12.2 Graphs of Functions of Two Variables, Surfaces in $x y z$-Space

As we know, graphs of functions of two variables are surfaces in the $x y z$-space. In this section, we will look at some important graphs as well as at some important surfaces that are not graphs of functions. We will draw a few graphs by hand. Of course most of the time we graph functions of two variables using graphing software like Mathematica or devices like graphing calculators. It is a good idea, though, to graph a few functions by hand to get a feel for such graphs.

Graphs of Functions of Two Variables - Examples

Example 1. Draw by hand the graph of the function $z=f(x, y), f(x, y)=x^{2}+y^{2}$.
Solution. We want to graph the surface given by the equation $z=x^{2}+y^{2}$. The standard technique is to look at cross-sections - intersections - of the surface with planes parallel to the coordinate planes; that is, planes with equations $x=$ const, $y=$ const, and $z=$ const.

What is the cross-section of the graph $z=x^{2}+y^{2}$ with the plane $x=0$; that is, with the $y z$-plane? The cross-section is a curve in the $y z$-plane which consists of the points (x, y, z) for which both conditions hold:

$$
z=x^{2}+y^{2} \text { and } x=0 .
$$

Hence, the cross-section is the curve

$$
z=y^{2}=f(0, y)
$$

in the $y z$-plane. The cross-section is the standard parabola in the $y z$-plane.
What is the cross-section of the graph with the plane $y=0$; that is, with the $x z$-plane? It is of course the parabola

$$
z=x^{2}=f(x, 0)
$$

in the $x z$-plane.
Those two parabolas do not tell us what the graph is. The key to this example is to take cross-sections with horizontal planes $z=c$ for any constant $c \geq 0$. Every such cross-section is a curve in the plane $z=c$ with the equation:

$$
c=x^{2}+y^{2} .
$$

The curve is, of course, a circle in the $z=c$ plane centered at $(0,0, c)$ with radius \sqrt{c}. The graph of the function $f(x, y)=x^{2}+y^{2}$ is therefore circularly symmetric about the z-axis:

We obtain the graph of $z=f(x, y)=x^{2}+y^{2}$ by revolving the parabola $z=y^{2}$ in the $y z$-plane about the z-axis:

The graph is a paraboloid in the $x y z$-space.

Here are the pictures of the paraboloid drawn by Mathematica. The first shows cross-sections of the graph with the planes $x=$ const and $y=$ const, the second with the planes $z=$ const:

Example 2. Draw by hand the graph of the function $z=f(x, y), f(x, y)=x^{2}-y^{2}$.
Solution. We need to draw the surface $z=x^{2}-y^{2}$. Let's try a few cross-sections and see what may give us an insight into the graph of the function. The cross-section with $y=0, z=f(x, 0)$ is the parabola:

$$
z=x^{2}
$$

in the $x z$-plane; that is, in the $y=0$ plane. Let's call this parabola P_{1}. Take the cross-section with $x=0$:

$$
z=-y^{2}
$$

This is the upside down parabola in the $y z$-plane. Let's call this parabola P_{2}. All of that doesn't tell us much. What if we try intersections with horizontal planes $z=c$?

$$
c=x^{2}-y^{2} .
$$

We get some kind of hyperbolas. Let's try intersections with planes of the form $x=a$ for any constant a; that is, intersections with planes parallel to the $y z$-plane:

$$
z=a^{2}-y^{2} .
$$

This is an upside down parabola P_{2} moved to the plane $x=a$ with its vertex at $y=0$ lifted a^{2} units up. Hence, the vertex is at the point $\left(a, 0, a^{2}\right)$. We see that the vertex of the parabola on the $x=a$ plane is on the parabola P_{1} and this is true for every constant a. Hence, the surface is obtained by sliding the parabola P_{2} - sliding its vertex - along the parabola P_{1}.

We obtain a surface called a saddle. Here are pictures generated by Mathematica, one showing cross-sections with $x=$ const and $y=$ const, the other cross-sections with horizontal planes $z=$ const .

If we have one graph we can get many others by simple transformations.
Example 3. Sketch by hand graphs of the following functions $z=f(x, y)$ and $z=g(x, y)$:

$$
\begin{gathered}
f(x, y)=-x^{2}-y^{2} \\
g(x, y)=5-x^{2}-y^{2}
\end{gathered}
$$

What is the intersection of $z=g(x, y)$ with the $x y$-plane?
Solution. We use the paraboloid $z=x^{2}+y^{2}$. Notice that $z=-x^{2}-y^{2}=-\left(x^{2}+y^{2}\right)$ is the upside down paraboloid, the paraboloid $z=x^{2}+y^{2}$ flipped about the $x y$-plane. Indeed, the only thing that changes is the sign of z. The surface $z=5-x^{2}-y^{2}=5-\left(x^{2}+y^{2}\right)$ is the flipped paraboloid lifted 5 units up. The pictures are below:

$$
\begin{gathered}
z=5-x^{2}-y^{2} \\
0=5-x^{2}-y^{2} \\
x^{2}+y^{2}=5
\end{gathered}
$$

The intersection of the surface $z=5-x^{2}-y^{2}$ with the $x y$-plane is the intersection with the plane $z=0$. The intersection is a curve on the $x y$-plane satisfying the equation:

$$
0=5-x^{2}-y^{2} .
$$

In other words,

$$
x^{2}+y^{2}=5 .
$$

The curve is the circle centered on the point $(0,0)$ on the $x y$-plane with radius $\sqrt{5}$.

Occasionally, a function $z=f(x, y)$ of two variables is constant with respect to one variable. In practical terms, it means that the formula for $f(x, y)$ contains only one variable.

Example 4. Consider a function $z=f(x, y)$ where $f(x, y)=y^{2}$. The function $f(x, y)$ is constant with respect to x. The graph of the function looks as follows:

Of course: the cross-section of $z=y^{2}$ with the plane $x=a$ for any constant a is the parabola $z=y^{2}$ in the $x=a$ plane. So the graph is obtained by sliding the vertex of the parabola $z=y^{2}$ along the x-axis. Cross-sections with $y=b$ for any constant b are straight lines parallel to the x-axis clearly visible on the graph.

Important Surfaces That Are Not Graphs of Functions

We already saw surfaces in the $x y z$-space that are not graphs of functions $z=f(x, y)$. A sphere centered at a point (a, b, c) with radius r given by the equation:

$$
(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
$$

is a perfectly fine surface in the $x y z$-space but not a graph of a function $z=f(x, y)$ as it doesn't satisfy the vertical line test.

There are other important surfaces that are not graphs of functions.
Example 5. Consider a surface given by the $x y z$-equation:

$$
x^{2}+y^{2}=1
$$

The cross-section of the surface with any horizontal plane $z=c$ is the unit circle in that plane. So the surface is obtained by taking the unit circle on the $x y$-plane and sliding it along the z-axis.

The surface is the infinite cylinder of radius 1 about the z-axis. The infinite cylinder of radius r about the z-axis has the equation:

$$
x^{2}+y^{2}=r^{2} .
$$

Example 6. Consider the surface:

$$
z^{2}=x^{2}+y^{2}
$$

The cross-section of the surface with any horizontal plane $z=c$ is the circle in that plane with equation $c^{2}=x^{2}+y^{2}$. In other words, it is a circle in the plane $z=c$ centered at the point $(0,0, c)$ with radius $|c|$. Like a cylinder, the surface is circularly symmetric abut the z-axis but the radii of the circles of intersection with $z=c$ are changing as z is changing. The radius of the circles on the plane $z=c$ is $|c|$. Hence, the surface is an infinite cone about the z-axis with the angle of 90° at the vertex.

Example 7. Consider the surface:

$$
x^{2}+2 y^{2}+z^{2}=1 .
$$

The surface is almost a sphere centered at the origin with radius 1 except for the coefficient 2 at y. Just like for circles at ellipses, the coefficient squeezes the sphere in the y direction and produces an egg-like surface called an ellipsoid.

In this section, we built a library of useful surfaces in the $x y z$-space.

