Class Worksheet 3/22/22

Example 1:

Evaluate the integral
$$\int_0^1 \int_0^4 (x^4 y) dy dx$$
.

Enter the exact answer.

$$\int_{0}^{1} \int_{0}^{4} (x^{4}y) dy dx =$$

Solution

We evaluate the inside integral first:

$$\int_0^4 (x^4 y) dy = \left(\frac{x^4 y^2}{2}\right) \Big|_{y=0}^{y=4} = 8x^4.$$

Therefore, we have

$$\int_0^1 \int_0^4 (x^4 y) dy dx = \int_0^1 (8x^4) dx = \left(\frac{8x^5}{5}\right) \Big|_0^1 = \frac{8}{5}.$$

Example 2:

Evaluate the integral
$$\int_0^1 \int_0^1 y e^{xy} dx dy$$
.

NOTE: Enter the exact answer, or round to three decimal places..

$$\int_{0}^{1} \int_{0}^{1} y e^{xy} \, dx \, dy = \boxed{}$$

Solution:

Calculating the inner integral first, we have:

$$\int_0^1 \int_0^1 y e^{xy} \, dx \, dy = \int_0^1 e^{xy} \Big|_0^1 \, dy$$

$$= \int_0^1 \left(e^y - e^0 \right) \, dy$$

$$= \int_0^1 \left(e^y - 1 \right) \, dy = \left(e^y - y \right) \Big|_0^1 = e^1 - 1 - \left(e^0 - 0 \right) = e - 2$$

Example 3:

Let D be the region inside the unit circle centered at the origin, and let B be the bottom half of D. Decide (without calculation) whether the integral $\int_{B} 9x \, dA$ is positive, negative, or zero.

Solution

The function being integrated is f(x, y) = 9x, which is an odd function in x. Since B is symmetric with respect to x, the contributions to the integral cancel out, as f(x, y) = -f(-x, y). Thus, the integral is zero.