Class Worksheet 2/15/2022

Example 1: Let $\vec{v}=\vec{i}+2 \vec{j}$ and $\vec{w}=-\vec{i}+2 \vec{j}+\vec{k}$. Find $\vec{v} \times \vec{w}$ and $\vec{w} \times \vec{v}$.

$$
\begin{aligned}
\vec{v} \times \vec{\omega}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 2 & 0 \\
-1 & 2 & 1
\end{array}\right| & =\vec{i}\left|\begin{array}{cc}
2 & 0 \\
2 & 1
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right|= \\
& =\vec{i}(2 \cdot 1-2 \cdot 0)-\vec{j}(1 \cdot 1-(-1) \cdot 0)+\vec{k}(1-2+1 \cdot 2)= \\
\vec{v} \times \vec{w}=2 \vec{i}-\vec{j}+4 \vec{k} & =2 \vec{i}-\vec{j}+4 \vec{k} \\
\vec{\omega} \times \vec{v}=-(\vec{v} \times \vec{w}) & =-(2 \vec{i}-\vec{j}+4 \vec{k})=-2 \vec{i}+\vec{j}-4 \vec{k}
\end{aligned}
$$

Example 2:
(a) Find the equation of the plane, L, that contains the points $P_{1}=(1,2,-1), P_{2}=(2,3,0)$, $P_{3}=(3,-1,2)$.
(b) Find a unit normal vector to the plane L.
(a) The vectors $\vec{P}_{1} P_{2}$ and $\vec{P}_{1} P_{3}$ are on L. Hence, the vector $\vec{n}=\vec{P}_{1} \vec{P}_{2} \times \overrightarrow{P_{1} P_{3}}$ which is perpendicular to both ${\overrightarrow{P_{1}} P_{2}}_{P_{1}}^{P_{1} \vec{P}_{3}}$ is normal to L. We calculate \vec{n}.

$$
\vec{n}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{cc}
\vec{i} & \vec{i}+\vec{j} \\
1 & 1 \\
2 & -3
\end{array}\right|=\overrightarrow{P_{1} P_{3}}=2 \vec{i}-3 \vec{j}+3 \vec{k}
$$

P_{1} is on L so f he eopuation of $L i s$:

$$
6(x-1)-(y-2)-5(z+1)=0
$$

(b) $\frac{1}{\|\vec{n}\|} \vec{n}$ in a unit normal vector \vec{u} to L. $\|\vec{n}\|=\sqrt{36+1+25}=\sqrt{62}$.

$$
\vec{u}=\frac{6}{\sqrt{62}} \vec{i}-\frac{1}{\sqrt{62}} \vec{j}-\frac{5}{\sqrt{62}} k
$$

