12.2 Graphs of Functions of Two Variables, Surfaces in
xryz-Space

As we know, graphs of functions of two variables are surfaces in the xyz-space. In this section, we
will look at some important graphs as well as at some important surfaces that are not graphs of
functions. We will draw a few graphs by hand. Of course most of the time we graph functions of
two variables using graphing software like Mathematica or devices like graphing calculators. It is
a good idea, though, to graph a few functions by hand to get a feel for such graphs.

Graphs of Functions of Two Variables — Examples
Example 1. Draw by hand the graph of the function z = f(x,v), f(z,y) = 2> + >

Solution. We want to graph the surface given by the equation z = x? + y?. The standard
technique is to look at cross-sections — intersections — of the surface with planes parallel to
the coordinate planes; that is, planes with equations x = const, y = const, and z = const.

What is the cross-section of the graph z = x? + 32 with the plane x = 0; that is, with the
yz-plane? The cross-section is a curve in the yz-plane which consists of the points (x,y, z) for
which both conditions hold:

z=a?+y? and z = 0.
Hence, the cross-section is the curve
z=y> = f(0,y)
in the yz-plane. The cross-section is the standard parabola in the yz-plane.

What is the cross-section of the graph with the plane y = 0; that is, with the zz-plane? It is of
course the parabola

2= 2% = f(,0)
in the xz-plane.

Those two parabolas do not tell us what the graph is. The key to this example is to take
cross-sections with horizontal planes z = ¢ for any constant ¢ > 0. Every such cross-section is a
curve in the plane z = ¢ with the equation:

c:x2+y2.

The curve is, of course, a circle in the z = ¢ plane centered at (0,0, ¢) with radius \/c. The graph
of the function f(x,y) = 2 + 32 is therefore circularly symmetric about the z-axis:
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We obtain the graph of z = f(z,y) = 2% + y? by revolving the parabola z = y? in the yz-plane
about the z-axis:

The graph is a paraboloid in the xyz-space.

Here are the pictures of the paraboloid drawn by Mathematica. The first shows cross-sections of
the graph with the planes x = const and y = const, the second with the planes z = const:




Example 2. Draw by hand the graph of the function z = f(x,v), f(z,y) = 2* — y%.

Solution. We need to draw the surface z = x? — y2. Let’s try a few cross-sections and see what
may give us an insight into the graph of the function. The cross-section with y = 0, z = f(«,0) is
the parabola:
z==x
in the zz-plane; that is, in the y = 0 plane. Let’s call this parabola P;. Take the cross-section
with z = 0:
z = —y>

This is the upside down parabola in the yz-plane. Let’s call this parabola P». All of that doesn’t
tell us much. What if we try intersections with horizontal planes z = ¢?

c=x? -1

We get some kind of hyperbolas. Let’s try intersections with planes of the form x = a for any
constant a; that is, intersections with planes parallel to the yz-plane:

z=a?—y>.

This is an upside down parabola P, moved to the plane 2 = a with its vertex at y = 0 lifted a?
units up. Hence, the vertex is at the point (a,0,a?). We see that the vertex of the parabola on
the = = a plane is on the parabola P; and this is true for every constant a. Hence, the surface is
obtained by sliding the parabola P, — sliding its vertex — along the parabola P;.
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We obtain a surface called a saddle. Here are pictures generated by Mathematica, one showing
cross-sections with © = const and y = const, the other cross-sections with horizontal planes
z = const.



If we have one graph we can get many others by simple transformations.
Example 3. Sketch by hand graphs of the following functions z = f(x,y) and z = g(z,y):
f(xay) = —.’1,'2 - y27
gz,y) =5 —a® 4~
What is the intersection of z = g(x,y) with the zy-plane?

Solution. We use the paraboloid z = 22 + 3. Notice that z = —2? — y? = —(2% + y?) is the
upside down paraboloid, the paraboloid z = x? 4 y? flipped about the xy-plane. Indeed, the only
thing that changes is the sign of z. The surface z = 5 — 2% — y? = 5 — (22 + y?) is the flipped
paraboloid lifted 5 units up. The pictures are below:

The intersection of the surface z = 5 — 22 — y? with the xy-plane is the intersection with the plane
z = 0. The intersection is a curve on the xy-plane satisfying the equation:

0=>5—xz2—y>

In other words,
22 +y? =5.
The curve is the circle centered on the point (0,0) on the zy-plane with radius v/5.
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Occasionally, a function z = f(z,y) of two variables is constant with respect to one variable. In
practical terms, it means that the formula for f(z,y) contains only one variable.

Example 4. Consider a function z = f(z,y) where f(z,y) = y?. The function f(z,y) is constant
with respect to x. The graph of the function looks as follows:

Of course: the cross-section of z = y? with the plane z = a for any constant a is the parabola

z = y? in the = a plane. So the graph is obtained by sliding the vertex of the parabola z = /2
along the x-axis. Cross-sections with y = b for any constant b are straight lines parallel to the
x-axis clearly visible on the graph.

Important Surfaces That Are Not Graphs of Functions

We already saw surfaces in the zyz-space that are not graphs of functions z = f(x,y). A sphere
centered at a point (a,b, ¢) with radius r given by the equation:

(z—a)+ -0 +(z—¢?=r?

is a perfectly fine surface in the xyz-space but not a graph of a function z = f(z,y) as it doesn’t
satisfy the vertical line test.

There are other important surfaces that are not graphs of functions.
Example 5. Consider a surface given by the xyz-equation:
2+ y2 =1

The cross-section of the surface with any horizontal plane z = ¢ is the unit circle in that plane. So
the surface is obtained by taking the unit circle on the xy-plane and sliding it along the z-axis.



The surface is the infinite cylinder of radius 1 about the z-axis. The infinite cylinder of radius r

about the z-axis has the equation:

Example 6. Consider the surface:
22 =2 +y2
The cross-section of the surface with any horizontal plane z = ¢ is the circle in that plane with
equation ¢? = 2% 4+ y2. In other words, it is a circle in the plane z = ¢ centered at the point
(0,0, ¢) with radius |c|. Like a cylinder, the surface is circularly symmetric abut the z-axis but the

radii of the circles of intersection with z = ¢ are changing as z is changing. The radius of the
circles on the plane z = ¢ is |c|. Hence, the surface is an infinite cone about the z-axis with the

angle of 90° at the vertex.
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Example 7. Consider the surface:
2?2+ 22 + 22 =1.
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The surface is almost a sphere centered at the origin with radius 1 except for the coefficient 2 at
y. Just like for circles at ellipses, the coefficient squeezes the sphere in the y direction and
produces an egg-like surface called an ellipsoid.

In this section, we built a library of useful surfaces in the xyz-space.



