary map P2 L P2 with center P leaves invariant
a smooth cubic, then:
L J(f) = S(f) = R(f) = 0A(f), and A(f) = P*.

2. U fr(U) =P2\ {P}, for every open set U with UNR(f) #0 and P ¢ U.
r>0

Proof. Let C' ", C be the restriction of f to an f-invariant smooth cubic C, P the
center of f, C - P! the central projection from P, and P -5 P! the self-map
induced by h through q. Let m = m(h) and d = |m|?> > 1. By Lemma 6.12, ¢ is the
quotient map C — C/G associated to a group Z /3 ~ G < Aut(C).

Since g is strictly critically finite, J(g) = P!, and A(f) is the only Fatou com-
ponent of f, hence A(f) = P? iff J(f) = dA(f).

For every elementary self-map of P2, R(f) = S(f) (cf. [3]). By Corollary 6.13,
h commutes with G. Replacing f by an iterate, we may assume that f fixes a flex
x € FiX(G) The line F, joining z to P is tangent to C, hence f.(z) = m, where

F, == F, is the polyn0m1al function induced by f. Also, since ¢*q(x) = 3z, we
get g( (x)) = m3. It follows that z is repelling for f (with eigenvalues m and
m?), hence z € S ( f)- Since S(f) is completely f-invariant, Theorem 5.4 implies
J(f) € 5(f), hence J(f) = S(f).

Clearly, dA(f) C J(f). Since z is repelling for f,, we have z € A(f,) C OA(f).
We get J(f) C OA(f), hence J(f) = OA(f), and the first statement is proved.

Let F} be the non-minimal Hirzebruch surface. Statement (2) follows from [3],

once we show that I i> F1 has no completely invariant curves besides the negative
section. Otherwise, f leaves completely invariant some affine section, so that f, has
two exceptional points. But then |f.(z)| = d, in contradiction with f.(z) =m. O

7. DUAL OF SMOOTH CUBIC.

Given p € P2, p := {L € P2: p € L} is a line in P2. Given a line [ in P2,
[ := (N L is a point in P2. For every p € P2, j = p. For every line [ in P2, [ = [.
Lel

Given a smooth cubic C in P2, with set F of flexes, choose the group structure
C—)(C/Q = C so that [0] € F. Given m € Z, let Cp, := {c € C : mc = 0}.
The dual curve C, defined as the curve of tangents to C, is a sextic in P2 with
ordinary cusps T,C, a € F, normalized by C' - C, v(c) :=T.(C). For all ¢ € C,
,,(C)C’ = ¢. In this way, the dual of C, defined as the curve of tangents to C, is
identified with C. Given a line [ in P2 not passing through the cusps of C, recall
that {5~ :=i*l, where C - P2 denotes the inclusion map, and I¢ := v*l;. We see

that lc = 3-{(c) : | € T.(C)}. For generic [¢] € C, [d] = 2([]) + b]%;C (Ib— £D).
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Proposition 7.1. For all 0 # m € Z(C), Rx(m) = F.

Proof. This follows from Proposition 7.2 below. When m € Z, we give a proof based
on Theorem 3.14. The condition that [ma —n] € F for all [a] € F means that [n] €
F. Fix [a] € F. For generic [c] € C, we calculate a(a) = 2¢((a—c)+ > ((a+5—Db).
beCa
Since > ((z —b) = 2((22) for all [z] € C, we get a(a) = 2((a—¢) +2{(2a+¢) =
bela
21(3a). If [n] € F, then am [y)[a] = 2mn(3ma — 3n) — 2m?n(3a) + n(6mn) =0. O

The condition [n] € F means that the map C 2, h[z] = [mz — n], preserves
the collinearity on the smooth cubic C : if [a], [b], [¢] are three collinear points on
C, then h[a], h[b], h[c] are also collinear. The following construction is apparently
due to T. Ueda; the second author has learned it from M. Jonsson.

Proposition 7.2. Let C xC - P2, nr(cy, ¢3) := L(cy, ¢2). Note that (¢, ¢) = v(c)
forallce C. IfC NYy) preserves the collinearity on C, then (h, h) induces through
7 a regular self-map h of P2, hw = w(h, h). Moreover,

1. The branching curve of h is C, and J(h) = P2

2. The ruled surface {(c,L) € C xP?: c€ L} is (h, h)-invariant.

3. The dual C of C is h-invariant, with hv = vh.

4. The dual C of C is h-invariant; for all c € C, h(¢) = (h(c))".

Proof. The map 7 can be identified with the quotient map associated to the action
on C x C of the symmetric group X3 generated by the involution a(a,bd) = (b,a)
and the 3-cycle 3(a,b) = (b, —a—b). Since (h, h) commutes with « and £, it induces
a regular self-map A of P2. The properties of i are easy to " O

Corollary 7.3. The curve C admits nine tangent processes. They extend uniquely
to P2. One of them fizes some (all) of the nine cusps of C.

Example 7.4. Let C} = (3 z3 = 3k [1; z;), as in subsection 6.3. The normaliza-

tion of Cy, is vx[x;] = [23 — kzj417j42). When k =0, Cp = (2 a8 = (X a?)z) .
The Desboves map gg on Cy induces through vy the tangent process on C, that

fixes the cusps. We calculate go[a;] = [a;(—3a3 + 23, a})].

8. ELLIPTIC QUARTICS WITH TWO SINGULAR POINTS.

8.1. Normalization. Given two plane curves )1 and )5, we write ()1 ~ Q2 when
there exists a Mobius transformation M € Aut(P?) with M (Q1) = Q2. The elliptic
quartics with two singular points can be represented as follows.

Prop051t10n 8.1. Let C — (C/Q C be an elliptic curve. Given (a,b,a) € C3,
leth:= —a—b—a,c:=—2a—b, and & := —2a — b. Assume that [a] # [a], [a] # [ 1,
[b] # [@], [B] # [B), [c] # (@], [d # [b], [&] # lal, [¢] # [b], and [a +b] # [@ + b]. Define
C -5 3,0 =(X,Y,2), by:

X(t) = o?(t — a)o(t — b)o(t — &),

Y(t) =0*(t—a)o(t—bo(t—c),

Z(t)=oc(t—a)o(t—bo(t—a)o(t —b).
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Then ¥ induces through C — L, ¢ and \ 0 Ly p2 4 pormatization C %> Q,
v[t] = [¥(8)], of an elliptic quartic Q := C(a,b,a) with two ordinary singularities,
¢:= [1,0,0], 4 := [0,1,0], and s(u Og (1)) = 0, v*q = ([a]) +([B]), v*7 = ([a]) + (-
All elliptic quartics with two singularities are Mébius images of such C(a,b,a).

Proof. Tt is clear that X (t), Y (¢) and Z(¢) do not vanish simultaneously. For w € ,
Xg;;") = Ylt4w) _ Z%;”) = exp(2(2t + w)n(w)), so C = P? is well-defined. In

0]
. X(t o(t—a)o(t—cC Y(t t—a)o(t—c
affine coordinates, z[t] = % = 7{7& a%agt bg, % 7(7515 a;agt b; We

show that v is injective on C' \ v=1(Z = 0). Indeed, if v[t;] = v[tz] ¢ (Z = 0) for
some [t1] # [t2], then [t1]+ [t2] would be a fiber of both z[t] and y[t], hence [a]+[b] =
[t1] + [t2] = [@] + [B]. Therefore, C -+ Q C P? is a normalization map. Clearly,
v*(g) = ([a]) + (1)), v*(@) = ([]) + (), and s(v*Og(1) = 5((Z = 0)c) = 0. In
local coordinates, we see that ¢ and § are ordinary singularities.

Given any elliptic quartic Q with singularities ¢ # §, fix a normalization C' = Q.
Note that mg(q) = 2 = mg(§), and L(g,§)c = v*(q) + v*(§). Choose the group

structure C <% ¢ so that v* q = [a]+[b], v*G = [a]+][b], with a+b+a+b = 0. Choose

coordinates in P? so that L(g,§) = (Z = 0), Ti[a] = (X = 0), and Ty[a] = (Y = 0).

Then (Z = 0)c = ([a]) + ([b]) + ([a]) + (B]), (X = 0)c = 2([a]) ([B) + ([—2a — b)),
(Y =0)c = 2([a]) + ([b]) + ([—2a — b]). Rescaling z and y, we get Q ~ C(a,b,a). O

Remark 8.2. Let Q = C(a,b,a) be an elliptic quartic, with b:= —a—b—a. Then
Q ~ C(a,b,a) ~ C(b,a,a) ~ C(a,b,b), Q ~Cla+w,b+ X a+d) for all (w,\,») €
03, and Q ~ C(ma — n,mb — n,ma — n) for all (m,[n]) € U(C) x Cj.

Proof. The first equivalences follow immediately from the proof of Proposition 8.1.

For the last one, since (?g) =m for all ¢t € C, there exist constants k; # 0 so that

and y[t] =

the automorphism (z,y) — (k1z, k2y) maps @ onto C(ma—n,mb—n,ma—mn). O

Remark 8.3. When q is a node of @ := C(a,b,a), we have a(a,b) = %{igg:g

When ¢ is a cusp of Q, a(a) = {(a — a@) + {(a — b). Similarly for §.

Proof. In Definition 3.10, choose [ = (X = 0) for ¢, and [ = (Y = 0) for §. O
When Aut(Q) is large, the invariants a,, [,) can be calculated more explicitely.

8.2. Invariant nodal quartics. A node of a plane curve is inflectional iff it is
a flex on each of its branches. A Cassini curve is an elliptic quartic with two
inflectional nodes. In this subsection, we consider a 2-dimensional space of elliptic
quartics with two nodes, that contains the Cassini curves.

Remark 8.4. Given an elliptic quartic @ with two nodes, Aut(Q) = Autg(P?).
Moreover, rg(1) > 1 iff Q@ ~ C(a,a — ;‘, ) with [A] = 0 # [3] and 4[a] # 0.
Finally, Q is a Cassini curve iff Q ~ C(%,—32,—2), with [\] = 0 # [3].

Proof. We may assume that Q = C(a,b,a). As usual, b := —a—b—a. Let g € Aut(Q)
be induced through v by C Yol h[t] = [t — n]. Since h leaves invariant the set
{[a], [0], [@], [B]}, we get 4[n] = 0. By Remark 8.2, g € Autg(P?).

When m = 1 and [n] # 0, replacing if necessary g by g*> we may assume that
[a—n] = [b], [b—n] = [a], [@a —n] = [b]. We get 2[n] = 0, b—a——w1th[)\]—0 and
d=—a+ % with [w] =0. Let @' := a — %. By Remark 8.2, Q ~ C(d',d’ — 3, —d’).
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F1GURE 3. Tangent process on Cassini quartic.

When @ is Cassini, 0 = [3a +b] = [3b+a] = [3a+ b] = [3b+ a]. We get 8[a] = 0,
[b] = —3[a], 2[a + @] = 0. By Remark 8.2, we may assume that a = 2 with [\] =0,
b= —3a, and @ = —a + % with [w] = 0. As before, we may assume that w =0. O

Proposition 8.5. Let Q = C(a,a — 3, —a), as in Remark 8.4. If 0 # m € 2Z,
then Rg(m) = {[n] € Cym : det(dmn, \) € 2Z}, hence ro(m) = 8m?.

Proof. By Remark 8.3, a(a,a — 3) = —exp ((2a — 3)n())) . Fix [n] € Cam. By
Remark 3.4, a(ma —n,ma —n — 2X) = exp ((2m*a — 2mn — tm?X)n(})) . Define
& := det(4mn, X). It follows that aum, n(a,a — 3) = exp(rid). Similarly, we calculate

Qm,n(—a,—a+ %) = exp(—mid). By Theorem 3.14, [n] € Ro(m) iff § € 2Z. O

Example 8.6. Given a Cassini quartic @), there exists a complex number 0 # k # 1
so that @ ~ Qg := (gr = 0), where g, := (1 — 2?)(1 — y?) — (1 — k). Consider the
self-map g of @ that associates to p € @y the residual intersection g(p) of Q
with the conic I' that passes through ¢, ¢ and p, with tangents T,(I') = (y = 1)
and T,(I') = T,(Qr). Proposition 8.5 ensures that g is a tangent process on Q.
We calculate g[z,vy, 2] = [2zy(z? + y? — 2k2?),2* — y*, —22y(2? — y?)]. To obtain
regular extensions f of g to P2, we can add ag;, to the last component of g, with
0 # a # +4i. In the “limit” situation k = 0 = a, we get the degenerate map (z,y) —

S Y i
z2—y2> 2zy

) , whose image is the rational quartic (2> + y? = z2y?). When
a? = 8k, the restriction of f to the invariant line (z = 0) is critically finite. When
a and k are real, PR? is f-invariant. Figure 3 shows the traces on R? (with center
at (0,0)) of the basins of attraction of (0,0) (black) and (0, 2) (grey), for a = V/8k,
with k¥ = 0.125 (left) and ¥ = 0.001 (right). Computer experiments suggest that
J(f) equals the boundary of the basin of (0, 0). However, the unbounded component
of Q) NR? seems to have a basin of attraction in R? (white in Figure 3).

8.3. Quartics with a cusp and a node. Let C" := C/Q,, with Q, :=Z @ Z7.

Given a basis (A, w) in Q, let CF , := OT(3f2, 24w A-Be)

Remark 8.7. Given an elliptic quartic @ with a cusp and a node, ro(—1) > 0 iff
the node of @ is inflectional iff Q ~ Cf , with (A\,w) € {(1,7), (1,7 +1),(r+1,1)}.
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Proof. By Proposition 8.1 and Remark 8.2, we may assume that Q = C"(a,a,a),
with 2[a 4+ @] # 0 # 4[a], [a] # [@] # —3[a]. Let Q@ <% Q be induced through v
by [t] — [n — t]. Since g fixes ¢, [n] = 2[a]. Since g must fix the branches of §,
2[a] = 2[a] and 8[a] = 0, i.e. § is inflectional. With w :=2(a — @) and A := 8a — w
we get @ = C7 . By Remark 8.2, CT |/ ~ C[ y,and C3,, , ~ C3 , ~CY 1, for
all a € Q,, hence we may assume (A,w) € {(1,7), (7,7 + 1), (7 +1,1)}. Note that
[t] — [2£2 —¢] induces through v an automorphism of C3 ., that extends to P2. [

Lemma 8.8. Let Q = CY,, with a = Mo § = A3 and b = =32 Then

8
1 25 ) = _eR(Fn()  P()2P()
ala) = 31 +w), and (@) = =SB B rer) -

Proof. By Remark 8.3, a(a) = ¢(%) +¢(3) = %(n( ) +1(X) = gn(w + A), and

a(a,b) =2 ( ) . Since P'(t) = Zgg and lim 2.0+2) _ 7,,,%;, we obtain o?(a,b) =

t=0 P'+%)
exp( % n(w)) . 7’ (3 ; — w —
expén()\)) P,,(%). The three finite critical values of P are e; := P(¥), ex :=

P(3) and e3 := —e; — ez = P(2E2). Recall that (P')? = —4[[,(P — e;), hence

P = =23 ,(P — €i—1)(P — eiy1). We get P"(3) = —2(es — e1)(e2 — e3) and

'P"(%) = —2(e; — e2)(e1 — e3), hence fpug g = Zing- H

Given r € R, let || denote the largest integer less than or equal to 7.

Proposition 8.9. Let Q = Cf ,, as in Remark 8.7. Given m € Z, Rg(m) # 0 iff

wyy\ L]
P()H2P(5)\- 2 _ 1 ; —
(P(%)HP(%)) =1, in which case Rg(m) = {[(m — 1)a]}.

Proof. Fix [n] € Rg(m). Since [t] = [mt — n] must fix [a], we may assume that
n = (m — 1)a, and then 4m[n] = 0. By Lemma 8.8, @, »(a) = 0.

When m is even, we have [ma —n] = [mi) - n] , and Remark 3.4 implies that

a(ma — n,mb —n) = exp(tm(1 — 2m)()\ + w)n(A — w)). Using Lemma 8.8, we
calculate ay, n(a@,b) = (%)

When m is odd, we have ma —n = @ — pw and mb—n = b— pA, with p := 2_
By Remark 3.4, a(mé—n, mb—n) = (—1)?a(a, b) exp(5p(4p + 3) (wn(w) — An(X))).

2_
=7y _ (P(D+2P(5)) 2

By Lemma 8.8, (i n (@, b) = (W) . O

Corollary 8.10. Up to Mébius equivalence, C},i is the only elliptic quartic with a

cusp and an inflectional node that admits a tangent process.

oy 2
Proof. The condition (%) = 1 means P(2£2) = 0. In this case, C7 is
2 2

isomorphic to (y> = 2® — z), i.e. 7 = i. Since P(it) = —P(t), we have P(1) =0,
hence [252] = [1H]. By Remark 8.7, we may assume (\,w) = (1,1). a

Example 8.11. Let Q := (h = 0), with h := (22 — y?)2? — 29®. Then Q ~ Cil,i,
with cusp ¢ = [1,0,0] and node n := [0,0,1]. Let r := [0,1,0] € T,(Q) N Q. The
tangent process on ) maps p € @ to the residual intersection g(p) of @ with
the conic that passes through ¢, n, r, p, and is tangent to Q at p. We calculate
glz,y, 2] = [A(zy + 22°)% — (¢ + %)%, 160°2% — day(2® — y°), 8z2(2” + y°)].
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FIGURE 4. Tangent process on “mixed” quartic.

The group Aut(Q) is generated by [z,y, 2] = [z, —y,iz]. The regular extensions
of g that commute with Aut(Q) are obtained by adding ah to the second component
of g, with 0 # a. When a = 757y, with [5* — 1| <1 and [b” + 1| < 2, the fixed

points [:I:, / Z;—é, 1,0] are attracting for the self-map f; obtained in this way; by

Remark 5.5, J(fy) is the common boundary of their basins. Figure 4 shows the
traces of J(f_og.9) on the lines (z = 0) (left) and (z = 0) (right), near [0, 1,0].

8.4. Invariant cuspidal quartic. We discuss now the invariance of the elliptic
quartics with two cusps.

Remark 8.12. Given an elliptic quartic @ with two cusps, @ ~ C(a) := C(a,a, —a),
with 4[a] # 0. Moreover, Aut(Q) = Autg(P?), and rg(—1) = 1. The tangents to Q
at the cusps meet at a flex of @ iff Q ~ C’p(l#), with p := exp(%i).

Proof. The first statement follows from Proposition 8.1 and Remark 8.2. Let g €
Aut(Q), with @ = C(a), be induced through v by C LN C, h[t] = [mt —n]. Since h
leaves invariant the set {[a], —[a]}, we get 2[n] = 0. By Remark 8.2, g € Autg(P?).
When m = —1, we must have h[a] = —[a], i.e. [n] =0.

The tangents to C'(a) at the two cusps meet at r := [0,0,1]. Clearly, r € C(a)
iff 6[a] = 0. In this case, r = v[3a], and r is a flex of C(a) iff (%)I (3a) = 0, i.e.
3((2a) = n(6a). By the addition theorems of ¢ and P, this happens iff P"(2a) = 0
iff P(2a) = 0. Assuming this, the second-order differential equation of P implies
that ). e;_1e;41 = 0, where e; are the three finite critical values of P. Therefore,
C is isomorphic to C?, in which case P(pt) = —pP(t) for all t, hence P(*12) = 0.
It follows that 2[a] = j:[HT”], and we may assume a = 1}%”, by Remark 8.2. O
Proposition 8.13. Let Q = C(a), as in Remark 8.12. Given m € Z, Rg(m) # 0

iff there exists e € {—1,0,1} so that 2(m—e€)[a] = 0 and (m—€)((2a) = n(2(m—¢)a).
When € = 0, Rg(m) = {(m £ 1)[a]}; when e = £1, Rg(m) = {(m — €)[a]}.

Proof. Given n € Rg(m), let @ % Q be induced through v by [t] + [mt — n].
Recall that ¢ = v[a] and § = v[—a] are the cusps of (). There are three possibilities.
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FI1GURE 5. Tangent process on cuspidal quartic.

9(9) = ¢ and g(q) = g, i.e. 2(m — 1)[a] = 0 and [n] = (m —1)[a].
9(q) = 9(§), i.e. 2m[a] =0 and [ ] = (m £1)[a].
9(q) = G and g(§) = ¢, i.e. 2(m + 1)[a] = 0 and [n] = (m + 1)[a].
Therefore, 2(m—e€)a=w € Q, for a (unique) € € {—1,0,1}. When € = £1, we may
assume n = (m — €)a. When € = 0, we may assume n = (m — 1)a (conjugate if
necessary g with the involution induced by [t] — [—t]).
By Remark 8.3, a(a) = 2{(2a) = —a(—a).
Assume € = £1. Then a(ma—n) = ea(a), am,n(a) = 2m (n(w) — (m — €)((2a)),
a(—ma — n) = a(—ea —w) = —ea(a) — 4n(w), and am n(—a) = —am n(a).
Assume € = 0. Then a(ma — n) = ala), amn(a) = 2(m — 1) (pw) — mn(2a)),
a(—ma—n) = ala—w) = a(a) —4n(w), amn(—a) = —2(m+1)(n(w) —mn(2a). O

Corollary 8.14. Up to Mobius equivalence, CP (2 ”) is the only elliptic quartic
with two cusps that admits a tangent process.

Proof. By Proposition 8.13, 6[a] = 0 and 3{(2a) = n(6a). (The proof of) Remark
8.12 finishes the proof. O

Example 8.15. Let Q := (h = 0), with h := (y?—22)? —8z°2. Then Q ~ C*(¥£2);
the tangents to @ at the cusps ¢ := [0,1,1], § := [0,—1,1] meet at the flex r :=
[1,0,0]. The tangent process on () maps p € @ to the residual intersection g(p) of Q
with the conic that passes through ¢, ¢, r, p, and is tangent to @ at p. We calculate
g[ma Y, Z] = [m(mg - 2y22 + 1023),y(723 - 5y2Z - 23"3)) 2y4]

The group Aut(Q) is generated by [z,y, z] — [pz,y, —z]. The extensions f, of g
that commute with Aut(Q) are obtained by adding ah to the last component of g.
When 3.484 < a < 10, f, has three attracting points on the invariant line (y = 0),
and, by Remark 5.5, J(f,) is the common boundary of their basins. Figure 8.4
shows the traces of J(f4) on the lines (z = 0.01y) (left) and (z = 0) (right), near r.
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