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1 Introduction.

Ittai Kan has described a simple example of a skew product map from the cylinder (R/Z) × I to
itself such that the two boundary circles are measure theoretic attractors whose attracting basins
are intermingled , in the sense that the intersection of any nonempty open set with either basin has
strictly positive measure. (See [Kan, 1994].) This note will consist of three variations on the maps
which he introduced.

Sections 3 and 4 will describe Kan’s example in slightly more generality, emphasizing the impor-
tance of negative Schwarzian derivative. Section 5 will show that if we substitute positive Schwarzian

derivative then the behavior will change drastically, and almost all orbits will have a common
asymptotic distribution. In the case of zero Schwarzian derivative, §6 will prove in some cases (and
conjecture in others) that almost all orbits spend most of the time extremely close to one of the
two cylinder boundaries; but that each such orbit passes from the ǫ-neighborhood of one boundary
circle to the ǫ-neighborhood of the other infinitely many times on such an irregular schedule that
there is no asymptotic measure.

Many technical details are relegated to the two appendices.

2 Preliminaries.

Let I = [0, 1], and let C be the cylinder (R/Z) × I with boundaries A0 = (R/Z) × {0} and
A1 = (R/Z) × {1}. Let F : C → C be a C3-differentiable map of the form

F (x, y) =
(
kx, fx(y)

)
, (1)

where k ≥ 2 is a fixed integer, and where each fx : I → I is a diffeomorphism with fx(0) = 0 and
fx(1) = 1. Thus the derivative

f ′x(y) = ∂fx(y)/∂y

1
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Fig. 1: The cylinder map F in the case k = 3.

must be strictly positive everywhere.

We next introduce two key concepts that will be needed.

LEMMA A.1. For ι equal to zero or one, let Bι be the attracting basin of the circle
Aι. If the transverse Lyapunov exponent

Lyap(Aι) =

∫

R/Z

log
(
f ′x(ι)

)
dx (2)

is negative, then the basin Bι has strictly positive measure. In fact, for almost every
x ∈ R/Z the basin Bι intersects the “fiber” x × I in an interval of positive length. On
the other hand, if Lyap(Aι) > 0 then Bι has measure zero.

The proof will be given in Appendix A.

In fact, whenever Lyap(Aι) < 0 it is not hard to see that the circle Aι is a measure attractor .
By this we mean that it satisfies the following two conditions:

1. Aι is a minimal measure attracting set, that is, it has an attracting basin of positive measure,
but no closed proper subset has a basin of positive measure.

2. Furthermore, Aι contains a dense orbit, and hence cannot be expressed as the union of
strictly smaller closed invariant sets.1

Recall that the Schwarzian derivative of an interval C3-diffeomorphism f is defined by the formula

Sf(y) =
f ′′′(y)

f ′(y)
− 3

2

(
f ′′(y)

f ′(y)

)2

. (3)

We will make a particular study of maps F (x, y) =
(
kx, fx(y)

)
such that the Schwarzian Sfx(y)

has constant sign for almost all (x, y) ∈ C. Maps fx with S(fx) < 0 almost everywhere have

1Compare “www.scholarpedia.org/article/Attractor”. The following example shows that Condition 2 does not
follow from Condition 1. Consider a flow in the plane such that all orbits near infinity spiral in towards a figure
eight-curve, while the open set bounded by either lobe of the figure-eight contains an attracting equilibrium point
which attracts all orbits within that open set. Then the figure-eight is a minimal measure attracting set with no
dense orbit.
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the basic property of increasing the cross-ratio ρ(y0, y1, y2, y3) for all y0 < y1 < y2 < y3 in the
interval. (See Appendix B.) Similarly, if S(fx) > 0 (or if S(fx) ≡ 0), then fx will decrease (or
will preserve) all such cross-ratios.

The difference between positive, zero and negative Schwarzian may seem somewhat subtle.
(Compare Figure 2.) However, we will see that it has a profound influence on the dynamics of the
maps.

Fig. 2: Graphs of functions with S < 0, S ≡ 0, and S > 0. The first is the graph of a quadratic

polynomial diffeomorphism of the interval. (Compare Example 4.4—It follows immediately

from Equation (3) that Sf < 0 .) The second is the graph of a fractional linear diffeomor-

phism of the interval, and the third is the graph of the inverse of a quadratic polynomial

diffeomorphism.

3 Negative Schwarzian.

LEMMA 3.1. If Sfx(y) has constant sign (positive, negative or, zero) for almost all
(x, y), then Lyap(A0) + Lyap(A1) has the same sign. In particular, if Sfx(y) < 0 for
almost all (x, y), then

Lyap(A0) + Lyap(A1) < 0 , (4)

hence at least one of the two boundaries has a basin of positive measure.

Proof. Lemma B.5 (in Appendix B) will show that f ′x(0)f ′x(1) < 1 whenever fx has negative
Schwarzian. Integrating the logarithm of this inequality over R/Z, the inequality (4) follows. Thus
the transverse Lyapunov exponent is negative for at least one of the two boundaries. Hence the
associated basin has positive measure by Lemma A.1.

THEOREM 3.2. If Sfx(y) < 0 almost everywhere, and if both basins have positive
measure,2 then there is an almost everywhere defined measurable function σ : R/Z → I
such that

(x, y) ∈ B0 whenever y < σ(x) ,
(x, y) ∈ B1 whenever y > σ(x) .

It follows easily that the union B0 ∪ B1 has full measure.

2We don’t know whether this hypothesis is necessary.
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In fact we will usually consider maps fx(y) for which the behavior of F near the two boundaries
is similar enough so that Lyap(A0) and Lyap(A1) are equal to each other (or at least have the
same sign). For such maps, the condition Sfx < 0 will guarantee that both attracting basins have
positive measure.

Proof of Theorem 3.2. Since each fx is an orientation preserving homeomorphism, there are
unique numbers 0 ≤ σ0(x) ≤ σ1(x) ≤ 1 defined by the property that the orbit of (x, y):

converges to A0 if y < σ0(x)
converges to A1 if y > σ1(x)

does not converge to either circle if σ0(x) < y < σ1(x) .

Thus, the area of B0 can be defined as
∫
σ0(x) dx. Since this is assumed to be positive, it follows

that the set of all x ∈ R/Z with σ0(x) > 0 must have positive measure. In fact, the evident identity
σ0(kx) = fx

(
σ0(x)

)
implies that this set is fully invariant under the ergodic map x 7→ kx. Hence

it must actually have full measure. Similarly, the set of x with σ1(x) < 1 must have full measure.

We will make use of the property that a map fx of negative Schwarzian derivative increases the
cross-ratio

ρ(0, y1, y2, 1) =
y2 (1 − y1)

y1 (1 − y2)
,

that is:

ρ
(
0, fx(y1), fx(y2), 1

)
> ρ(0, y1, y2, 1) > 1 for all 0 < y1 < y2 < 1 .

(See Lemma B.3.) Suppose that the inequalities 0 < σ0(x) < σ1(x) < 1 were true for a set of
x ∈ R/Z of positive Lebesgue measure, then the function

r(x) = ρ
(
0, σ0(x), σ1(x), 1

)
≥ 1

would satisfy r(kx) > r(x) on a set of positive measure, with r(kx) ≥ r(x) everywhere. It would
follow that ∫

R/Z

dx

r(kx)
<

∫

R/Z

dx

r(x)
.

But this is impossible: Lebesgue measure is invariant under push-forward by the map x 7→ kx, and
it follows that

∫
φ(kx) dx =

∫
φ(x) dx for any bounded measurable function φ. This contradiction

proves that we must have σ0(x) = σ1(x) almost everywhere; and we define σ(x) as this common
value.

Remark 3.3. We can then define the separating measure β on C to be the push-forward, under
the section, x 7→ (x, σ(x)), of the Lebesgue measure λx, on R/Z. Evidently β is an F -invariant
ergodic probability measure which in some sense describes the “boundary” between the two basins.
Since 0 < σ(x) < 1 almost everywhere, it follows easily that both boundaries have measure
β(Aι) = 0.
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Remark 3.4. Theorem 3.2 is essentially probabilistic in nature. The same statement would be
true in much greater generality: The circle R/Z could be replaced by any probability space X, with
the k-tupling map replaced by any ergodic measure-preserving transformation k : X → X, and
with the correspondence x 7→ fx replaced by any measurable transformation from X to a compact
subset of the space of orientation preserving C3-diffeomorphisms of the interval. The proof would
go through without essential change.

As examples, we could equally well replace the expanding map x 7→ kx by an irrational rotation
of the circle, or by a hyperbolic diffeomorphism of the torus. Another example could be obtained
by taking the successive xi ∈ R/Z to be independent random variables, taking our probability space
X to be the cartesian product (R/Z)N of countably many copies of the circle with the cartesian
product measure. (Compare Hypothesis 6.1 in §6.)

4 Intermingled Basins.

Now assume the following.

Hypothesis 4.1. There exist angles x− and x+ in R/Z, both fixed under multiplication
by k, such that fx(y) < y for all 0 < y < 1 and all x in a neighborhood of x−, and such
that fx(y) > y for all 0 < y < 1 and all x near x+.

It follows that the entire vertical line segment {x−} × [0, 1) is contained in the basin B0, and
that the entire segment {x+} × (0, 1] is contained in the basin B1.

THEOREM 4.2. (Intermingled Basins). If Hypothesis 4.1 is satisfied, and if both
basins have positive measure, then the two basins are intermingled . That is, for every non-
empty open set U ⊂ C, both intersections B0 ∩U and B1 ∩U have strictly positive measure.

Proof. Define measures µ0 and µ1 on the cylinder by setting µι(S) equal to the Lebesgue
measure of the intersection Bι ∩ S for ι equal to zero or one and for any measurable set S. Clearly
the support supp(µι), that is the smallest closed set which has full measure under µι, is fully
F -invariant. We must prove that this support is equal to the entire cylinder.

To begin, choose any point (x0, y0) ∈ supp(µ0) with 0 < y0 < 1. Construct a backward orbit

· · · 7→ (x−2, y−2) 7→ (x−1, y−1) 7→ (x0, y0)

under F by induction, letting each x−(k+1) be that preimage of x−k which is closest to x−. Then it
is not difficult to see that this backwards sequence converges to the point (x−, 1). Since supp(µ0) is
closed and F -invariant, it follows that (x−, 1) ∈ supp(µ0). But the iterated pre-images of (x−, 1)
are everywhere dense in the upper boundary circle A1, so A1 is contained in supp(µ0). Since the
basin B0 is a union of vertical line segments x×

[
0, σ0(x)

)
or x×

[
0, σ0(x)

]
, it follows easily that

supp(µ0) is the entire cylinder.
The proof for µ1 is completely analogous.

Remark 4.3. In place of a fixed point on the circle, we could equally well use a periodic point
kpx ≡ x (mod Z). It is only necessary to check that the iterated map F ◦p satisfies the required
hypothesis.
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Fig. 3: Intermingled basins for the cylinder map F of Example 4.4.

Example 4.4. Following [Kan, 1994], let

qa(y) = y + ay(1 − y) . (5)

If |a| < 1, then qa maps the unit interval diffeomorphically onto itself, with qa(0) = 0 and
qa(1) = 1. It is easy to check that Sqa(y) < 0 whenever a 6= 0. It then follows from Lemma B.3
that qa(y) has the property of increasing cross-ratios.

Choose 0 < ǫ < 1, and let p(x) = ǫ cos(2πx). Then for any k ≥ 3 the map

F (x, y) =
(
kx, fx(y)

)
where fx(y) = qp(x)(y)

will satisfy Hypothesis 4.1 and also the hypotheses of Theorem 3.2. In fact, we can take x+ = 0,
and choose x− to be a fixed point which lies between 1/3 and 2/3. For example, take

x− =

{
1/2 , for k odd,

k/(2k − 2) , for k ≥ 4 even.

Thus we obtain explicit examples of maps with intermingled basins. (Compare Fig. 3.)

(In fact this argument will work for k = 2 also, using the periodic orbit 1/3 ↔ 2/3 in place of
a fixed point.)

Remark 4.5. Very similar examples of intermingled basins can be observed in rational maps
of the projective plane. (Compare [Bonifant, Dabija and Milnor, 2006, §6].) It would be very
interesting to know to what extent the examples in the following two sections also have analogs
among such rational maps.

5 Positive Schwarzian

In this section we continue to study the cylinder maps F (x, y) = (kx, fx(y)) , but now assume
that Sfx > 0 almost everywhere.
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THEOREM 5.1. If Sfx(y) > 0 for almost all (x, y), then at least one of the transverse
Lyapunov exponents Lyap(A0) and Lyap(A1) is strictly positive. If both are strictly positive,
then F has an asymptotic measure.3 That is, there is a uniquely defined probability measure
ν on the cylinder such that, for Lebesgue almost every orbit (x0, y0) 7→ (x1, y1) 7→ · · ·
and for every continuous test function χ : C → R, the time averages

1

n

( n−1∑

i=0

χ(xi, yi)
)

converge to the space average
∫
C
χ(x, y) dν(x, y) as n → ∞. (Briefly, almost every

orbit is uniformly distributed with respect to ν.) Furthermore, both boundaries of C have
asymptotic measure ν(A0) = ν(A1) equal to zero.

Thus, under these hypotheses, almost all orbits of F have the same asymptotic distribution.

Outline of the Proof. Since the proof of this theorem will be slightly circuitous, we first
outline the main steps.

• First the circle R/Z of the previous section will be replaced by the solenoid

Σ = Σk = lim
←

(R/kn
Z) ,

and the many-to-one map F of (R/Z)×I will be replaced by the associated invertible map
F̃ from Σ × I to itself.

• Since F̃−1 has negative Schwarzian on each fiber, Lemma 3.1 implies that at least one of
the two boundaries of Σ × I has negative Lyapunov exponent under the map F̃−1 . If both
are negative, then Lemma A.1 implies that both boundaries have basins of positive measure
under F̃−1 . Theorem 3.2 (together with Remark 3.4) then asserts that the union of the
attracting basins of the two boundaries Σ × {0} and Σ × {1} under F̃−1 will have full
measure. In fact there is an almost everywhere defined section

x̃ 7→ ( x̃, σ(x̃) ) (6)

from Σ to Σ × I which “separates” the two attracting basins.

• There is a standard ergodic invariant probability measure µΣ on the solenoid. Pushing it up
to the graph of σ under the section (6), we obtain an ergodic invariant probability measure
ν̃ on Σ × I.

• Since almost all points are pushed away from the graph of σ by the inverse map F̃−1, it
follows that they are pushed towards this graph by the map F̃ . In this way, we see that ν̃
is an asymptotic measure for F̃ .

• Finally, we denote by ν the push-forward of ν̃ under the projection

Σ × I → (R/Z) × I.

This will be the required asymptotic measure for the original cylinder map F .

3Terms such as: natural measure or physical measure are also used in the literature to denote this type of measure.
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Fig. 4: 50000 points of a randomly chosen orbit for the cylinder map F of Example 5.2.

Example 5.2. One example of a family of interval diffeomorphisms with positive Schwarzian
is given by the inverses

fx(y) = q−1
p(x)(y) ,

where qp(x)(y) is the quadratic map (5) of Example 4.4. Here Sfx(y) > 0 whenever p(x) 6= 0.
(Compare Proposition B.1 in the appendix.) For this special example, the asymptotic measure ν
turns out to be precisely equal to the standard Lebesgue measure λ on the cylinder. In other
words:

Randomly chosen orbits are uniformly distributed with respect to Lebesgue measure.

(Compare Fig. 4). To prove this statement, one only needs to show that Lebesgue measure is F -

invariant. In fact there are k branches of F−1 on any small open set U ⊂ C, each given
by

F−1(x, y) =
(
x/k, y + ǫ cos(2πx/k)y(1− y)

)
(7)

for one of the k choices of x/k (mod Z). The Jacobian of this branch (7) is equal to

(
1 + ǫ cos(2πx/k)(1 − 2y)

)
/k .

Since the sum of cos(2πx/k) = ℜe2πix/k over the k choices for x/k is zero, the sum of Jacobians
is +1, which means that F preserves the Lebesgue measure λ. Now Theorem 5.1 asserts that an
asymptotic measure exists. Any asymptotic measure ν can necessarily be described as the weak
limit of

(
λ+ F∗λ+ · · · + F ◦n−1

∗ λ
)
/n as n → ∞ (using the Lebesgue dominated convergence

theorem). In our case, since F∗λ = λ, it follows that ν is precisely equal to λ.

Proof of Theorem 5.1. The argument begins as follows. Denote by Σ the solenoid of
backwards orbits

x̃ = {· · · 7→ x−2 7→ x−1 7→ x0} = {x−n}
under the map x 7→ kx. Thus Σ maps homeomorphically onto itself under multiplication by k,
with the right shift map

{· · · 7→ x−2 7→ x−1 7→ x0} 7→ {· · · 7→ x−3 7→ x−2 7→ x−1}

as inverse. There is a standard probability measure µΣ on Σ, defined by the requirement that
each projection x̃ 7→ x−n is measure preserving.
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LEMMA 5.3. ‖x̃‖/k ≤ ‖kx̃‖ ≤ k ‖x̃‖ for all x̃ ∈ Σ.

Proof. This follows easily from the definition.

Given maps fx(y) as in §2, we again consider the associated map F : C → C. If Sfx(y) > 0
almost everywhere, then by the analogue to Lemma 3.1,

Lyap(A0) + Lyap(A1) > 0.

There is also a natural extension F̃ : Σ × I → Σ × I of the map F . This is a homeomorphism
defined by the formula

F̃ (x̃, y) =
(
k x̃, fx0

(y)
)
. (8)

LEMMA 5.4. If Sfx(y) > 0 for almost all (x, y), and if both Lyap(A0) and Lyap(A1)
are strictly positive, then there exists a measurable function σ : Σ → I, defined almost
everywhere, and satisfying the identity

σ(kx̃) = fx0

(
σ(x̃)

)

for almost all x̃ ∈ Σ. It follows that the graph of σ, that is the set of all pairs

(x̃, σ(x̃)) ∈ Σ × I,

is invariant under the extended map F̃ : Σ×I → Σ×I, so that F̃
(
x̃, σ(x̃)

)
=

(
kx̃, σ(kx̃)

)

for almost all x̃.

Caution: In cases of interest, this function σ will not be continuous and will not be everywhere
defined.

Proof of Lemma 5.4. We apply Theorem 3.2 to the inverse map F̃−1, with the k-tupling
map on the circle replaced by the right shift map on the solenoid. This yields a measurable section
x̃ 7→

(
x̃, σ(x̃)

)
from Σ to Σ × I. The required F -invariance property then follows easily.

Next we will show that almost every orbit under F̃ converges, in a suitable sense, to the graph
of σ. Recall that σ(x̃) is well defined and belongs to the open interval (0, 1) for almost every
x̃ ∈ Σ. Thus, for almost every point (x̃, y) ∈ Σ × (0, 1), the quantity

r(σ(x̃), y) =
∣∣ log ρ

(
0, σ(x̃), y, 1

)∣∣ ≥ 0

is defined and finite, vanishing if and only if y = σ(x̃). We will think of r(σ(x̃), y) as a measure
of distance between σ(x̃) and y.

LEMMA 5.5. Under the same hypothesis, for almost every orbit (x̃0, y0) 7→ (x̃1 y1) 7→
· · · under F̃ this measure of distance r(σ(x̃n), yn) converges to zero as n→ ∞.

Proof. Since the map F̃ (x̃, y) =
(
kx̃, fx0

(y)
)

decreases cross-ratios on each fiber (compare
Lemma B.3), we have

r
(
σ(kx̃), fx0

(y)
)
< r

(
σ(x̃), y

)
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almost everywhere. For any constant r0 > 0, let N(r0) be the strip consisting of all

(x̃, y) ∈ Σ × (0, 1) with r(σ(x̃), y) ≤ r0 .

Evidently N(r0) is mapped into itself by F̃ . Given constants 0 < r0 < r1, we will also consider
the difference set N(r1)rN(r0). Let s(x̃) ≤ 1 be the supremum of the ratio

r
(
σ(kx̃), fx0

(y)
)

r(σ(x̃), y)
for (x̃, y) ∈ N(r1)rN(r0) , (9)

or in other words for r0 < r(σ(x̃), y) ≤ r1. Since the Schwarzian is positive almost everywhere, it
is not hard to see that this supremum satisfies s(x̃) < 1 for almost all x̃. (Here we make essential
use of the fact that r0 > 0, since if the Schwarzian vanishes at (x̃, σ(x̃)) then the ratio (9) would
tend to 1 as y tends to σ(x̃).)

Therefore the average of log s(x̃) over the solenoid is strictly negative. A straightforward
application of the Birkhoff Ergodic Theorem then shows that, for almost every x̃0 7→ x̃1 7→ · · · ,
some partial product of the s(x̃j) satisfies

s(x̃0) · · · s(x̃n−1) < r0/r1 .

This means that the iterate F̃ ◦n maps N(r1) into N(r0). Since 0 < r0 < r1 can be arbitrary,
this completes the proof of Lemma 5.5.

Now define the probability measure ν̃ on Σ × I to be the push-forward of the standard
measure µΣ on the solenoid under this section σ̂ : x̃ 7→

(
x̃, σ(x̃)

)
.

LEMMA 5.6. This ν̃ is an asymptotic measure for the extended map F̃ : Σ×I → Σ× I.

Proof. We know that almost every orbit (x̃0, y0) 7→ (x̃1, y1) 7→ · · · under F̃ converges (in
the sense of Lemma 5.5) towards the graph of σ. If χ : Σ×I → R is any continuous test function,
then it follows easily that the difference between the time averages

( n−1∑

0

χ(x̃i, yi)
)
/n and

( n−1∑

0

χ
(
x̃i, σ(x̃i)

))
/n =

( n−1∑

0

χ
(
σ̂(x̃i)

))
/n

converges to zero as n → ∞. But the Birkhoff Ergodic Theorem, applied to the bounded mea-
surable function χ ◦ σ̂ : Σ → R, asserts that this last time average converges towards the space
average ∫

Σ

χ ◦ σ̂(x̃) dµΣ(x̃) =

∫

Σ×I

χ(x̃, y) dν̃(x̃, y) ,

as required.

Proof of Theorem 5.1 (conclusion). If Sfx > 0 it follows from Lemma B.5 and Lemma
A.1 that at least one of the transverse Lyapunov exponents of the boundary circles is strictly
positive, hence its corresponding basin has measure zero. If both, Lyap(A0) and Lyap(A1) are
strictly positive, then Lemmas 5.4 through 5.6 apply. In this case, both basins B0 and B1 have
measure zero.
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Pushing forward the canonical measure µΣ on Σ by the section σ̂ : x̃ 7→ (x̃, σ(x̃)), we obtain an
asymptotic measure ν̃ = σ̂∗(µΣ) for the map F̃ . Now, pushing forward again under the projection

(x̃, y) 7→ (x0, y)

from Σ × I to (R/Z) × I = C, we obtain an F -invariant measure ν on C. Since almost every orbit
under F̃ is uniformly distributed with respect to ν̃, it follows that almost every orbit under F is
uniformly distributed with respect to ν.

Remark 5.7. In the spirit of Remark 3.3 one could say, that the separating measure for F̃−1 is
an asymptotic measure for F̃ .

6 Zero Schwarzian

This section will study the intermediate case where each orientation preserving diffeomorphism
fx : I → I has Schwarzian Sfx identically zero. Such a map is necessarily fractional linear, and
can be written for example as

y 7→ ay

1 + (a− 1)y
with a > 0 , (10)

where a is the derivative at y = 0. It will be convenient to replace y by the Poincaré arclength

coordinate4

t(y) = log ρ(0, 1/2, y, 1) = log
y

1 − y
, (11)

which varies over the entire real line for 0 < y < 1, with inverse y = et/(1 + et).
Since we are assuming Sfx identically zero, it follows that each fx preserves cross-ratios or

Poincaré distances. (See Equation (11), as well as Remark B4 of Appendix B.) Therefore, in terms
of the Poincaré arclength coordinate t, the map fx will simply be a translation, t 7→ t+ c where
c is a constant depending on x. In other words,

t(fx(y)) = t(y) + c , where c = log(a) ∈ R or a = ec .

Using this displacement c in place of the original parameter a , the 1-parameter group of fractional
linear transformations of the unit interval takes the form

gc(y) =
ecy

1 + (ec − 1)y
,

where gc+c′ = gc ◦ gc′ . Given any bounded measurable function p from R/Z to R, we can set
c = p(x) to obtain an associated cylinder map

F (x, y) =
(
kx, gp(x)(y)

)
.

If we use the coordinate t ∈ R in place of y ∈ (0, 1), then this skew product cylinder map F
will correspond to a map

F̃ : (x, t) 7→
(
k x, t+ p(x)

)

4If we embed the unit interval in the complex open disk of radius 1/2 centered at 1/2, then |t(y1)− t(y0)| can be
described as the Poincaré distance between y1 and y0, or in other words as the distance as measured by the Poincaré
metric for this disk. Compare Appendix B.
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of (R/Z) × R. (The map F̃ has a canonical invariant measure dx dt. However, this is not very
useful since the total area

∫ ∫
dx dt is infinite.) The dynamics of F (or of F̃ ) under iteration

is governed by the average

Lyap(A0) = − Lyap(A1) =

∫

R/Z

p(x) dx (12)

of the displacement p(x). For almost any orbit F̃ : (x0, t0) 7→ · · · 7→ (xn, tn) 7→ · · · , it follows
from the Birkhoff Ergodic Theorem that the time average

(tn − t0)/n =
(
p(x0) + · · · + p(xn−1)

)
/n

converges to the space average Lyap(A0) as n→ ∞. Thus if Lyap(A0) > 0 then it follows that
tn will converge to + ∞. In other words, the corresponding orbit for F will converge towards
the upper cylinder boundary A1, so that A1 will be a global attractor under F . Similarly, if
Lyap(A0) < 0 then the lower boundary A0 will be a global attractor. (As in Remark 3.4, this
proof would work equally well in the more general case where the k-tupling map on the circle is
replaced by any ergodic measure-preserving transformation from a probability space to itself.)

The borderline case where the average (12) is exactly zero, is much more interesting. We have
been able to prove precise results only in the very special case of a rather different map, described
as follows, in which the successive differences ∆tn = tn+1 − tn are bounded identically distributed
independent random variables with mean zero. However, we conjecture that the same results would
hold in the original cylinder example, as described above.

Hypothesis 6.1. For the rest of this section, we replace the k-tupling map on the circle by
the following ergodic measure preserving transformation on a probability space. (Compare
Remark 3.4.) Starting with some standard probability space X, which we may as well take
to be the unit interval with its Lebesgue measure, we form the infinite cartesian product

XN = X ×X ×X × · · ·

with the cartesian product measure. Thus a point of XN is an infinite sequence
x = (x0, x1, x2, . . .) of points of X, which we think of as identically distributed inde-
pendent random variables. We will also need a measurable function x 7→ fx from X to a
suitable compact space of orientation preserving diffeomorphisms of the interval. Here we
exclude the trivial case where fx is the identity map for almost all x. The associated
map F from XN × I to itself is then defined by

F
(
(x0, x1, x2, . . .), y

)
=

(
(x1, x2, x3, . . .), fx0

(y)
)
. (13)

Thus the k-tupling map on the circle is replaced by the left shift transformation
σ : XN → XN. Note that only the initial entry x0 of x affects the image fx0

(y).
We will continue to use the notations A1 and A0 for the upper and lower boundaries,
where now Aι = XN × ι for ι ∈ {0, 1}.

Now let us assume that the fx have Schwarzian identically zero, and let us use the alternate
variable t = t(y) as in (11). If x is randomly chosen, it then follows that the successive steps

∆tn = tn+1 − tn = p(xn)
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are bounded identically distributed independent random variables which do not depend on the
value of tn. In fact ∆tn depends only on the n-th component xn of x. Switching back from
the variable t ∈ R to the original variable y ∈ [0, 1], we want to study the behavior of a typical
orbit

(x, y0) 7→ (σ(x), y1) 7→ (σ◦2(x), y2) 7→ · · · . (14)

Let yn = (y0 + y1 + · · · + yn−1)/n ∈ [0, 1] be the n-th time average for this orbit (14).

THEOREM 6.2. With F as in (13), if all of the fx have Schwarzian identically zero,
and if Lyap(A0) = −Lyap(A1) = 0 but p(x) is not identically zero, then there is no
asymptotic measure. In fact, for almost all x ∈ XN and for all y0 ∈ (0, 1), the associated
sequence {yn} of time averages satisfies

lim sup
n→∞

yn = 1 and lim inf
n→∞

yn = 0 .

In other words, for almost all (x, y0) and for any ǫ > 0, there are infinitely many values of n
such that the orbit, up to time n, has spent “most” of its time with yi > 1− ǫ, but there are also
infinitely many n for which the orbit has spent most of its time in the neighborhood yi < ǫ. It
follows immediately that there cannot be any asymptotic measure.

Proof of Theorem 6.2. We are indebted to Harry Kesten for substantial help with the
argument, which will be based on two classical theorems in probability theory. First we will need
the following.

Hewitt-Savage Zero-One Law. The action of the group of finite permutations of
N on the space of sequences XN is ergodic. That is, any measurable subset which is
invariant under finite permutation of the coordinates must have measure either zero or
one.

(See for example [Feller 2, 1966, IV.6].) Now, for any (x, y0) ∈ XN × (0, 1), let
L(x, y0) ∈ [0, 1] be the lim sup of the associated sequence {yn}. For any constant L0, the
set

{x ∈ XN : L(x, y0) < L0}

is clearly invariant under finite permutations of N. Using the Zero-One Law, it follows easily
that this lim sup is independent of x for almost all x. Let us denote this common value by
L(y0) ∈ [0, 1].

Next we show that this upper limit L(y0) is independent of y0 ∈ (0, 1). It is clear from the
construction that L(y0) = L

(
fx(y0)

)
for almost all x. On the other hand, it is also clear that

the function y0 7→ L(y0) is monotone increasing. Since fx(y0) will be greater than y0 with
positive probability, and also less than y0 with positive probability, this proves that the function
y0 7→ L(y0) is locally constant, and hence constant.

To evaluate this constant, we will need the following. Again consider the sequence {yn} where
the differences ∆yn(x) = yn+1 − yn are bounded, identically distributed random variable with
mean zero but not identically zero.
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Arc-Sine Law. Let ψn(x) be the step function which takes the value +1 if yn > y0

and the value zero otherwise, and let ψn(x) = (ψ1+· · ·+ψn)/n ∈ [0, 1] be its n-th time
average. Then for any constant α ∈ [0, 1] the probability that ψn(x) < α converges
to the expression

2

π
arcsin

√
α as n→ ∞ . (15)

Compare the slightly more general statement in [Erdös and Kac, 1947]. (If we use the variable
t ∈ R rather than y ∈ (0, 1), then it is easy to check that the inequality yn > y0 depends only
on x and not on y0.)

Note that the correspondence α 7→ (2/π) arcsin
√
α defines a homeomorphism from the unit

interval onto itself. As an immediate consequence, we obtain the following equality.

lim sup
n→∞

ψn(x) = 1 for almost all x . (16)

In fact, for any ǫ > 0, it follows easily from the Arc-Sine Law that lim sup ψn(x) > 1 − ǫ with
positive probability. Hence, by the Zero-One Law, this inequality is true with probability one. This
proves (16).

On the other hand, the inequality
yn ≥ y0 ψn

follows easily from the definitions. Taking the lim sup of both sides as n→ ∞ and applying (16),
we see that L(y0) ≥ y0. Since L(y0) is independent of y0, and since y0 can be arbitrarily close
to one, this proves that L(y0) = 1, as required. The proof that lim inf yn = 0 for all y0 ∈ (0, 1)
and for almost all x is completely analogous.

Here is a supplementary statement. It follows from Theorem 6.2 that typical orbits in XN × (0, 1)
spend a great deal of time extremely close to one or the other of the two boundaries A0 and A1 .
They must make the transition from one boundary neighborhood to the other infinitely often.
However, the next result says that they spend most of the time very close to one boundary or the
other.

Let J be a compact interval which is strictly contained in (0, 1). (For example we could take
J = [ǫ, 1 − ǫ].) Given an orbit (x, y0) 7→ (σ(x), y1) 7→ · · · , let

ηJ
n = ηJ

n(x, y0) =

{
1 if yn ∈ J,

0 otherwise .

Thus the time average ηJ
n = (ηJ

0 + ηJ
1 + · · · + ηJ

n−1)/n measures the fraction of the yi with
i < n which lie in the interval J .

THEOREM 6.3. Under the hypothesis of Theorem 6.2 and with notations as above, the
sequence of time averages ηJ

n(x, y0) converges to zero for almost every x and for all y0.

We are indebted to M. Lyubich for his help with the following proof, which will depend on a
study of random walks on the circle. Consider a random walk

XN × R/Z → XN × R/Z of the form (x, t) 7→
(
σ(x), t+ p̆(x0)

)
, (17)
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where p̆ : X → R/Z. It will be convenient to simplify this description as follows. Let ξ be the
given probability measure on X, let µ = p̆∗(ξ) be the pushed-forward probability measure on
R/Z, and let S ⊂ R/Z be the support of this measure (the smallest closed subset which has full
measure under µ). Then we can describe the random walk as the transformation

F̆ : (R/Z) × SN → (R/Z) × SN

which is given by
F̆ (τ, s) = F̆ (τ, s0, s1, . . .) = (τ + s0, s1, s2, . . .) . (18)

(Here we have interchanged the order of the factors R/Z and SN for convenience, for this proof
only.) Evidently this transformation F̆ is measure-preserving, using the Lebesgue measure λ on
R/Z and using the measure µN on SN . If the support S of µ happens to be contained in
a finite cyclic subgroup of R/Z, then every orbit of F̆ will project to a finite periodic orbit in
R/Z, hence F̆ cannot be ergodic. Conversely, we have the following.

LEMMA 6.4. If S is not contained in any finite cyclic subgroup of R/Z, then the
formula (18) describes an ergodic transformation of (R/Z) × SN.

Proof. (Compare [Lévy, 1939], [Kawada and Ito, 1940].) We must show that every bounded
measurable F̆ -invariant function φ : (R/Z)×SN → R must be constant almost everywhere. Given
such a function φ, let φ0 : R/Z → R be the average over all s ∈ SN,

φ0(τ) =

∫
φ(τ, s) dµN(s) .

We will first show that φ0 is constant almost everywhere. Let φ̂0 : Z → C be the Fourier
transform

φ̂0(q) =

∫

R/Z

φ0(τ) e
−2πiqτ dτ .

Then the required assertion that φ0 is constant almost everywhere translates to the statement
that φ̂0(q) = 0 for all integers q 6= 0.

Let µ̂ : Z → C be the Fourier transform

µ̂(q) =

∫

S
e−2πiqs dµ(s) .

Since µ̂(q) is a weighted average of points on the unit circle, we must have |µ̂(q)| ≤ 1. Furthermore
µ̂(q) 6= 1 for q 6= 0, because of the hypothesis that the support S is not contained in the cyclic
group consisting of s with qs ≡ 0 (mod Z). Note the identity

φ0(τ) =

∫

S
φ0(τ + s) dµ(s) , (19)

which can be proved by averaging the equation

φ(τ, s0, s1, . . .) = φ
(
F̆ (τ, s0, s1, . . .)

)
= φ(τ + s0, s1, s2, . . .) (20)

first over all choices for (s1, s2, . . .), and then over s0.
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We take the Fourier transform of this equation (19) by multiplying it by e−2πiqτ dτ and then
integrating, using the substitution t = τ + s. This yields

φ̂0(q) =

∫
e−2πiqtφ0(t) dt

∫
e2πiqs dµ(s) = φ̂0(q) µ̂(−q) .

For q 6= 0, since µ̂(−q) 6= 1, this implies that φ̂0(q) = 0. Therefore the function φ0(τ) takes
some constant value v for almost all τ .

More generally, we can define a function

φn : (R/Z) × Sn → R

by setting φn(τ, s0, . . . sn−1) equal to the average of φ(τ, s) over all choices for sn, sn+1, . . . .
We can compute this function inductively by the formula

φn(τ, s0, s1, . . . , sn−1) = φn−1(τ + s0, s1, s2 , . . . , sn−1) ,

which can be proved by averaging equation (20) over all choices for sn, sn+1, . . .. Since we know
that φ0 takes the constant value v almost everywhere, it follows inductively that φn takes this
same constant value v almost everywhere.

To prove that φ(τ, s) also takes value v almost everywhere, we proceed as follows. By an open
set Un ⊂ (R/Z)× SN of level n we will mean the preimage of an open subset U ′n ⊂ (R/Z)× Sn

under the natural projection map from infinite product to finite product. Note that the average of
φ over such a set Un can be identified with the average of φn over U ′n, which is clearly equal
to the common value v.

On the other hand, the open sets of finite level form a basis for the topology of (R/Z)×SN. It
follows easily that any open set U ⊂ (R/Z) × SN can be expressed as the union of an increasing
sequence U1 ⊂ U2 ⊂ · · · of open sets of finite level. Hence the average of φ over U , being the
limit of the averages over the Un, is also equal to v. Finally, the average of φ over any set
Σ ⊂ (R/Z)×SN of positive measure is equal to v, since any such Σ has open neighborhoods U
with UrΣ of arbitrarily small measure. Therefore, the set of (τ, s) with φ > v or with φ < v
must have measure zero. This completes the proof that the map F̆ is ergodic.

Proof of Theorem 6.3. It will be convenient to work with the coordinate t = t(y) ∈ R

rather than the original coordinate y ∈ (0, 1). Thus J will now denote some (possibly very
large) closed interval of real numbers. We will show that for a random walk of the form

F̃ (x, t) =
(
σ(x), t+ p(x0)

)

on XN × R, the fraction of time ηJ
n(x, y0) spent in the compact interval J ⊂ R will tend to

zero as n→ ∞ for almost all x. Let L≫ 0 be a large real number. By projecting the real line
to the circle R/(LZ) (or briefly R/L), we obtain a corresponding random walk F̆ on this circle
of length L. Note that the interval J ⊂ R of length |J | projects to an interval J̆ ⊂ R/L of
the same length. (Here we assume that L > |J |.)

For almost every choice of L, it is not hard to see that the push-forward p̆∗(ξ) of the canonical
measure on X to a measure µ on R/L will satisfy the hypothesis of Lemma 6.4. For any orbit
(x, t0) 7→ (σ(x), t1) 7→ · · · , we can project the sequence of points t0, t1, . . . ∈ R to the circle,
thus obtaining a corresponding sequence of points τ0, τ1, · · · ∈ R/L. Since the map

(x, τ) 7→
(
σ(x), τ + p̆(x0)

)
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is ergodic, it follows from the Birkhoff Ergodic Theorem that the orbit (x, τ0) 7→
(
σ(x), τ1

)
7→ · · ·

will be uniformly distributed in XN × (R/L) for almost all x. It follows that the image sequence
τ0, τ1, . . . ∈ R/L will be uniformly distributed around the circle for almost all x and for all
τ0. In particular, this sequence will visit a given interval J̆ ⊂ R/L of length |J | with limiting
frequency precisely equal to |J |/L. Evidently any visit by the lifted sequence {ti} to the interval
J ⊂ R will give rise to a visit by {τi} to J̆ . Therefore this ratio |J |/L is an upper bound
for the frequency of visits of {ti} to J . Since L can be arbitrarily large, it follows that the
frequency of visits of {ti} to the interval J ⊂ R is zero, as asserted.

Appendix A: The Transverse Exponent.

Let (x, ι) be any point of the boundary circle Aι, where ι can be either 0 or 1. By definition the
transverse Lyapunov exponent along the circle Aι at (x, ι) is defined by

LyapAι
(x) = lim

k→∞

1

k
log

∣∣∣
∂F ◦k

∂y
(x, y)

∣∣∣ evaluated at y = ι ,

whenever this limit exists. (In this case, transverse really means normal.) Here F (x, y) =
(
kx, fx(y)

)

as usual. By the chain rule, the above expression can be written as

LyapAι
(x) = lim

k→∞

1

k
log

(
f ′x0

(ι)f ′x1
(ι) · · · f ′xk−1

(ι)
)

where x0 7→ x1 7→ · · · is the orbit of x = x0.

Let us denote by λ the 2-dimensional Lebesgue measure on the cylinder C = (R/Z) × I, and
by λx the 1-dimensional Lebesgue measure along R/Z. Since λx is ergodic and invariant under
multiplication by k (see Equation (1)), it follows from the Birkhoff Ergodic Theorem that this
transverse Lyapunov exponent is defined and independent of x for almost all x, and is equal to the
integral

LyapAι
=

∫

R/Z

log
(
f ′x(0)

)
dx,

for almost all x.

Let us prove now the Lemma stated in §2.

LEMMA A.1. For ι equal to zero or one, let Bι be the attracting basin of the circle Aι.
If the transverse Lyapunov exponent

Lyap(Aι) =

∫

R/Z

log
(
f ′x(ι)

)
dx (A1)

is negative, then the basin Bι has strictly positive measure. In fact, for almost every x ∈
R/Z the basin Bι intersects the “fiber” x× I in an interval of positive length. On the other
hand, if Lyap(Aι) > 0 then Bι has measure zero.
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Proof. First consider the case ι = 0 with Lyap(A0) < 0. By Taylor’s expansion restricted to
the fiber over x, we have

fx(y) = f ′x(0)y +O(y2) ,

for all (x, y) ∈ (R/Z) × I. Choose K > 0 so that fx(y) is uniformly bounded, i.e.,

fx(y) ≤ y
(
f ′x(0) +Ky

)
for all (x, y) .

For any η > 0, it follows that

fx(y) ≤ y
(
f ′x(0) + η

)
whenever y <

η

K
. (A2)

Since Lyap(A0) < 0, we can choose η > 0 small enough so that
∫

R/Z

log
(
f ′x(0) + η

)
dx < 0 . (A3)

It will be convenient to introduce the notation

a(x) = log
(
f ′x(0) + η

)
. (A4)

Consider some orbit (x0, y0) 7→ (x1, y1) 7→ (x2, y2) 7→ · · · . By the Birkhoff Ergodic Theorem, the
averages

1

n

(
a(x0) + a(x1) + . . .+ a(xn−1)

)

converge to
∫

R/Z
a(x) dx < 0 for almost all x0. In particular, it follows that the n-fold sum

An(x0) = a(x0) + a(x1) + . . .+ a(xn−1)

converges to negative infinity as n→ ∞. Hence the maximum

Amax(x) = max
n≥0

An(x)

is certainly defined and finite for almost all x, therefore a measurable function. Now suppose that

y0 ≤ η

K
e−Amax(x0) . (A5)

Then a straightforward induction shows that

yn ≤ η

K
eAn(x0)−Amax(x0) ≤ η

K

for all n. Since An(x0) converges to −∞, it follows that yn tends to zero, so that (x0, y0) belongs
to the attracting basin B0. Since the right side of the inequality (A5) is a measurable function of
x0, defined and strictly positive almost everywhere, it follows that its integral is strictly positive.
Evidently this integral is a lower bound for the area of B0. Thus B0 has positive measure as required.

The proof for the case Lyap(A0) > 0 is completely analogous. However, it requires us to make
use of the hypothesis that f ′x(y) is strictly positive, even for y = 0, so that we can choose a small
η with 0 < η < f ′x(0) everywhere, and with

∫
log

(
f ′x(0) − η

)
dx > 0 . (A6)
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The estimate (A2) is then replaced by

fx(y) ≥ y
(
f ′x(0) − η

)
whenever y <

η

K
. (A7)

Now suppose that the basin B0 has positive measure. Then, for a set of x0 of positive measure,
we could find orbits (x0, y0) 7→ (x1, y1) 7→ · · · which satisfied 0 < yn < η

K for all n. But using
(A6) and (A7) it is not hard to see that this is impossible. Therefore B0 has measure zero. The
arguments for the basin B1 are completely analogous.

Remark A.2. Lemma A.1 could also be seen as a consequence of the more general theory
of Ergodic Attractors, see [Pugh and Shub, 1989, p. 4, Theorem 3]. For a beautiful survey of
pioneering work in this area see [Barreira and Pesin, 2006, specially §§8.3 and 10.1].

Appendix B: Schwarzian Derivative and Cross-Ratios.

In this section, I, I ′, and I ′′ will denote intervals of real numbers. To any C3-diffeomorphism
f : I → I ′ , there is associated the Schwarzian derivative Sf : I → R , as defined in Equation (3).

Notational Convention. We will write Sf ≺ 0 to indicate that the inequality Sf(y) < 0
holds for y in a dense (and necessarily open) subset of I; and similarly Sf ≻ 0 if Sf(y) > 0 in
a dense open set.

PROPOSITION B.1. The Schwarzian derivative has the following properties:

1. The sign of Sf is preserved under composition: For example, given C3-diffeomorphisms

I
f→ I ′

g→ I ′′ with Sf ≺ 0 and Sg ≺ 0 , it follows that S(g ◦ f) ≺ 0 .

2. Sf ≺ 0 if and only if Sf−1 ≻ 0 .

3. Sf ≺ 0 if and only if the function ϕ(y) = 1/
√
|f ′(y)| is strictly convex (or in other

words if and only if the function ϕ′(y) is strictly increasing).

4. Sf is identically zero if and only if f is a fractional linear transformation,
f(x) = (ax+ b)/(cx+ d), with ad− bc 6= 0 and with cx+ d 6= 0 throughout I.

Proof.

1. A straightforward calculation shows that the Schwarzian derivative of a composition is given
by the formula

S(g ◦ f) = (f ′)2 Sg + Sf , (B1)

and the conclusion follows easily. (It follows from this equation that S(g ◦ f) = Sf if and
only if Sg = 0 .)

2. This follows by taking g = f−1 in equation (B1) and noting that the identity map has
Schwarzian zero.
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3. It is not hard to calculate that the second derivative of ϕ(y) = 1/
√

|f ′(y)| satisfies the
equation

Sf = − 2ϕ′′(x)/ϕ(x) . (B2)

Thus Sf(y) < 0 on a dense open set if and only if ϕ′′(y) > 0 on a dense open set; and the
assertion follows. (Similarly, Sf ≻ 0 if and only if ϕ′′(y) < 0 on a dense open set.)

4. From Equation (B2) we see that the Schwarzian is zero if and only if the function ϕ(y) is
linear, say ϕ(y) = cy + d or in other words

f ′(y) = ± 1/(cy + d)2 .

Integrating, we see that this is true if and only if f is fractional linear.

Definition. A fixed point y = f(y) ∈ I ∩ I ′ will be called strictly attracting if |f ′(y)| < 1 and
strictly repelling if |f ′(y)| > 1.

LEMMA B.2. A C3-diffeomorphism f : I → I ′ with Sf ≺ 0 can have at most three
fixed points. If it has three fixed points, then the middle one must be strictly repelling and
the other two must be strictly attracting.

Proof. We must first show that there cannot be four distinct fixed points. If there were
fixed points y0 < y1 < y2 < y3, then by the Mean Value Theorem each of the open intervals
(y0, y1), (y1, y2), and (y2, y3) would contain a point at which the derivative f ′(y) is equal to +1.
But this is impossible, since the function ϕ(y) = 1/

√
|f ′(y)| is strictly convex.

Now suppose that there are three fixed points y0 < y1 < y2. Since ϕ(y) is strictly convex,
and takes the value +1 somewhere in (y0, y1) and also somewhere in (y1, y2). It follows easily
that ϕ(y0) > 1 > ϕ(y1) < 1 < ϕ(y2), and the conclusion follows.

Definition. The cross-ratio of four distinct real numbers will mean the expression

ρ(y0, y1, y2, y3) =
(y2 − y0)(y3 − y1)

(y1 − y0)(y3 − y2)
. (B3)

(The reader should take care, since conflicting notations are often used.) Note that

ρ(y0, y1, y2, y3) > 1 whenever y0 < y1 < y2 < y3 .

Evidently the cross ratio remains invariant whenever we replace each yi by ayi + b with a 6= 0. A
brief computation shows that it also remains invariant when we replace each yi by 1/yi. Since every
fractional linear transformation can be expressed as a composition of affine maps and inversions, it
follows that the cross-ratio is invariant under fractional linear transformations.

We say that a monotone map f increases cross-ratios if

ρ
(
f(y0), f(y1), f(y2), f(y3)

)
> ρ(y0, y1, y2, y3) whenever y0 < y1 < y2 < y3 .

LEMMA B.3. [Allwright, 1978] Again let f : I → I ′ be a C3-diffeomorphism. Then
f increases cross-ratios if and only if Sf ≺ 0.
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Remark. In Lemmas B.2 and B.3, note that we can obtain a corresponding statement for the
case Sf ≻ 0 simply by applying the given statement to the inverse map from I ′ to I. For example:
f decreases cross-ratios if and only if Sf ≻ 0.

Proof of Lemma B.3. First suppose that Sf < 0 on a dense open set. Given points
y0 < y1 < y2 < y3 , after composing f with a fractional linear transformation, we may assume that
f fixes the three points y0, y1, y3. If Sf ≺ 0, then y0, y3 are attracting and y1 is repelling
by Lemma B.2. Since there can be no fixed point between y1 and y3, it follows that f moves
every intermediate point to the right. Thus f(y2) > y2 , and it follows easily that f increases the
cross-ratio ρ(y0, y1, y2, y3).

Conversely, if Sf is not negative on a dense open set, then it must either be strictly positive
somewhere, or identically zero on some interval. In the first case, it would decrease some cross-
ratio, and in the second case it would be fractional-linear and hence preserve cross-ratios within
this interval. This completes the proof.

Remark B.4. If 0 < y1 < y2 < 1, then the Poincaré distance between y1 and y2 within (0, 1) can
be defined as

d[0,1](y1, y2) =

y2∫

y1

(1

y
+

1

1 − y

)
dy = log ρ(0, y1, y2, 1) .

This can be identified with the usual Poincaré distance within a complex disk having the interval
[0, 1] as diameter. In terms of the Poincaré arclength coordinate of Equation (11), the Poincaré
distance formula can also be written as,

d[0,1](y1, y2) = |t(y2) − t(y1)|. (B4)

Now consider an orientation preserving diffeomorphism from a closed interval to itself.

LEMMA B.5. If Sf ≺ 0 for an orientation preserving diffeomorphism f of an interval
I = [a, b], then f ′(a)f ′(b) < 1.

Proof. First consider the special case where f ′(a) = f ′(b). If this common value were ≥ 1,
then the convex function ϕ(y) would be ≤ 1 at the two boundary points, and hence strictly less
than one in the interior. It would follow that f ′(y) > 1 for a < y < b. But this is impossible
since I maps to itself.

For the general case, let r : I → I be the reflection which interchanges the two end points, and
consider the auxiliary function g = r◦f ◦r. Evidently Sg ≺ 0, with g′(a) = f ′(b) and f ′(a) = g′(b).
Hence the composition f ◦ g satisfies S(f ◦ g) ≺ 0, and has derivative

(f ◦ g)′(a) = (f ◦ g)′(b) = f ′(a)f ′(b) .

The argument above then shows that this common value is strictly less than one, as required.

Similarly f ′(a)f ′(b) > 1 if Sf ≻ 0, and f ′(a)f ′(b) = 1 if Sf ≡ 0. These inequalities are
clearly visible in Figure 2. The following characterization is closely related:
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Assertion. A C3-diffeomorphism f : I → I ′ satisfies Sf ≺ 0 if and only if, for any
two points y0 6= y1 in I, the product f ′(y0)f

′(y1) is strictly less than the square of
the slope

(
f(y1) − f(y0)

)/
(y1 − y0).

(There are corresponding characterizations for the case Sf ≻ 0 or for Sf ≡ 0.) The proof,
based on Lemma B.5, is not difficult.
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