There will be two parts. Part I will consist of 8 multiple choice questions, each worth 5 points. Part II will consist of 6 problems, each worth 10 points. Work must be shown and partial credit is possible. There will also be a 5 point Maple problem for extra credit. Sample part II problems appear below and sample part I problems appear after.

- 0.1 Find an equation for the plane passing through the points (0,1,2), (1,1,1) and (2,-5,0).
- 0.2 An airplane is heading due north. Its speed through the air is 200 miles/hour but the wind is blowing to the exact northeast at 40 miles/hour. Find a) the plane's speed over the ground, b) the angle, in degrees, by which the plane's direction deviates from due north.
- 0.3 Draw and label contours of the function $f(x,y) = \frac{1}{x^2} y$ corresponding to function values 0, 1 and 2. Be sure to draw enough of each contour to make its overall shape clear.
- 0.4 Consider the following contour diagram a function f(x,y). Explain why f could be a linear function and find a possible formula for f(x,y).

0.5 The total heat energy U (in joules) produced in a certain electrical device is a function of an applied voltage V (in volts) and an adjustable resistance R (in ohms): U = f(V, R). Suppose you have the following data about the function f and its partial derivatives.

 $f(200,300) = 12.0, f_V(200,300) = 0.6, f_R(200,300) = -0.4$

- a) What are the units of f_R ?
- b) Explain in a sentence the practical meaning of $f_R(200,300) = -0.4$.
- c) Suppose you had a formula for f, namely $U=aV^2R+b/R^2+c$, where a,b and c are constants. Find a formula for $f_R(V,R)$.
- 0.6 Find a *unit* vector normal to the plane containing the three points (0,0,0), (1,1,0) and (1,-1,1).

- 1. Find the distance in space from (2, -1, 4) to (3, 1, 5).
 - a) $\sqrt{6}$ b) 6 c) 4 d) 2
- 2. Find the point (x, y, z) in the plane z = 3 that is closest to the point (-1, 5, 7).
 - a) (0, 0, 7)
- b) (0, 0, 3) c) (1, -5, 3) d) (-1, 5, 3)

- e) (3, 3, 7)
- 3. Which equation has approximately the graph shown?

 - a) $z = x^2 + y^2$ b) $z^2 = x^2 + y^2$
 - c) $z + 1 = x^2 + y^2$ d) $z 1 = x^2 + y^2$
 - e) $z 1 = x^2 y^2$

- 4. Find the displacement vector from (2, 1, 0) to (0, 0, 1).
- a) $2\vec{i} + \vec{j} + \vec{k}$ b) $2\vec{i} + \vec{j} + \vec{k}$ c) $\vec{i} + (1/2)\vec{j} + (1/2)\vec{k}$
- d) $-2\vec{i} \vec{j} + \vec{k}$ e) $-2\vec{i} \vec{j} \vec{k}$
- 5. Find a unit vector parallel to $2\vec{i} 6\vec{j} 3\vec{k}$ but with opposite direction.

 - a) $(1/2)(-2\vec{1}+6\vec{j}+3\vec{k})$ b) $(1/7)(-2\vec{1}+6\vec{j}+3\vec{k})$

 - c) $(1/7)(2\vec{1}-6\vec{7}-3\vec{k})$ d) $-(1/\sqrt{7})(2\vec{1}-6\vec{7}-3\vec{k})$
 - e) $(1/\sqrt{7})(2\vec{1} 6\vec{j} 3\vec{k})$
- 6. Find the angle between $2\vec{i} 3\vec{j} + \vec{k}$ and $\vec{i} 2\vec{j}$.
 - a) 0 b) $\cos^{-1}(4/\sqrt{70})$ c) $\pi/2$ d) $\cos^{-1}(-4/\sqrt{70})$

- e) $\cos^{-1}(8/\sqrt{70})$
- 7. Find the area of the parallelogram having $\vec{a} = \vec{i} 4\vec{j} + \vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} - 2\vec{k}$ as adjacent edges.
 - a) $\sqrt{152}$
- b) $\sqrt{146}$ c) 162 d) $2\sqrt{3}$
- e) 9√2

8. Let $f(x, y) = x^2 e^{xy}$. Find $f_y(-3, 0)$. a) 9 b) 0 c) -33 d) 18 e) -27

EXTRA CREDIT. 5 points

Let $f(x,y) = -x\sin(4xy)$. Write Maple commands to do the following.

- 1. Define the function f in Maple.
- 2. Plot the graph of z = f(x, y) in three dimensions for x between -3 and 3, y between -2 and 2.
 - 3. Plot a two dimensional contour diagram for the same ranges as in 2.