16.1 The Double Integral of a Function of Two Variables

Let's have a function of two variables, $f(x, y)$, over a region R contained in its domain. We want to define the double integral of the function f over R denoted as:

$$
\int_{R} f(x, y) d A
$$

Hew is such integral defined? In terms of Riemann sums. Assume for simplicity that R is a rectangle:

$$
R: a \leq x \leq b \quad, c \leq y \leq d
$$

(The definition is the same for an arbitrary region R.) The pictures should refresh your memory about the definition of Riemann sums and the double integral:

$$
\int_{R} f(x, y) d x d y=\lim _{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \sum^{\sim} f\left(x_{i, j}, y_{i j}\right) \Delta x \Delta y
$$

> Also denoted:

Philosophically: $\int_{R} f(x, y) d A$ is "the value of the function $f^{\prime \prime}$ times the area of R. But the value of t changes over R, so you have to subdivide R atc. Ese. If $f(x, y) \geqslant 0$ in R, then $\int_{R} f(x, y) d x d y$ is the volume under the graph:

Riemann sums approximate the volume. The approximation gets better and better as $\Delta x \rightarrow 0, \Delta y \rightarrow 0$.

Riemann sums are not very handy for evaluating donble integrals.
Iterated integrals are.

The double integral of a non-negative function $f(x, y)$ is the volume under the graph of the function. From the definition of the integral in terms of Riemann sums, we easily see that if a function $f(x, y)$ changes sign on R, the integral is the sum of volumes: the volumes above the $x y$-plane come into the sum with the plus sign, the volumes under the xy-plane with the minus sign. Hence, the integral of the function depicted in blue on the picture below over the rectangle in orange seems to be 0 :

