Class Worksheet 3/3/2022 - Solutions

Example 1: The concentration of salt in a fluid at (x, y, z) is given by $F(x, y, z) = x^5 + y^{11} + x^5 z^2$ mg/cm^3 . x, y, z are measured in centimeters. You are at the point (-1, 1, 1). In which direction should you move if you want the concentration to increase the fastest? Give your answer as a unit vector. How fast is the concentration changing in that direction? Give units.

Solution: If you want the concentration to increase the fastest, you should move in the direction of grad F(-1, 1, 1).

$$\operatorname{grad} F \Big|_{(-1,1,1)} = \left(\left(5x^4 + 5x^4z^2 \right) \overrightarrow{i} + 11y^{10} \overrightarrow{j} + 2x^5z \overrightarrow{k} \right) \Big|_{(-1,1,1)}$$
$$= 10 \overrightarrow{i} + 11 \overrightarrow{j} - 2 \overrightarrow{k} .$$

The magnitude ||gradF(-1,1,1)|| = 15. The unit vector in the direction of the gradient is:

$$\vec{u} = \frac{1}{15}(10\vec{i} + 11\vec{j} - 2\vec{k}).$$

The rate of change in the direction of \vec{u} is $||\text{grad}F(-1,1,1)|| = 15\frac{\overline{\text{cm}^3}}{\text{cm}}$.

Example 2:

Find the directional derivative using $f(x, y, z) = xy + z^2$ as you leave the point (4, 4, 0) heading in the direction of the point (0, 4, 1). NOTE: Enter the exact answer or round to three decimal places.

Solution:

We have grad $f = y\vec{i} + x\vec{j} + 2z\vec{k}$, so grad $f(4, 4, 0) = 4\vec{i} + 4\vec{j}$

grad
$$f(4, 4, 0) = 4i + 4j$$
.

We are moving in the direction of (0, 4, 1) - (4, 4, 0) = (-4, 0, 1).

A unit vector in the direction we want is $\vec{u} = \frac{1}{\sqrt{17}} \left(-4\vec{i} + \vec{k}\right)$. Therefore, the directional derivative is

grad
$$f(4, 4, 0) \cdot \vec{u} = \frac{4(-4) + 4 \cdot 0 + 0 \cdot 1}{\sqrt{17}} = -\frac{16}{\sqrt{17}}.$$

Example 3:

Check that the point (-1, 1, 2) lies on the surface $x^2 - y^2 + z^2 = 4$. Then, viewing the surface as a level surface for a function f(x, y, z), find a vector normal to the surface and an equation for the tangent plane to the surface at (-1, 1, 2).

Solution:

First, we check that $(-1)^2 - (1)^2 + 2^2 = 4$. Then, let $f(x, y, z) = x^2 - y^2 + z^2$ so that the given surface is the level surface f(x, y, z) = 4. Since $f_x = 2x$, $f_y = -2y$, and $f_z = 2z$, we have

grad
$$f(-1, 1, 2) = -2\vec{i} - 2\vec{j} + 4\vec{k}$$
.

Since gradients are perpendicular to level surfaces, a vector normal to the surface at (-1, 1, 2) is $\vec{n} = -2\vec{i} - 2\vec{j} + 4\vec{k}$. Thus, an equation for the tangent plane is -2(x+1) - 2(y-1) + 4(z-2) = 0,

or

$$z = \frac{x}{2} + \frac{y}{2} + 2.$$