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ERRATA FOR “CUBIC POLYNOMIAL MAPS

WITH PERIODIC CRITICAL ORBIT,

PART II: ESCAPE REGIONS”

ARACELI BONIFANT, JAN KIWI, AND JOHN MILNOR

Abstract. In this note we fill in some essential details which were missing
from our paper. In the case of an escape region Eh with non-trivial kneading
sequence, we prove that the canonical parameter t can be expressed as a holo-
morphic function of the local parameter η = a−1/μ (where a is the periodic
critical point). Furthermore, we prove that for any escape region Eh of grid
period n ≥ 2, the winding number ν of Eh over the t-plane is greater or equal
than the multiplicity μ of Eh.

A result which can be stated as follows is claimed in §6 of the paper Cubic
Polynomial Maps with Periodic Critical Orbit, Part II: Escape Regions, Conformal
Geometry and Dynamics 14 (2010), 68–112 (referred to below as [BKM]).

Assertion A. For any escape region Eh, the residue
∮
dt/2πi at the ideal point

∞h is zero. Furthermore, whenever the kneading sequence of Eh is non-trivial, the
indefinite integral t =

∫
dt can be expressed as a holomorphic function of the local

parameter η = ξ1/μ = a−1/μ.

This assertion is true; however, there is a gap in our proof when the kneading
sequence is non-trivial. In this case, [BKM, Lemma 5.19 and Theorem 6.2] do show
that the quotient dt/da can be expressed as a locally holomorphic function of η,
vanishing at η = 0. However, this is not enough to prove the assertion.1 Since
a = η−μ, we have

dt

dη
=

dt

da

da

dη
= −μ

dt

da
η−μ−1 .

Thus we must show that dt/da is divisible by ημ+1 in order to complete the proof.
In fact, we will prove a slightly sharper statement. The necessary details follow.

Lemma B. Consider a Branner-Hubbard marked grid of period2 n ≥ 2, denoting
its finite column heights by L1, . . . , Ln−1. If Ln−1 > 0, then

Lj = Ln−1 − j for 1 ≤ j ≤ Ln−1 .
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1Our mistake was to ignore the ξ2 in the denominator of [BKM, Equation (6.3)].
2The period p of the critical orbit can be any multiple of the grid period n; but we will work

only with the grid. Note that n ≥ 2 if and only if the kneading sequence is non-trivial.
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Proof. Let {ai} be the periodic critical orbit. We will write the puzzle metric
d(ai, aj) of [BKM, Definition 3.7] briefly as d(i, j), with i, j ∈ Z/n, and with
d(0, i) = 2−Li . The argument will be based on the following statement from [BKM,
Lemma 3.8]. �

Expanding property. The equality

d(i+ 1, j + 1) = 2 d(i, j)

holds provided that d(i, j) < 1, and provided that {0, i, j} do not form the vertices
of an equilateral triangle in this metric.

Using this, we will prove inductively that

(∗j) d(0, j) = d(j − 1, j) = 2j−N

for 1 ≤ j ≤ N . To begin the induction, since the degenerate triangle with vertices
{0, 0, n− 1} is certainly not equilateral, the equation d(0, n−1) = 2−N < 1 implies
that

d(1, n) = 2 d(0, n− 1) = 21−N .

Since d(1, n) = d(0, 1), this proves Equation (∗1). Now suppose inductively that
(∗j) holds for j < k, where 2 ≤ k ≤ N . Then the triangle {0, k − 2, k − 1} is not
equilateral, hence

d(k − 1, k) = 2 d(k − 2, k − 1) = 2k−N .

Together with the induction hypothesis, this proves that d(0, k − 1) < d(k − 1, k).
Therefore the ultrametric property (the statement that the two longest edges of any
triangle must have equal length) implies that d(0, k) = d(k− 1, k). This completes
the induction. Since d(0, j) = 2−Lj , we have also proved that Lj = N − j, as
required. �

It will be convenient to use the abbreviated notation A�(j) for the Branner-
Hubbard annulus A�(aj). As in the proof of [BKM, Lemma 5.19], let3

Sj =

∞∑

�=0

MOD(A�(j))

be the sum of all of the moduli for the j-th column, normalized so that
MOD(A0(j)) = 2.

Lemma C. The inequality

S1 ≥ Sn + 2 = S0 + 2

holds whenever the grid period satisfies n ≥ 2, with strict inequality when n > 2.

Proof. As in the proof of the weaker inequality S1 > Sn following the statement
of [BKM, Lemma 5.19], the idea is to note that each critical modulus MOD(A�(n))
is equal to some MOD(A�′(1)) from the first column, where the correspondence
� �→ �′ = �′(�) ≥ � is strictly monotone, with �′ = �+ n− 1 for large �.

3As an example, in Figures 1 and 2, the moduli for the points in the zero-th column at
depth 0 ≤ � ≤ 7 can be computed from [BKM, Lemma 5.7] as 2, 1, 1

2
, 1

4
, 1, 1

2
, 1

4
, 1

8
, with

MOD(A�(0)) = MOD(A�−5(0))/2 for � > 7. The sum is S0 = 31
4

= 7 3
4
.
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Figure 1. Sample grid of period n = 5. Here the column heights
are L0 = ∞ , L1 = 2 , L2 = 1 , L3 = 0 , L4 = 3 , . . . .
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Figure 2. The correspondence � �→ �′.

This correspondence can be described as follows. Start with the marked grid
point in the n-th column at depth � and follow the south-west diagonal until hitting
another marked point, say in column n− δ at depth �+ δ. Then by definition

�′(�) = �+ δ − 1 ,

one level higher than the hitting point. (Compare Figure 2, where each grid point
of level �′ in the first column is circled.) Using [BKM, Lemma 5.7], it is a straight-
forward exercise to prove that MOD(A�(n)) is equal to MOD(A�′(1)). (Both are
equal to 2 MOD(A�′+1(0)).)

Evidently, there must be exactly n−1 levels which do not lie in the image of this
correspondence � �→ �′. The corresponding points in the first column are indicated
by asterisks in Figure 2. Thus the difference S1 −Sn is precisely equal to the sum
of the n − 1 moduli MOD(A�(1)) associated with these asterisk points. Setting
N = Ln−1 ≥ 0, it is easy to check that �′ = � for � < N ; but that �′ > � when
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� = N . Thus the grid point at depth N in column one will always be the highest
asterisk point. Since it follows easily from Lemma B that MOD(AN (1)) = 2, this
proves Lemma C. �
Proof of Assertion A. Setting δ = S1 −Sn ≥ 2, the proof of [BKM, Lemma 5.19
and Theorem 6.2] show that dt/da can be expressed as ξδ = ηδμ multiplied by a
function of η which is holomorphic near the ideal point. Hence dt/dη is equal to
η(δ−1)μ−1 multiplied by a locally holomorphic function. Since δ ≥ 2 and μ ≥ 1, we
have (δ − 1)μ− 1 ≥ 0. Therefore dt/dη is locally holomorphic, which implies that
the indefinite integral t is locally holomorphic, as required. �

In fact this argument proves a slightly stronger result. Choosing the additive
constant so that t vanishes at the ideal point, we see that t is equal to η(δ−1)μ = ξδ−1

times a locally holomorphic function, where δ ≥ 2 with strict inequality when n > 2.
Setting

t = β ξν/μ + (higher order terms) with β ∈ C , β 	= 0 ,

we obtain the following.

Assertion D. For any escape region of grid period n ≥ 2, the winding number ν
and the multiplicity μ ≥ 1 are related by the inequality ν ≥ μ , with strict inequality
when n > 2.
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