Class Worksheet 4/25/22 - Solutions

Example 1:

Which of the following paths gives the same line integral of \overrightarrow{F} = grad f?

Solution

Answer: (a)

Example 2:

Use the Fundamental Theorem of Line Integrals to calculate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = 17x^{16} \overrightarrow{i} + 5y^4 \overrightarrow{j}$ and C is the top of the unit circle from (1,0) to (-1,0).

Solution

Since $\overrightarrow{F}=17x^{16}$ $\overrightarrow{i}+5y^{4}$ $\overrightarrow{j}=\nabla\left(x^{17}+y^{5}\right)$, we take $f(x,y)=x^{17}+y^{5}$. Then by the Fundamental Theorem of Line Integrals,

1

$$\int_{C} \vec{F} \cdot d \vec{r} = f(-1,0) - f(1,0) = (-1)^{17} - 1^{17} = -2.$$

Example 3:

Let $\overrightarrow{F} = (x^2 + 3x^2y^4) \overrightarrow{i} + 4x^3y^3 \overrightarrow{j}$. Let C_1 be the path along the x-axis from (8,0) to (-8,0); let C_2 be the semi-circle in the upper half plane from (8,0) to (-8,0).

Find the exact values of the following integrals.

(a)
$$\int_{C_1} \overrightarrow{F} \cdot d \overrightarrow{r} =$$

(b)
$$\int_{C_2} \overrightarrow{F} \cdot d \overrightarrow{r} =$$

Solution

(a) Since $\overrightarrow{F} = \nabla \left(\frac{x^3}{3} + x^3 y^4 \right)$, the Fundamental Theorem of Line Integrals gives

$$\int_{C_1} \overrightarrow{F} \cdot d \overrightarrow{r} = \frac{x^3}{3} + x^3 y^4 \Big|_{(8,0)}^{(-8,0)} = -\frac{512}{3} + 0 - \left(\frac{512}{3} + 0\right) = -\frac{1024}{3}.$$

(b) Since a gradient field is path-independent, and the endpoints of C_1 and C_2 are the same:

$$\int_{C_2} \overrightarrow{F} \cdot d \overrightarrow{r} = \int_{C_1} \overrightarrow{F} \cdot d \overrightarrow{r} = -\frac{1024}{3}.$$

Example 4:

If
$$\overrightarrow{F}$$
 is a path-independent vector field, with $\int_{(0,0)}^{(1,0)} \overrightarrow{F} \cdot d \overrightarrow{r} = 5.7$ and $\int_{(1,0)}^{(1,1)} \overrightarrow{F} \cdot d \overrightarrow{r} = 3.5$ and $\int_{(0,1)}^{(1,1)} \overrightarrow{F} \cdot d \overrightarrow{r} = 4.6$, find
$$\int_{(0,1)}^{(0,0)} \overrightarrow{F} \cdot d \overrightarrow{r} = 4.6$$
, find

Solution

Since the vector field is path independent, the line integral around the closed curve (0,0) to (1,0) to (1,1) to (0,1) to (0,0) is zero.

We have

$$\int_{(0,1)}^{(0,0)} \overrightarrow{F} \cdot d \overrightarrow{r} = -\left(\int_{(0,0)}^{(1,0)} \overrightarrow{F} \cdot d \overrightarrow{r} + \int_{(1,0)}^{(1,1)} \overrightarrow{F} \cdot d \overrightarrow{r} + \int_{(1,1)}^{(0,1)} \overrightarrow{F} \cdot d \overrightarrow{r}\right)$$

$$= -(5.7 + 3.5 - 4.6)$$

$$= -4.6.$$

Thus,
$$\int_{(0,1)}^{(0,0)} \overrightarrow{F} \cdot d \overrightarrow{r}$$
 equals the integral from $(0,1)$ to $(1,1)$ to $(1,0)$ to $(0,0)$ which equals $4.6-3.5-5.7=-4.6$.