Class Worksheet 4/19/22 - Solutions

Example 1:

Consider the vector field \vec{F} shown in the figure below, together with the paths C_{1}, C_{2}, and C_{3}.

Arrange the line integrals $\int_{C_{1}} \vec{F} \cdot d \vec{r}, \int_{C_{2}} \vec{F} \cdot d \vec{r}$ and $\int_{C_{3}} \vec{F} \cdot d \vec{r}$ in ascending order.

$$
\begin{aligned}
& \int_{C_{2}} \vec{F} \cdot d \vec{r}<\int_{C_{3}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r} \\
& \int_{C_{3}} \vec{F} \cdot d \vec{r}<\int_{C_{2}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r} \\
& \int_{C_{2}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r}<\int_{C_{3}} \vec{F} \cdot d \vec{r} \\
& \int_{C_{1}} \vec{F} \cdot d \vec{r}<\int_{C_{3}} \vec{F} \cdot d \vec{r}<\int_{C_{2}} \vec{F} \cdot d \vec{r} \\
& \int_{C_{3}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r}<\int_{C_{2}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Solution

Since it appears that C_{2} is everywhere perpendicular to the vector field, all of the dot products in the line integral are zero, hence

$$
\int_{C_{2}} \vec{F} \cdot d \vec{r}=0
$$

Along the path C_{1} the dot products of \vec{F} with $\Delta \overrightarrow{r_{i}}$ are all positive, so their sum is positive and we have

$$
\int_{C_{2}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r}
$$

For C_{3} the vectors $\Delta \overrightarrow{r_{i}}$ are in the opposite direction to the vectors of \vec{F}, so the dot products $\vec{F} \cdot \Delta \vec{r}_{i}$ are all negative; so,

$$
\int_{C_{3}} \vec{F} \cdot d \vec{r}<0
$$

Thus, we have

$$
\int_{C_{3}} \vec{F} \cdot d \vec{r}<\int_{C_{2}} \vec{F} \cdot d \vec{r}<\int_{C_{1}} \vec{F} \cdot d \vec{r}
$$

Example 2: Calculate the line integral of the vector field $\vec{F}(x, y)=3 \vec{i}+4 \vec{j}$ along the segment from $(0,6)$ to $(0,13)$.

Solution:

Since \vec{F} is a constant vector field and the curve is a line, $\int_{C} \vec{F} \cdot d \vec{r}=\vec{F} \cdot \Delta \vec{r}$, where $\Delta \vec{r}=7 \vec{j}$. Therefore,

$$
\int_{C} \vec{F} \cdot d \vec{r}=(3 \vec{i}+4 \vec{j}) \cdot 7 \vec{j}=28
$$

Example 3:

Given to the right is a vector field $\vec{F}(x, y)$, together with oriented curves $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, and C_{6}.
(a) Is $\int_{C_{6}} \vec{F} \cdot d \vec{r}$ positive, negative, or zero? Explain.

Negative. The path is semicircular, and we travel for equal distances along C with and against the flow of the vector field. However, the vector field has a greater magnitude along the portion of the path in which we are traveling against the flow of the vector field.

(b) Let C be the closed curve $C_{1}+C_{2}+C_{3}+C_{4}$. Is $\int_{C} \vec{F} \cdot d \vec{r}$ positive, negative, or zero? Explain. First, we note that C_{1} and C_{3} are perpendicular to the flow of the vector field, so we have

$$
\begin{aligned}
\begin{array}{c}
0 \\
\downarrow \\
\int_{C} \vec{F} \cdot d \vec{r}
\end{array}=\frac{\int_{C_{1}} \vec{F} \cdot d \vec{r}+\int_{C_{2}} \vec{F} \cdot d \vec{r}+\int_{C_{3}} \vec{F} \cdot d \vec{r}+\int_{C_{4}} \vec{F} \cdot d \vec{r}}{}=\int_{C_{2}} \vec{F} \cdot d \vec{r}+\int_{C_{4}} \vec{F} \cdot d \vec{r}
\end{aligned}
$$

Now, $\int_{C_{2}} \vec{F} \cdot d \vec{r}>0$ because we travel with the vector field along C_{2}, and $\int_{C_{4}} \vec{F} \cdot d \vec{r}<0$ because we travel against the vector field along C_{4}. However, the magnitude of the vector field is greater along C_{4}, which means that

$$
\int_{C} \vec{F} \cdot d \vec{r} \text { is negative. }
$$

Example 4: The vector field depicted below is $\vec{F}(x, y)=x \vec{i}+y \vec{j}$. Let $C=C_{1}+C_{2}+C_{3}+C_{4}$. Is $\int_{C} \vec{F} \cdot d \vec{r}$ positive negative or zero? Explain.

The vector field is $F(\vec{r})=\vec{r}$.
The vector field is perpendicular to the circular arcs at every point, so

$$
\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{3}} \vec{F} \cdot d \vec{r}=0
$$

Also, since it is radially symmetric,

$$
\int_{C_{2}} \vec{F} \cdot d \vec{r}=-\int_{C_{4}} \vec{F} \cdot d \vec{r} .
$$

So,

$$
\int_{C}=\int_{C_{1}}+\int_{C_{2}}+\int_{C_{3}}+\int_{C_{4}}=0 .
$$

