12.4 Linear Functions of Two Variables

Linear functions of one variable, $y=m x+b$, are functions whose graphs on the $x y$-plane are straight lines. Linear functions are important in single-variable calculus as they provide a simple local approximation for more complicated functions at any point where the graph of the function has a tangent line. The situation is analogous for functions of two variables. Linear functions of two variables are functions whose graphs are planes in the $x y z$-space. Whenever a more complicated function of two variables has a tangent plane at a point, the corresponding linear function provides a local linear approximation to that function around the point.

Linear Function of Two Variables

A function $z=f(x, y)$ is called linear if it can be written in the form:

$$
f(x, y)=m x+n y+c
$$

where m, n, and c are constants. The constant m is called the slope in the x-direction, n is called the slope in the y-direction, $c=f(0,0)$ is the z-intercept. The graph of every linear function is a plane in the $x y z$-space and any function $f(x, y)$ whose graph is a plane is linear.

The geometric meaning of m and n is exactly what they names suggest.
Example 1. Consider a function

$$
z=f(x, y), \quad f(x, y)=-x
$$

The graph of the function is the plane $z=-x$. Let's call the plane P. Taking the cross-section of P with the plane $y=0$, we obtain the line $z=-x$ in the $x z$-plane. As the function is constant in y, we obtain P by sliding the line along the y-axis:

The function $f(x, y)$ is linear with:

$$
m=-1, \quad n=0, \quad c=0
$$

The graph shows the meaning of the slopes. The stick-figure man is standing at a point on the plane P. If the man walks parallelly to the $x z$-plane, without any displacement in the y-direction, the man will be walking with the slope -1 . If the man walks parallelly to the $y z$-plane, without any displacement in the x-direction, the man will be walking with the slope 0 . The z-intercept, c, is the value of z at the point where the plane intersects the z-axis; that is, $c=0$.

The main property of a linear function of one variable, $y=m x+b$, is the constancy of the rate of change of the dependent variable with respect to the independent variable. Linear functions of two variables change at a constant rate provided we move in a fixed direction. In particular, the following is true.

Slopes and Changes

Consider a linear function:

$$
f(x, y)=m x+n y+c .
$$

- When y is fixed and x changes, to equal changes Δx in x there correspond equal changes Δz in z and:

$$
\Delta z=m \Delta x .
$$

Hence, for y fixed:

$$
m=\frac{\Delta z}{\Delta x} .
$$

- When x is fixed and y changes, to equal changes Δy in y there correspond equal changes Δz in z and:

$$
\Delta z=n \Delta y .
$$

Hence, for x fixed:

$$
n=\frac{\Delta z}{\Delta y} .
$$

All the properties above follow from algebraic properties of linear functions. Take two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the $x y$-plane and the corresponding values of a linear function $z=m x+n y+c:$

$$
z_{1}=m x_{1}+n y_{1}+c, \quad z_{2}=m x_{2}+n y_{2}+c .
$$

Denote the changes as $\Delta x=x_{2}-x_{1}, \Delta y=y_{2}-y_{1}$, and $\Delta z=z_{2}-z_{1}$. Then:

$$
\Delta z=z_{2}-z_{1}=\left(m x_{2}+n y_{2}+c\right)-\left(m x_{1}+n y_{1}+c\right)=m\left(x_{2}-x_{1}\right)+n\left(y_{2}-y_{1}\right)=m \Delta x+n \Delta y .
$$

When y is fixed and doesn't change, $\Delta y=y_{2}-y_{1}=0$. Hence:

$$
\Delta z=m \Delta x
$$

When x is fixed and doesn't change, $\Delta x=x_{2}-x_{1}=0$. Hence:

$$
\Delta z=n \Delta y .
$$

The form $f(x, y)=m x+n y+c$ of a linear function is useful if we have slopes and the vertical intercept. If we have the slopes m and n and a point on the graph of the function, the following "point-slope" form of a linear function or a plane is easier to use.

Point-Slope Form of a Plane and a Linear Function

If a plane has slope m in the x-direction, slope n in the y-direction, and passes through the point $\left(x_{0}, y_{0}, z_{0}\right)$, then its equation is:

$$
z=z_{0}+m\left(x-x_{0}\right)+n\left(y-y_{0}\right) .
$$

The plane is the graph of the linear function:

$$
f(x, y)=z_{0}+m\left(x-x_{0}\right)+n\left(y-y_{0}\right) .
$$

How to recognize that a function $z=f(x, y)$ given numerically is linear?
A linear function can be recognized from its table by the following features:

- Each row and each column is linear.
- All the rows have the same slope.
- All the columns have the same slope (although the slope of the rows and the slope of the columns are generally different).

Example 2. Could a table of values correspond to a linear function? If yes, find a formula for the function.
(a) $f(x, y)$:
(b) $g(x, y)$:
x

y			
0	5	1	2
0	7	9	
1	6	9	12
2	7	11	15

$x y y$	10	20	30	40
100	3	6	9	12
200	2	5	8	11
300	1	4	7	10
400	0	3	6	9

Solution. (a) Let's look at rows first. In each row x is fixed and y changes. Changes in y corresponding to the consecutive values are equal: $\Delta y=1-0=2-1=1$. Let's check the corresponding changes in z. In row $1, \Delta z=7-5=9-7=2$. So row 1 is linear with slope $\frac{\Delta z}{\Delta y}=\frac{2}{1}=2$. In row 2 , the changes in z are $\Delta z=9-6=12-9=3$. So row 2 is linear with slope $\frac{\Delta z}{\Delta y}=\frac{3}{1}=3$. Since the slopes in the y-direction corresponding to two different fixed values of x are different, the table does not correspond to a linear function $f(x, y)$. In a linear function, for each fixed x, the slope in the y-direction must be the same.
(b) Let's look at rows. In each row x is fixed and y changes through equally spaced values: $\Delta y=20-10=30-20=40-30=10$. In row $1, \Delta z=6-3=9-6=12-9=3$. We look at row 2,3 and 4 , and see that in each row changes in z are the same, $\Delta z=3$. We conclude that the function $g(x, y)$ may be linear.

We have to check all columns. In each column y is fixed and x changes through equally spaced values: $\Delta x=200-100=300-200=400-300=100$. In column $1, z$ changes by -1 at each step: $\Delta z=2-3=1-2=0-1=-1$. We check column 2,3 , and 4 and see that in each column changes in z corresponding to $\Delta x=100$ are equal and equal to -1 . Hence, the table does correspond to a linear function; that is, $g(x, y)$ is linear.

To find the formula for $g(x, y)$ we easily find both slopes:

$$
\begin{gathered}
m=\frac{\Delta z}{\Delta x}=\frac{-1}{100}=-0.01 \\
n=\frac{\Delta z}{\Delta y}=\frac{3}{10}=0.3
\end{gathered}
$$

We don't have the value for c given directly as we don't have $f(0,0)$ given. We use point-slope form with any one of the 16 points on the graph given in the table. Take, for example, $\left(x_{0}, y_{0}, z_{0}\right)=(100,10,3)$. We obtain:

$$
g(x, y)=-0.01(x-100)+0.3(y-10)+3 .
$$

The latter expression simplifies to:

$$
g(x, y)=-0.01 x+0.3 y+1 .
$$

The graph of each linear function is a plane. How does a contour map of a linear function look? In Example 1 we looked at the function $z=-x$ and its graph P. It is clear from the graph that the intersection of P with any horizontal plane is a line in P parallel to the y axis. It is clear that the contour map for z values $-6,-4,-2,0,2,4,6$ is:

It turns out that a contour diagram (corresponding to equally spaced elevations) of every linear function is a collection of parallel, equally-spaced lines whose elevation increase one way and decrease the opposite way when we move perpendicularly to the lines.
Example 3. Find a formula for a linear function $h(x, y)$ whose contour map is below.

Solution. From the contour map, we can read the exact coordinates for many points on the graph $z=h(x, y)$. For example, the contour corresponding to the elevation 0 passes through the point $(x, y)=(0,0)$. Hence, $h(0,0)=0$ which gives $c=0$. To find m, notice that for y fixed at $y=0$, we have the contour corresponding to the elevation 0 passing through $x=0$ and the contour corresponding to the elevation 2 passing through $x=2$. Hence the points $(0,0,0)$ and $(2,0,2)$ are on the graph. We obtain:

$$
m=\frac{\Delta z}{\Delta x}=\frac{2-0}{2-0}=1 .
$$

Similarly, looking at the y-axis, we see that the contour corresponding to the elevation 6 passes through $y=2$ and the contour corresponding to the elevation 0 through $y=0$. Hence:

$$
n=\frac{\Delta z}{\Delta y}=\frac{6-0}{2-0}=3 .
$$

The function is:

$$
h(x, y)=x+3 y
$$

