Class Worksheet 2/24/22

Example 1:

Find the equation of the plane tangent to $z = 3e^y + x + x^4 + 6$ at the point (1, 0, 11).

The equation of the plane is

Solution:

We have

$$z = 3e^y + x + x^4 + 6.$$

The partial derivatives are

$$\left. \frac{\partial z}{\partial x} \right|_{(x,y)=(1,0)} = 4x^3 + 1 \right|_{(x,y)=(1,0)} = 5$$

$$\frac{\partial z}{\partial y}\Big|_{(x,y)=(1,0)} = 3e^y\Big|_{(x,y)=(1,0)} = 3.$$

So the equation of the tangent plane is

$$z = 11 + 5(x - 1) + 3y = 6 + 5x + 3y.$$

Example 2:

For the differentiable function h(x, y), we are told that h(600, 100) = 300 and $h_x(600, 100) = 13$ and $h_y(600, 100) = -9$. Estimate h(605, 96).

$$h(605, 96) \approx$$

Solution

The tangent plane approximation gives

$$\Delta h \approx h_x \Delta x + h_y \Delta y$$
,

or

$$h(x, y) \approx h(a, b) + h_x \Delta x + h_y \Delta y.$$

With (a, b) = (600, 100) and (x, y) = (605, 96), we see that $\Delta x = 5$ and $\Delta y = -4$. Thus

$$h(605, 96) \approx 300 + 13(5) - 9(-4) = 401.$$

Using the information given, this is our best estimate for h(605, 96). However, it may not be a good estimate if the derivatives are changing rapidly near the point (600, 100).

Example 3:

Find the differential of the function $f(x,y) = 11\sin(xy)$.

NOTE: Enclose arguments of functions in parentheses. For example, sin(2x).

$$df =$$
 $dx +$ dy

Solution:

Since
$$f_x(x, y) = 11y \cos(xy)$$
 and $f_y(x, y) = 11x \cos(xy)$, we have:

$$df = f_x(x, y) dx + f_y(x, y) dy$$

$$= 11y \cos(xy) dx + 11x \cos(xy) dy$$