
12.2 Graphs of Functions of Two Variables, Surfaces in
xyz-Space

As we know, graphs of functions of two variables are surfaces in the xyz-space. In this section, we
will look at some important graphs as well as at some important surfaces that are not graphs of
functions. We will draw a few graphs by hand. Of course most of the time we graph functions of
two variables using graphing software like Mathematica or devices like graphing calculators. It is
a good idea, though, to graph a few functions by hand to get a feel for such graphs.

Graphs of Functions of Two Variables — Examples

Example 1. Draw by hand the graph of the function z = f(x, y), f(x, y) = x2 + y2.

Solution. We want to graph the surface given by the equation z = x2 + y2. The standard
technique is to look at cross-sections — intersections — of the surface with planes parallel to
the coordinate planes; that is, planes with equations x = const, y = const, and z = const.

What is the cross-section of the graph z = x2 + y2 with the plane x = 0; that is, with the
yz-plane? The cross-section is a curve in the yz-plane which consists of the points (x, y, z) for
which both conditions hold:

z = x2 + y2 and x = 0.

Hence, the cross-section is the curve

z = y2 = f(0, y)

in the yz-plane. The cross-section is the standard parabola in the yz-plane.

What is the cross-section of the graph with the plane y = 0; that is, with the xz-plane? It is of
course the parabola

z = x2 = f(x, 0)

in the xz-plane.

Those two parabolas do not tell us what the graph is. The key to this example is to take
cross-sections with horizontal planes z = c for any constant c ≥ 0. Every such cross-section is a
curve in the plane z = c with the equation:

c = x2 + y2.

The curve is, of course, a circle in the z = c plane centered at (0, 0, c) with radius
√
c. The graph

of the function f(x, y) = x2 + y2 is therefore circularly symmetric about the z-axis:
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We obtain the graph of z = f(x, y) = x2 + y2 by revolving the parabola z = y2 in the yz-plane
about the z-axis:

The graph is a paraboloid in the xyz-space.

Here are the pictures of the paraboloid drawn by Mathematica. The first shows cross-sections of
the graph with the planes x = const and y = const, the second with the planes z = const:
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Example 2. Draw by hand the graph of the function z = f(x, y), f(x, y) = x2 − y2.

Solution. We need to draw the surface z = x2 − y2. Let’s try a few cross-sections and see what
may give us an insight into the graph of the function. The cross-section with y = 0, z = f(x, 0) is
the parabola:

z = x2

in the xz-plane; that is, in the y = 0 plane. Let’s call this parabola P1. Take the cross-section
with x = 0:

z = −y2.

This is the upside down parabola in the yz-plane. Let’s call this parabola P2. All of that doesn’t
tell us much. What if we try intersections with horizontal planes z = c?

c = x2 − y2.

We get some kind of hyperbolas. Let’s try intersections with planes of the form x = a for any
constant a; that is, intersections with planes parallel to the yz-plane:

z = a2 − y2.

This is an upside down parabola P2 moved to the plane x = a with its vertex at y = 0 lifted a2

units up. Hence, the vertex is at the point (a, 0, a2). We see that the vertex of the parabola on
the x = a plane is on the parabola P1 and this is true for every constant a. Hence, the surface is
obtained by sliding the parabola P2 — sliding its vertex — along the parabola P1.

We obtain a surface called a saddle. Here are pictures generated by Mathematica, one showing
cross-sections with x = const and y = const, the other cross-sections with horizontal planes
z = const.

3



If we have one graph we can get many others by simple transformations.

Example 3. Sketch by hand graphs of the following functions z = f(x, y) and z = g(x, y):

f(x, y) = −x2 − y2,

g(x, y) = 5− x2 − y2.

What is the intersection of z = g(x, y) with the xy-plane?

Solution. We use the paraboloid z = x2 + y2. Notice that z = −x2 − y2 = −(x2 + y2) is the
upside down paraboloid, the paraboloid z = x2 + y2 flipped about the xy-plane. Indeed, the only
thing that changes is the sign of z. The surface z = 5− x2 − y2 = 5− (x2 + y2) is the flipped
paraboloid lifted 5 units up. The pictures are below:

The intersection of the surface z = 5− x2 − y2 with the xy-plane is the intersection with the plane
z = 0. The intersection is a curve on the xy-plane satisfying the equation:

0 = 5− x2 − y2.

In other words,
x2 + y2 = 5.

The curve is the circle centered on the point (0, 0) on the xy-plane with radius
√

5.
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Occasionally, a function z = f(x, y) of two variables is constant with respect to one variable. In
practical terms, it means that the formula for f(x, y) contains only one variable.

Example 4. Consider a function z = f(x, y) where f(x, y) = y2. The function f(x, y) is constant
with respect to x. The graph of the function looks as follows:

Of course: the cross-section of z = y2 with the plane x = a for any constant a is the parabola
z = y2 in the x = a plane. So the graph is obtained by sliding the vertex of the parabola z = y2

along the x-axis. Cross-sections with y = b for any constant b are straight lines parallel to the
x-axis clearly visible on the graph.

Important Surfaces That Are Not Graphs of Functions

We already saw surfaces in the xyz-space that are not graphs of functions z = f(x, y). A sphere
centered at a point (a, b, c) with radius r given by the equation:

(x− a)2 + (y − b)2 + (z − c)2 = r2

is a perfectly fine surface in the xyz-space but not a graph of a function z = f(x, y) as it doesn’t
satisfy the vertical line test.

There are other important surfaces that are not graphs of functions.

Example 5. Consider a surface given by the xyz-equation:

x2 + y2 = 1.

The cross-section of the surface with any horizontal plane z = c is the unit circle in that plane. So
the surface is obtained by taking the unit circle on the xy-plane and sliding it along the z-axis.
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The surface is the infinite cylinder of radius 1 about the z-axis. The infinite cylinder of radius r
about the z-axis has the equation:

x2 + y2 = r2.

Example 6. Consider the surface:
z2 = x2 + y2.

The cross-section of the surface with any horizontal plane z = c is the circle in that plane with
equation c2 = x2 + y2. In other words, it is a circle in the plane z = c centered at the point
(0, 0, c) with radius |c|. Like a cylinder, the surface is circularly symmetric abut the z-axis but the
radii of the circles of intersection with z = c are changing as z is changing. The radius of the
circles on the plane z = c is |c|. Hence, the surface is an infinite cone about the z-axis with the
angle of 90◦ at the vertex.

Example 7. Consider the surface:
x2 + 2y2 + z2 = 1.
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The surface is almost a sphere centered at the origin with radius 1 except for the coefficient 2 at
y. Just like for circles at ellipses, the coefficient squeezes the sphere in the y direction and
produces an egg-like surface called an ellipsoid.

In this section, we built a library of useful surfaces in the xyz-space.
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