Class Worksheet 2/10/2022

Example 1: Let $\vec{v}=3 \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{w}=3 \vec{i}+4 \vec{k}$. Find an angle, in degrees, between the two vectors.

$$
\vec{v} \cdot \vec{\omega}=\|\vec{v}\| Q \vec{\omega} \| \cos \theta \text { from the definition of the dot product. }
$$

We have:

$$
\vec{v} \cdot \vec{w}=3 \cdot 3+3 \cdot 0+4.4=25,\left\|\vec{v} n=\sqrt{9+9+16^{\prime}}=\sqrt{34},\right\| \vec{w} \|=\sqrt{9+16^{\prime}}=\sqrt{25^{\prime}}=5 .
$$

So:

$$
25=\sqrt{34^{7}} \cdot 5 \cos \theta, \quad \cos \theta=\frac{25}{5 \sqrt{34}}, \theta=\cos ^{-1}\left(\frac{5}{\sqrt{34}}\right)=30.96^{\circ}
$$

Example 2: Which of the following are equations of planes? For those that are, find a normal vector for the plane.
(a) $2 x-3 y-5 z=4$
(b) $z=4-2 y-4 x$
(c) $2 x^{2}+3(y-2)^{2}-z=0$

The equation (a) represents a plane. A normal vector: $\vec{u}=2 \vec{i}-3 \vec{j}-5 \vec{k}$ The equation (b) represents a plane. We have to rewrite it in the form $a x+b y+c z=d: \quad 4 x+2 y+z=4$. A normal vector $\vec{n}=4 \vec{i}+2 \vec{j}+\vec{k}$. CC) is a quadratic in x and y so it does not represent a plane.

Example 3: Find an equation of the plane, L, parallel to the plane $x+2 y-3 z=1$ and passing through the point $(-1,2,0)$.
A normal vector to the plane $x+2 y-3 z=1$ io $\vec{n}=\vec{i}+2 \vec{j}-3 \vec{k}$. Parallel planes have the some normal vectors so \vec{n} is normal to L. We have a normal vector and a point $\left(x_{0}, \varphi_{0}, z\right)=(-1,2,0)$ on L. Hence:
The equation of L is: $(x+1)+2(y-2)-3 z=0$

