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c region is the half cylinder in Figure 16.42.

Figure 16.42
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'a) The equation of the surface of the whole cylinder along the y-axis is 22 + 2% = 1., The part we want is
z=+/1—122 0<y<10.

See Figure 16.52.

Figure 16.52

(b) The integral is
10 1 py/1-22
/ f(z,y,2)dV = / f / f(z,y, z) dzdzdy.
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presence of the term z2+y suggests that we should convert the integral into polar coordinates. Since /22 +y? =T,

the integral becomes
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By the given limits 0 < = < —1,and —v/1 — 22 < y < /1 — 2, the region of integration is in Figure 16.66.
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Figure 16.66

In polar coordinates, we have
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@ Using cylindrical coordinates, we get:
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8. |Using spherical coordinates, we get:
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Figure 16.75

R is one eighth of a sphere of radius 1, below the zy-plane and under the first quadrant.



