## Class Worksheet 2/17/22

## Example 1:

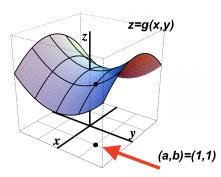
(a) Let  $f(x,y) = 3x^2y - 2x^3y^4$  find the partial derivative functions  $f_x(x,y)$  and  $f_y(x,y)$ . Find

$$f_{y}(2,0).$$

$$f_{x}(x,y) = \frac{3}{5}x^{2}y - 2x^{3}y^{4}J = 6xy - 6x^{2}y^{4}$$

$$f_{y}(x,y) = \frac{3}{5}y \left[ 3x^{2}y - 2x^{3}y^{4}J = 3x^{2} - 8x^{3}y^{3} \right]$$

$$f_{y}(2,0) = 3 \cdot 2^{2} - 8 \cdot 2^{3} \cdot 0^{3} = 12$$


(b) Let 
$$f(x,y) = xe^{x^2y}$$
 find the partial derivative functions  $f_x(x,y)$  and  $f_y(x,y)$ .

$$f_x = \frac{2}{8x} \left[ \times e^{x^2y} \right] = e^{x^2y} + \left[ \times \frac{2}{8x} \left[ e^{x^2y} \right] \right] = e^{x^2y} + \left[ \times 2 \times y \right] e^{x^2y} + \left[ \times 2 \times$$

(c) Let  $h(x,y) = \frac{x^2y}{x^3 + y^2}$  find the partial derivative function  $h_x(x,y)$ .

$$h_{x}(x,y) = \frac{\partial}{\partial x} \left[ \frac{x^{2}y}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{2}y}{x^{3} + y^{2}} \right] - \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}} \right] = \frac{\partial}{\partial x} \left[ \frac{x^{3} + y^{2}}{x^{3} + y^{2}}$$

**Example 2:** The graph of a function z = g(x, y) is shown below. Is  $g_x(1, 1)$  positive or negative? Is  $g_{\nu}(1,1)$  positive or negative? Explain your answers.



$$g_{x}(l,l) = \frac{d}{dx} \Big|_{x=1} \left[ g(x,l) \right] < 0$$
 es  
the cross-section  $g(x,l)$  is decreasing at  $x=1$ .  
 $g(l,l) = \frac{d}{dy} \Big|_{y=1} \left[ g(l,y) \right] > 0$  as

(a,b)=(1,1) the cross-section q(1,y) is increasing aty=1.