Class Worksheet 3/3/2022 - Solutions

Example 1: The concentration of salt in a fluid at (x, y, z) is given by $F(x, y, z)=x^{5}+y^{11}+x^{5} z^{2}$ $\mathrm{mg} / \mathrm{cm}^{3} . x, y, z$ are measured in centimeters. You are at the point $(-1,1,1)$. In which direction should you move if you want the concentration to increase the fastest? Give your answer as a unit vector. How fast is the concentration changing in that direction? Give units.

Solution: If you want the concentration to increase the fastest, you should move in the direction of $\operatorname{grad} F(-1,1,1)$.

$$
\begin{aligned}
\left.\operatorname{grad} F\right|_{(-1,1,1)} & =\left.\left(\left(5 x^{4}+5 x^{4} z^{2}\right) \vec{i}+11 y^{10} \vec{j}+2 x^{5} z \vec{k}\right)\right|_{(-1,1,1)} \\
& =10 \vec{i}+11 \vec{j}-2 \vec{k}
\end{aligned}
$$

The magnitude $\|\operatorname{grad} F(-1,1,1)\|=15$. The unit vector in the direction of the gradient is:

$$
\vec{u}=\frac{1}{15}(10 \vec{i}+11 \vec{j}-2 \vec{k}) .
$$

The rate of change in the direction of \vec{u} is $\|\operatorname{grad} F(-1,1,1)\|=15 \frac{\frac{\mathrm{mg}}{\mathrm{cm}^{3}}}{\mathrm{~cm}}$.

Example 2:

Find the directional derivative using $f(x, y, z)=x y+z^{2}$ as you leave the point $(4,4,0)$ heading in the direction of the point $(0,4,1)$. NOTE: Enter the exact answer or round to three decimal places.

Solution:

We have grad $f=y \vec{i}+x \vec{j}+2 z \vec{k}$, so

$$
\operatorname{grad} f(4,4,0)=4 \vec{i}+4 \vec{j}
$$

We are moving in the direction of $(0,4,1)-(4,4,0)=(-4,0,1)$.
A unit vector in the direction we want is $\vec{u}=\frac{1}{\sqrt{17}}(-4 \vec{i}+\vec{k})$. Therefore, the directional derivative is

$$
\operatorname{grad} f(4,4,0) \cdot \vec{u}=\frac{4(-4)+4 \cdot 0+0 \cdot 1}{\sqrt{17}}=-\frac{16}{\sqrt{17}} .
$$

Example 3:

Check that the point $(-1,1,2)$ lies on the surface $x^{2}-y^{2}+z^{2}=4$.
Then, viewing the surface as a level surface for a function $f(x, y, z)$, find a vector normal to the surface and an equation for the tangent plane to the surface at $(-1,1,2)$.

Solution:

First, we check that $(-1)^{2}-(1)^{2}+2^{2}=4$. Then, let $f(x, y, z)=x^{2}-y^{2}+z^{2}$ so that the given surface is the level surface $f(x, y, z)=4$. Since $f_{x}=2 x, f_{y}=-2 y$, and $f_{z}=2 z$, we have

$$
\operatorname{grad} f(-1,1,2)=-2 \vec{i}-2 \vec{j}+4 \vec{k}
$$

Since gradients are perpendicular to level surfaces, a vector normal to the surface at $(-1,1,2)$ is $\vec{n}=-2 \vec{i}-2 \vec{j}+4 \vec{k}$. Thus, an equation for the tangent plane is

$$
-2(x+1)-2(y-1)+4(z-2)=0,
$$

or

$$
z=\frac{x}{2}+\frac{y}{2}+2 .
$$

