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Abstract

We study a competitive optimization version of α′(G), the maximum size of a
matching in a graph G. Players alternate adding edges of G to a matching until it
becomes a maximal matching. One player (Max) wants that matching to be large;
the other (Min) wants it to be small. The resulting sizes under optimal play when
Max or Min starts are denoted α′

g(G) and α̂′

g(G), respectively. We show that always∣∣α′

g(G) − α̂′

g(G)
∣∣ ≤ 1. We obtain a sufficient condition for α′

g(G) = α′(G) that is

preserved under cartesian product. In general, α′

g(G) ≥ 2
3α′(G), with equality for

many split graphs, while α′

g(G) ≥ 3
4α′(G) when G is a forest. Whenever G is a 3-

regular n-vertex connected graph, α′

g(G) ≥ n/3, and there are such examples with
α′

g(G) ≤ 7n/18. For an n-vertex path or cycle, the answer is roughly n/7.

1 Introduction

The archetypal question in extremal graph theory is “how many edges can an n-vertex

graph contain without also containing a copy of a forbidden subgraph F? The answer is

the extremal number of F , denoted ex(F ; n). The celebrated theorem of Turán [16] gives a

formula for ex(Kr; n) and characterizes the largest graphs not containing Kr.

A graph H is F -saturated if F 6⊆ H, but F ⊆ H + e whenever e ∈ E(H). Thus the

extremal number ex(F ; n) is the maximum size of an F -saturated n-vertex graph. The satu-

ration number of F , denoted sat(F ; n), is the minimum size of an F -saturated n-vertex graph.

Erdős, Hajnal, and Moon [5] initiated the study of graph saturation, determining sat(Kr; n).

More generally, for fixed graphs F and G, a subgraph H of G is F -saturated relative to

G if F 6⊆ H, but F ⊆ H + e whenever e ∈ E(G)−E(H). If edges are successively added to
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H without ever producing a copy of F , then the final number of edges must be between the

minimum and maximum sizes of subgraphs that are F -saturated relative to G. When the

edges are chosen by two players with opposing objectives, we obtain a natural game.

Definition 1.1. The F -saturation game on a graph G is played by two players, Max and

Min. The players jointly construct a subgraph H of G by iteratively adding edges of G

to H without completing a copy of F . The game ends when H is F -saturated relative to

G. Max aims to maximize the length of the game, while Min aims to minimize it. The

game F -saturation number of G is the length of the game when both players play optimally,

denoted by satg(F,G) when Max starts and by ŝatg(F,G) when Min starts.

The saturation game bears similarities to other games. In a Maker-Breaker game on a

graph G (typically Kn), the players choose edges of G in turn. Maker wins by claiming

the edges in a subgraph having a desired property P ; Breaker wins by preventing this. For

example, Hefetz, Krivelevich, Stojaković, and Szabó [8] studied Maker-Breaker games on Kn

in which Maker seeks to build non-planar graphs, non-k-colorable graphs, or Kt-minors.

In a Maker-Breaker game, one may ask how many turns Maker needs to win. Breaker then

acts like Max in the saturation game: both aim to prolong the game. Hefetz, Krivelevich,

Stojaković, and Szabó [9] showed that on Kn, Maker can build a spanning cycle within

n + 2 turns and can build a k-connected subgraph within (1 + o(1))kn/2 turns. Feldheim

and Krivelevich [6] showed that Maker can build a given d-degenerate p-vertex graph within

d1122d+7p moves (when n is sufficiently large relative to d and p).

The saturation game was introduced by Füredi, Reimer, and Seress [7]. Calling it “a

variant of Hajnal’s triangle-free game”, they studied satg(K3, Kn). (In Hajnal’s original

“triangle-free game”, the players wanted to avoid triangles, with the loser being the player

forced to create one; see [4, 11, 12, 14, 15].) Since the F -saturation game always produces an

F -saturated graph, trivially n − 1 = sat(K3; n) ≤ satg(K3, Kn) ≤ ex(K3; n) = ⌊n2/4⌋. The

lower bound from [7] is satg(K3, Kn) ≥ Ω(n lg n). As an upper bound, an unpublished result

of Erdős states satg(K3, Kn) ≤ n2/5. Biró, Horn, and Wildstrom [2] improved the leading

coefficient in the upper bound, but the order of growth remains unknown.

In this paper, we study the P3-saturation game. Every P3-saturated subgraph of a graph

G is a maximal matching in G; hence we call satg(P3, G) the game matching number of G.

With α′(G) denoting the maximum size of a matching in G, we let α′

g(G) and α̂′

g(G) denote

the sizes of the matchings produced under optimal play when Max plays first and when Min

plays first, respectively.

The outcome of an F -saturation game may depend heavily on which player starts.

For example, if G arises from K1,k by subdividing one edge, then satg(G, 2K2) = k, but

ŝatg(G, 2K2) = 2. The special case of game matching (F = P3) is much better behaved; the

main result of Section 2 states that always
∣∣α′

g(G) − α̂′

g(G)
∣∣ ≤ 1. A closely related result is

that α′

g(H) ≤ α′

g(G) and α̂′

g(H) ≤ α̂′

g(G) when H is an induced subgraph of G.
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Section 3 examines the relationship between α′

g(G) and α′(G). We obtain a condition

on G that forces α′

g(G) = α′(G); it is somewhat technical but is preserved by taking the

cartesian product with any other graph. We also show that α′

g(G) ≥ 2
3
α′(G) for all G. This

inequality is sharp; we demonstrate equality for many split graphs (a graph is a split graph

if its vertex set can be covered by one clique and one independent set). We also determine

the maximum number of edges in an n-vertex graph such that α′(G) = 3k and α′

g(G) = 2k.

In Section 4, we restrict our attention to forests. When G is a forest, α′

g(G) ≥ 3
4
α′(G),

which is sharp (equality holds for the “comb” obtained by adding a pendant edge at each

vertex of the path P4k.) We also prove that α̂′

g(F ) ≤ α′

g(F ) when F is a forest. This in turn

implies that adding a star component to a forest increases both parameters by 1.

Finally, in Section 5 we consider graphs with small maximum degree. We show that

optimal play on the n-vertex path Pn produces a maximal matching of size differing from n/7

by at most a small constant (Wise and Yeager [17] gave a more detailed answer for disjoint

unions of paths), which also yields the answer for cycles. For a 3-regular n-vertex graph G,

we prove that always α′

g(G) ≥ n/3, and we construct such graphs with α′

g(G) ≤ 7n/18.

2 Max-start vs. Min-start

When Max starts, we refer to the matching game as the Max-start game; when Min starts,

we call it the Min-start game. Our primary goal in this section is to determine all pairs of

integers (r, s) that are realizable as (α′

g(G), α̂′

g(G)) for some graph G. We show first that all

pairs with |r − s| ≤ 1 are realizable. The main point is that these are the only such pairs;

the choice of the starting player makes little difference. As part of the proof, we will show

that for both the Max-start and Min-start games, the value is nonincreasing under taking of

induced subgraphs.

Proposition 2.1. A pair (r, s) of positive integers is realizable as (α′

g(G), α̂′

g(G)) for some

graph G if |r − s| ≤ 1 (except for (r, s) = (1, 2)), and G may be required to be connected.

Proof. If Min cannot move without leaving another move, then the same is true for a first

move by Max, so (1, 2) is not realizable. The complete graph K2r realizes (r, r). To realize

(r, r − 1), add a pendant vertex to K2r−1.

To realize (2k, 2k + 1), take K4k+2 and discard a perfect matching. For k = 1, this holds

by a short case analysis. For k > 2, any move by the first player joins endpoints of two

deleted edges, and the second player can play the edge joining the other two endpoints of

those edges to reach the same situation in a smaller graph.

To realize (2k−1, 2k) for k ≥ 2, take 2K2k, delete one edge from each component, creating

four special vertices, and restore regularity by adding a different pair of edges on the special

vertices. If Min makes a first move involving a special vertex, then Max can move to leave
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2K2k−2. If Max makes a first move involving a special vertex, then Min can move to leave

K2k−3 + K2k−1 (we use “+” to denote disjoint union). A first move not involving a special

vertex can be mirrored on the vertices of the other large clique to reach the same situation

in a smaller graph, except that when k = 2 such a first move by Max can be answered by

Min to leave P3 + K1.

The pathology α′

g(G) < α̂′

g(G) cannot occur when G is a forest; we prove this in Section 4.

Meanwhile, we begin the proof of the general bounds |α′

g(G) − α̂′

g(G)| ≤ 1 with a simple

observation that will also be useful in other contexts.

Proposition 2.2. If uv is an edge in a graph G, then α′

g(G) ≥ 1 + α̂′

g(G − {u, v}), with

equality if and only if uv is an optimal first move for Max on G. Likewise, α̂′

g(G) ≤ 1 +

α′

g(G − {u, v}), with equality if and only if uv is an optimal first move for Min on G.

Proof. The game consists of the move uv plus play on G − {u, v} with the other player

starting. By definition, continuing with optimal play on G−{u, v} yields the optimal result

for G if the initial move is an optimal move. Otherwise, optimal play by the first player

achieves more in the desired direction.

We facilitate the inductive proof of |α′

g(G) − α̂′

g(G)| ≤ 1 by proving simultaneously that

both game matching numbers are monotone under the deletion of vertices.

Theorem 2.3. If G is a graph, and v is a vertex in G, then

(1) |α′

g(G) − α̂′

g(G)| ≤ 1, and

(2) α′

g(G) ≥ α′

g(G − v) and α̂′

g(G) ≥ α̂′

g(G − v).

Proof. We prove both statements simultaneously by induction on |V (G)|. They hold by

inspection for |V (G)| ≤ 2, so consider larger G.

Step 1: If (1) and (2) hold for smaller graphs, then (2) holds for G. First consider

α′

g(G). Let H = G − v. Let xy be an optimal first move in the Max-start game on H,

and let H ′ = H − {x, y}. Note that xy ∈ E(G); let G′ = G − {x, y}. By Proposition 2.2,

α′

g(H) = 1 + α̂′

g(H
′) and α′

g(G) ≥ 1 + α̂′

g(G
′). Since H ′ = G′ − v, applying (2) for G′ yields

α′

g(G) ≥ 1 + α̂′

g(G
′) ≥ 1 + α̂′

g(H
′) = α′

g(H).

Now consider α̂′

g(G); again let H = G − v. Let xy be an optimal first move in the

Min-start game on G, and let G′ = G − {x, y}. We consider two cases.

Case 1: v 6∈ {x, y}. Here xy can be played in the Min-start game on H; let H ′ =

H − {x, y}. By Proposition 2.2, α̂′

g(G) = 1 + α′

g(G
′) and α̂′

g(H) ≤ 1 + α′

g(H
′). Since

H ′ = G′ − v, applying (2) for G′ yields

α̂′

g(G) = 1 + α′

g(G
′) ≥ 1 + α′

g(H
′) ≥ α̂′

g(H).
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Case 2: v ∈ {x, y}. We may assume v = x. If y is isolated in H, then the irrelevance of

isolated vertices and (1) for H yield

α̂′

g(G) = 1 + α′

g(G
′) = 1 + α′

g(H − y) = 1 + α′

g(H) ≥ α̂′

g(H).

If instead y has a neighbor z in H, then yz can be played in the Min-start game on H; let

H ′ = H − {y, z}. By the optimality of xy and Proposition 2.2, α̂′

g(G) = 1 + α′

g(G
′) and

α̂′

g(H) ≤ 1 + α′

g(H
′). Since H ′ = G′ − z, applying (2) for G′ yields

α̂′

g(G) = 1 + α′

g(G
′) ≥ 1 + α′

g(H
′) ≥ α̂′

g(H).

Step 2: If (2) holds for G (and smaller graphs), then (1) holds for G. To prove α̂′

g(G) ≤

1+α′

g(G), let uv be an optimal first move in the Min-start game on G, and let G′ = G−{u, v}.

Applying (2) to both G − v and G yields

α̂′

g(G) = 1 + α′

g(G
′) ≤ 1 + α′

g(G − v) ≤ 1 + α′

g(G).

The inequality α′

g(G) ≤ 1 + α̂′

g(G) follows similarly.

As a corollary, we obtain the following result:

Corollary 2.4. If v is a vertex in a graph G, then α′

g(G) ≥ α′

g(G − v) ≥ α′

g(G) − 2 and

α̂′

g(G) ≥ α̂′

g(G − v) ≥ α̂′

g(G) − 2, and the bounds are sharp.

Proof. The upper bounds for G− v are from Theorem 2.3. The lower bounds hold when v is

isolated because isolated vertices do not affect play. Otherwise, let u be a neighbor of v. By

Proposition 2.2 and Theorem 2.3(1), α̂′

g(G) ≤ 1 + α′

g(G− {u, v}) ≤ 2 + α̂′

g(G− {u, v}), and

then α̂′

g(G−v) ≥ α̂′

g(G−{u, v}) ≥ α̂′

g(G)−2 by Theorem 2.3(2). For the remaining inequality,

Proposition 2.2 and Theorem 2.3 yield α′

g(G−v) ≥ α′

g(G−{u, v}) ≥ α̂′

g(G)−1 ≥ α′

g(G)−2.

For the sharpness of the upper bounds, equality holds when v is isolated. For an example

with α′

g(G− v) = α′

g(G)− 2, let G = K2 + C6 . By inspection, α′

g(G) = 4; Max should play

the isolated edge first. If v is a vertex of the isolated edge, then the desired first move is

unavailable, and Max must play before Min on the 6-cycle, yielding α′

g(G − v) = 2.

For the Min-start inequality, let G = 2K2 +C6, and again let v be a vertex of an isolated

edge. Similar arguments show that now α̂′

g(G) = 5 and α̂′

g(G − v) = 3.

3 Relation to Matching Number

We next study the relationship between the game matching number and the ordinary match-

ing number. Generally speaking, Max cannot guarantee α′

g(G) = α′(G). For example, in

Section 5 we will see that α′

g(Pn) is about 3n/7, even though α′(Pn) = ⌊n/2⌋. Nevertheless,

there is a condition under which the parameters coincide on graphs with perfect matchings.
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Theorem 3.1. Fix an n-vertex graph G and a perfect matching M in G. If uw ∈ E(G) ⇒

vx ∈ E(G) whenever uv, wx ∈ M , then α′

g(G) = n/2 and α̂′

g(G) = n/2.

Proof. Both claims hold by inspection when n ≤ 4; we proceed by induction on n.

Since neither α′

g(G) nor α̂′

g(G) can exceed n/2, we need only give strategies for Max. In

the Max-start game, Max first plays an edge uv in M . Now α′

g(G) ≥ 1 + α̂′

g(G − {u, v}).

Moreover, G−{u, v} satisfies the hypothesis (using M −{uv}), so the induction hypothesis

yields α′

g(G) ≥ 1 + (n − 2)/2 = n/2.

In the Min-start game, let uv be an optimal first move for Min. If uv ∈ M , then the

graph G−{u, v} satisfies the hypothesis (using M−{uv}), so the induction hypothesis yields

α̂′

g(G) = 1 + α′

g(G − {u, v}) = 1 + (n − 2)/2 = n/2.

If instead uv 6∈ M , then since M is a perfect matching there exist edges uu′, vv′ ∈ M .

By the hypothesis, u′v′ ∈ E(G); Max plays this edge. Now G − {u, v, u′, v′} satisfies the

hypothesis (using M − {uu′, vv′}), so the induction hypothesis yields

α̂′

g(G) = 1 + α′

g(G − {u, v}) ≥ 2 + α̂′

g(G − {u, v, u′, v′}) = 2 + (n − 4)/2 = n/2.

The property we require of G in Theorem 3.1 is somewhat restrictive. However, it

is preserved under cartesian products with arbitrary graphs. That is, if G has a perfect

matching M satisfying the hypothesis of Theorem 3.1, then so does G ¤ H, for any graph

H (using the perfect matching in G ¤ H formed by the copies of M). As a special case, the

observation that Kr,r has such a perfect matching yields the following:

Corollary 3.2. For r ≥ 1 and any graph H, Max can force a perfect matching in Kr,r ¤H,

no matter who plays first.

Theorem 3.1 does not imply that Max can force a perfect matching in all graphs arising

as cartesian products.

Example 3.3. Let G be the “paw”, obtained from a triangle with vertex set u, v, w by

adding one vertex x with neighbor w. In the graph G ¤ P3, where P3 is the path with

vertices a, b, c in order, Max cannot force a perfect matching no matter who starts. Min

can start by playing the edge joining (w, a) and (v, a), threatening to isolate either (u, a) or

(x, a). Max has no move that will prevent Min from isolating one of these vertices on the

next turn. Similar analysis applies to the Max-start game on G ¤ P3 and to both games on

G ¤ G.

The next natural question is: By how much can α′

g(G) and α′(G) differ? We prove a

general lower bound on α′

g(G) in terms of α′(G) and then show that it is sharp. A round

of play consists of a move by Max followed by a move by Min. We call G −
⋃

i{ui, vi} the

residual graph after edges u1v1, . . . , ukvk are played in the matching game on G.
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Theorem 3.4. α′

g(G) ≥ 2
3
α′(G) for every graph G.

Proof. As long as an edge remains, Max plays an edge belonging to a maximum matching;

this reduces the matching number by 1. An edge played by Min is incident to at most

two edges of a maximum matching and hence reduces the matching number (of the residual

graph) by at most 2. Hence when α′(G) ≥ 3, a round reduces the matching number of the

residual graph by at most 3 while adding 2 to the size of the matching played. Finally, when

α′(G) ∈ {1, 2}, Max can play an edge of a maximum matching, and if α′(G) = 2 there will

be another edge that Min must play.

Theorem 3.4 is sharp. A split graph is a graph whose vertex set can be partitioned into

a clique and an independent set. We present a Min strategy for the matching game on split

graphs. On many split graphs, this strategy obtains equality in Theorem 3.4.

Proposition 3.5. Let G be a split graph. If V (G) = S ∪ T , with S an independent set and

T a clique, then α′

g(G) ≤
⌈

2
3
|T |

⌉
.

Proof. On each turn, Min plays an edge joining two vertices of T if possible, and any legal

move otherwise. By the choice of S and T , every edge in G has at least one endpoint in T .

Thus each move by Max covers at least one vertex of T , and each move by Min covers two

vertices of T while two remain. Thus each round increases the size of the matching by 2 and

decreases |T | by at least 3, until at most two vertices remain in T ; the small cases are then

checked explicitly.

Whenever a clique T contains an endpoint of every edge in a graph G, we have α′(G) ≤

|T |. If α′(G) = |T | and |T | ≡ 0 mod 3, then the lower bound in Proposition 3.5 matches

the upper bound in Theorem 3.4. Thus equality holds in Theorem 3.4 for this family of split

graphs. We can introduce all the edges joining the clique and the independent set, as in the

next example.

Example 3.6. For k ≥ 1 and n ≥ 6k, form G from Kn by deleting the edges of a complete

subgraph with n − 3k vertices; G is a split graph whose clique T has 3k vertices. Note that

α′(G) = 3k and α′

g(G) = 2k. In fact, also G is 3k-connected.

The construction in Example 3.6 maximizes the number of edges among all n-vertex

graphs such that α′(G) = 3k and α′

g(G) = 2k. To prove this, we need a technical lemma

about ordinary matching; it is a special case of a more difficult result of Brandt [3]. Since

we only need this special case, we provide a short, self-contained proof.

Lemma 3.7. If G is an n-vertex graph, then α′(G) ≥ min{⌊n/2⌋ , δ(G)}.

7



Proof. Let M be a maximum matching in G. If the conclusion fails, then we may let u and

v be distinct vertices not covered by M . Let au and bu count the edges in M having exactly

one and exactly two endpoints in N(u), respectively; define av and bv similarly.

By the maximality of M , all neighbors of u are covered by M . Thus au + 2bu ≥ δ(G).

Similarly, av + 2bv ≥ δ(G). If w, x ∈ N(u) ∩ N(v) for some edge wx ∈ M , then replacing

wx with uw and vx enlarges M . Thus no edge in M counts toward both bu and bv. Hence

|M | ≥ 1
2
(au + av) + bu + bv ≥ δ(G).

The next result was observed by Plummer [13].

Lemma 3.8. If G has n vertices, and δ(G) ≥ ⌊n/2⌋ + 1, then every edge of G lies in a

matching of size ⌊n/2⌋.

Proof. For uv ∈ E(G), let G′ = G − {u, v}. Since δ(G′) ≥ ⌊(n − 2)/2⌋, Lemma 3.7 implies

α′(G′) ≥ ⌊(n − 2)/2⌋. Replace uv.

Lemma 3.9. If v is a non-isolated vertex of a graph G, then some maximum matching in

G contains an edge incident to v.

Proof. In a maximal matching, each neighbor u of an unmatched vertex v must be matched.

Such an edge can be replaced by the edge uv.

Theorem 3.10. If G is an n-vertex graph with α′(G) = 3k and α′

g(G) = 2k, then |E(G)| ≤(
3k

2

)
+ 3k(n − 3k).

Proof. We prove the claim by induction on k. When k = 0, the claim is |E(G)| ≤ 0, which

holds since α′(G) = 0 requires E(G) = ∅.

For k ≥ 1, we seek an edge uv for Max to play such that α′(G − {u, v}) = α′(G) − 1

and d(u) + d(v) ≤ n − 1 + 3k; call this a good edge. Playing a good edge eliminates at most

n − 2 + 3k edges from the residual graph. With n − 2 vertices remaining, the next move by

Min eliminates at most 2n − 7 more edges.

Let G′ be the residual graph after Max plays a good edge uv and Min then plays an

optimal move. By Proposition 2.2, α′

g(G) ≥ 2 + α′

g(G
′), so α′

g(G
′) ≤ 2k − 2. Playing uv

reduces the matching number only by 1, and the move by Min reduces it by at most 2, so

α′(G′) ≥ 3k − 3. Now α′

g(G
′) = 2k − 2 and α′(G′) = 3k − 3, by Theorem 3.4. Thus the

induction hypothesis applies to G′. Adding the edges of G not in G′ yields

|E(G)| ≤ |E(G′)| + 3n + 3k − 9 ≤

(
3(k−1)

2

)
+ 3(k−1)(n−4 − 3(k−1)) + 3n + 3k − 9

=
(3k − 3)(3k − 4)

2
+ 9k − 6 + 3k(n − 3k) =

(
3k

2

)
+ 3k(n − 3k).
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In most cases, G has a good edge. We may assume that G has no isolated vertices,

since discarding them does not affect the matching number, the game matching number,

or the number of edges, and the edge bound for the smaller graph is less than what we

allow for G. If δ(G) ≤ 3k, then let v be a vertex of minimum degree. Lemma 3.9 implies

that some maximum matching contains an edge uv incident to v, and d(v) ≤ 3k implies

d(u) + d(v) ≤ n − 1 + 3k. Hence uv is good.

If n ≥ 6k + 2, then ⌊n/2⌋ > 3k, and Lemma 3.7 implies δ(G) ≤ 3k. Since α′(G) = 3k

implies n ≥ 6k, we may henceforth assume n ∈ {6k, 6k + 1} and δ(G) ≥ 3k + 1 = ⌊n/2⌋+ 1.

If δ(G) ≥ ⌊n/2⌋ + 2, then let G′ be the residual graph after any move by Max. Since

δ(G′) ≥ ⌊(n − 2)/2⌋ + 1, Lemma 3.8 implies that every edge of G′ lies in a matching of

size ⌊(n − 2)/2⌋. Thus the subsequent move by Min cannot reduce the matching number

by 2. This means that the first two moves of the game produce a residual graph G′′ with

α′(G′′) ≥ 3k − 2 and hence α′

g(G
′′) > 2k − 2, so α′

g(G) > 2k.

The remaining case is δ(G) = 3k + 1 = ⌊n/2⌋ + 1. Every edge lies in a matching of size

3k (by Lemma 3.8), so any edge with degree-sum at most n − 1 + 3k is a good edge. For

a vertex v of minimum degree, we conclude that every neighbor u of v has degree at least

n−1. Since n−1 ≥ 3k +2 when n ≥ 6k ≥ 6, we have δ(G−{u, v}) ≥ 3k = ⌊(n − 2)/2⌋+1,

and again Min cannot reduce the matching number by 2 after Max plays uv.

4 Forests

Although the lower bound in Theorem 3.4 is tight infinitely often, even when arbitrarily high

connectivity is required, the bound can be improved on some classes of graphs. Our main

result in this section improves the guarantee for Max to α′

g(F ) ≥ 3
4
α′(F ) when F is a forest.

In order to prove it, we will also need that α̂′

g(F ) ≤ α′

g(F ) when F is a forest.

Intuitively, α̂′

g(F ) ≤ α′

g(F ) means that in every forest, there is no advantage to playing

second rather than first. In this intuitive sense, the result is equivalent to the statement that

α̂′

g(F + K1,t) = α̂′

g(F ) + 1 and α′

g(F + K1,t) = α′

g(F ) + 1 for every forest F and all t ∈ N.

In every instance of the matching game on F + K1,t, exactly one move will be played on the

added star; thus playing on the star before being forced to is equivalent to choosing to play

second on the remaining forest. Each of these two claims helps us prove the other, so we

prove them together by induction.

Theorem 4.1. For every forest F and all t ∈ N, the following two statements hold:

(1) α̂′

g(F ) ≤ α′

g(F ).

(2) α̂′

g(F + K1,t) = 1 + α̂′

g(F ) and α′

g(F + K1,t) = 1 + α′

g(F ).

Proof. We prove both statements simultaneously by induction on |V (F )|. They hold by

inspection for |V (F )| ≤ 2, so consider larger F .
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Step 1: If (1) and (2) hold for smaller forests, then (1) holds for F . Let k = α̂′

g(F ).

By Theorem 2.3, the claim holds unless α′

g(F ) = k − 1. When every component is a star,

immediately α̂′

g(F ) = α′

g(F ), so we may choose a component C in F that is not a star. Since

C is not a star, a longest path in C has at least four vertices; let the first three be u, v, w in

order (u is a leaf).

Let F ′ = F − {v, w}. By Proposition 2.2, α̂′

g(F ) ≤ 1 + α′

g(F
′), so α′

g(F
′) ≥ k − 1.

Similarly, α′

g(F ) ≥ 1 + α̂′

g(F
′), so α̂′

g(F
′) ≤ k − 2. Now Theorem 2.3 requires α′

g(F
′) = k − 1

and α̂′

g(F
′) = k − 2. By Corollary 2.4, also α′

g(F − w) = k − 1.

Let t = d(v). The component of F −w containing v is K1,t−1, so F −w = F ∗ +K1,t−1 for

some forest F ∗. Moreover, F ∗ +(t− 1)K1 = F −{v, w} = F ′, so α′

g(F
∗ +(t− 1)K1) = k− 1.

Applying (2) to the smaller forest F ∗ now yields the contradiction

k − 1 = α′

g(F
∗ + K1,t−1) = 1 + α′

g(F
∗) = 1 + α′

g(F
∗ + (t − 1)K1) = k.

Step 2: If (1) and (2) hold for smaller forests and (1) holds for F , then (2) holds for

F . We have four inequalities to prove. We prove them by considering an optimal first move

uv in the Min-start or Max-start game on F or on F + K1,t. In the displayed computations

when uv is chosen from F + K1,t, we use the choice of uv, the validity of (2) for F ′, and

Proposition 2.2, in that order. When uv is an optimal first move in a game on F , we use the

same three things in the reverse order. In each case F ′ = F − {u, v} when uv ∈ E(F ).

2a: uv is an optimal first move in the Min-start game on F + K1,t. If uv /∈ E(F ), then

α̂′

g(F + K1,t) = 1 + α′

g(F ) ≥ 1 + α̂′

g(F ), since (1) holds for F . Otherwise,

α̂′

g(F + K1,t) = 1 + α′

g(F
′ + K1,t) = 1 + α′

g(F
′) + 1 ≥ 1 + α̂′

g(F ).

2b: uv is an optimal first move in the Min-start game on F :

α̂′

g(F + K1,t) ≤ 1 + α′

g(F
′ + K1,t) = 1 + α′

g(F
′) + 1 = 1 + α̂′

g(F ).

2c: uv is an optimal first move in the Max-start game on F :

α′

g(F + K1,t) ≥ 1 + α̂′

g(F
′ + K1,t) = 1 + α̂′

g(F
′) + 1 = 1 + α′

g(F ).

2d: uv is an optimal first move in the Max-start game on F + K1,t. If uv /∈ E(F ), then

α′

g(F + K1,t) = 1 + α̂′

g(F ) ≤ 1 + α′

g(F ), since (1) holds for F . Otherwise,

α′

g(F + K1,t) = 1 + α̂′

g(F
′ + K1,t) = 1 + α̂′

g(F
′) + 1 ≤ 1 + α′

g(F ).

Theorem 4.2. If F is a forest, then α′

g(F ) ≥ 3
4
α′(F ).
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Proof. We prove simultaneously by induction on |E(F )| that α′

g(F ) ≥ 3
4
α′(F ) and α̂′

g(F ) ≥
3
4
α′(F ) − 1

2
. By Theorem 4.1, each component of F that is a star contributes 1 to each of

α′(F ), α′

g(F ), and α̂′

g(F ), so both claims clearly hold when all components of F are stars.

Moreover, it suffices to prove the claims when no components are stars.

Consider the Min-start game. Let uv be an optimal first move, and let F ′ = F − {u, v}.

Since vertex deletion always decreases the matching number by at most 1, we have α′(F ′) ≥

α′(F ) − 2. This observation, the choice of uv, and the induction hypothesis yield

α̂′

g(F ) = 1 + α′

g(F
′) ≥ 1 +

3

4
α′(F ′) ≥ 1 +

3

4
(α′(F ) − 2) =

3

4
α′(F ) −

1

2
.

Now consider the Max-start game. Let P be a longest path in a component C of F ,

starting with vertices x, w, v in order. Since C is not a star, v is not isolated in F - w,x.

By Proposition 3.9, v lies on an edge in some maximum matching in F - w,x; let u be the

other endpoint of such an edge. Since every maximum matching in F − w, x extends to a

maximum matching in F by adding wx, also uv belongs to a maximum matching in F. Max

plays uv; let F ′ = F − {u, v}.

Note that α′(F ′) = α′(F )− 1. Also, the component of F ′ containing wx is a star. Hence

F ′ has the form F ∗ + K1,t, for some forest F ∗ and t ∈ N. By Proposition 2.2, Theorem 4.1,

and the induction hypothesis,

α′

g(F ) ≥ 1 + α̂′

g(F
′) = 1 + α̂′

g(F
∗ + K1,t) = 2 + α̂′

g(F
∗) ≥ 2 +

3

4
α′(F ∗) −

1

2
.

Since uv lies in a maximum matching in F ,

α′(F ) = α′(F ′) + 1 = α′(F ∗ + K1,t) + 1 = α′(F ∗) + 2.

These observations together yield

α′

g(F ) ≥ 2 +
3

4
α′(F ∗) −

1

2
=

3

2
+

3

4
(α′(F ) − 2) =

3

4
α′(F ).

The bound α′

g(F ) ≥ 3
4
α′(F ) is sharp. A comb is a tree obtained from a path by attaching

a pendant leaf to each vertex; we denote by Bℓ the comb with ℓ leaves (and 2ℓ vertices).

Theorem 4.3. α′

g(B4k) = 3
4
α′(B4k), for k ∈ N.

Proof. Since α′(B4k) = 4k, we must show that α′

g(B4k) = 3k. The lower bound follows from

Theorem 4.2. To prove α′

g(B4k) ≤ 3k, we give a strategy for Min.

At any point in the game on B4k, the residual graph is a disjoint union of combs and

isolated vertices. A played edge joining non-leaf vertices is a Type A move; a Type B move is

a played edge incident to a leaf. In analyzing the strategy, we consider the number of non-

isolated vertices remaining. Each Type A move reduces this number by 4 (the endpoints of

the played edge and their neighboring leaves), and each Type B move reduces it by 2.

11



On each turn, Min chooses a largest component in the residual graph. If this component

C is an isolated edge, then Min plays that edge. Otherwise, the non-leaf vertices of C induce

a path, and Min plays an end-edge of that path. By these rules, Min plays only Type A

moves until the residual graph consists only of isolated edges and isolated vertices.

To conclude α′

g(B4k) ≤ 3k, we show that at least 2k vertices become isolated during the

game; they must remain unmatched, so the resulting matching has at most (1/2)(8k − 2k)

edges. Each Type A move isolates two vertices, while each Type B move isolates none. It

suffices to show that if there have not yet been k Type A moves, and not yet 2k moves

altogether, then Min will make a Type A move on the next turn.

Since Min plays Type A moves at the “end” of a comb, Min never increases the number

of nontrivial components in the residual graph. On the other hand, each move by Max

increases that number by at most 1. Thus, if there have not yet been k Type A moves, then

the number of nontrivial components at present is at most k + 1. Let s be the number of

nonisolated vertices in the residual graph before Min moves. If there have been a Type A

moves and b Type B moves, then a ≤ k − 1 and a + b ≤ 2k − 1 yield

s = 8k − 4a − 2b = 8k − 2a − 2(a + b) ≥ 2k + 4.

Hence the average number of vertices per nontrivial component in the residual graph is at

least (2k + 4)/(k + 1), which exceeds 2. Thus some component in the residual graph has

more than two vertices, and Min makes another Type A move.

5 Graphs with Small Maximum Degree

The following corollary of Theorem 4.1 is sometimes useful.

Corollary 5.1. For a forest F and an integer t, the starting player has an optimal first

move in F in both the Max-start and Min-start games on F + K1,t.

Proof. Consider the Min-start game; the proof for the other is similar. Let uv be an optimal

first move in the Min-start game on F , and let F ′ = F−{u, v}. If Min plays an edge from the

added star in the first move of the Min-start game on F +K1,t, and play is optimal thereafter,

then the length of the game will be 1 + α′

g(F ). If Min first plays uv, then the length of the

game will be 1 + α′

g(F
′ + K1,t). By Theorem 4.1, Proposition 2.2, and Theorem 4.1,

1 + α′

g(F
′ + K1,t) = 2 + α′

g(F
′) = 1 + α̂′

g(F ) ≤ 1 + α′

g(F ).

Hence Min does no worse by playing uv than by playing in the added star.

12



As an application of Corollary 5.1, we determine the asymptotic value of α′

g(Pn). While

the corollary is not strictly needed to prove this result, it simplifies the argument.

Theorem 5.2. For all n, we have 3
⌊

n
7

⌋
≤ α′

g(Pn) ≤ 3
⌈

n
7

⌉
.

Proof. We claim that α′

g(P7k) = 3k, from which the desired result follows by Corollary ??.

At each point during a game on P7k, the residual graph is a disjoint union of paths. Each

move increases the number of components in the residual graph by at most 1.

Upper bound: We give a strategy for Min. On each turn, Min selects a largest remaining

component. If it has at least three vertices, then Min plays the second edge of this component.

Otherwise, every component is an isolated vertex or edge; Min plays an isolated edge or the

game is over. Let t be the number of turns played when the second phase begins, with s1

isolated vertices and s2 isolated edges.

There are at most t + 1 components at that time, so s1 + s2 ≤ t + 1. Since each move

deletes two vertices, s1 + 2s2 + 2t = 7k. Now

7k + s1 = 2t + 2s2 + 2s1 ≤ 2t + 2(t + 1) = 4t + 2.

Since each move by Min in the first phase isolates at least one vertex,

(t − 1)/2 ≤ s1 ≤ 4t + 2 − 7k.

Simplifying yields t ≥ ⌈(14k − 5)/7⌉ = 2k. Moreover, s1 ≥ ⌈(t − 1)/2⌉ ≥ k. Since exactly

s1 vertices remain unmatched at the end of the game, α′

g(P7k) ≤ (n − s1)/2 ≤ 3k.

Lower bound: We give a strategy for Max. On each turn, Max selects a largest remaining

component. If it has at least four vertices, then Max plays the third edge of this component.

Otherwise, Max plays any edge in the selected component. By Corollary 5.1, we may assume

that Min does not play an isolated edge unless no other moves remain.

Let t be the number of turns played when the second phase begins, with si remaining

components having i vertices, for i ≤ 3. Since each previous move by Max created an isolated

edge, and neither player has yet played an isolated edge, s2 ≥ t/2. Each move has increased

the number of remaining components by 1, so s1 + s2 + s3 ≤ t + 1. Thus s1 + s3 ≤ t/2 + 1.

Counting the vertices played and the vertices remaining yields

7k = 2t + s1 + 2s2 + 3s3 ≥ 2t + (s1 + s3) + 2s2 ≥ 3t + (s1 + s3),

so s1 + s3 ≤ 7k− 3t. Taking 1/7 times this inequality plus 6/7 times s1 + s3 ≤ t/2 + 1 yields

s1 +s3 ≤ k+6/7. By integrality, s1 +s3 ≤ k. At the end of the game, exactly s1 +s3 vertices

remain unmatched, so α′

g(P7k) ≥ 3k.
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Wise and Yeager [17] independently determined the exact value by the congruence class

of n modulo 7 and studied the game on disjoint unions of paths. Their arguments require

more careful analyses, but use essentially the same strategies as in the proof of Theorem 5.2.

Our final results concern regular graphs. When G is 3-regular, α′(G) ≥ ⌈4(|V (G)| − 1)/9⌉,

and this is sharp [1]. We seek an analogous sharp lower bound for α′

g(G) in terms of |V (G)|.

Using the bound for α′(G), Theorem 3.4 yields approximately α′(G) ≥ 8
27
|V (G)|. An easy

argument proves a stronger bound, which we phrase for general regular graphs.

Proposition 5.3. If G is a connected n-vertex r-regular graph, then α′

g(G) ≥ rn−2
4r−3

.

Proof. We give a strategy for Max to ensure that edges are removed from the residual graph

“slowly”. Max first plays any edge. On each turn thereafter, Max plays any edge incident

to a vertex of smallest nonzero degree.

Since G is connected, the residual graph at any time after the first move has a vertex of

nonzero degree less than r. Thus each move by Max after the first deletes at most 2r − 2

edges. Each move by Min deletes at most 2r − 1 edges. Since Max moves before Min, after

k turns the residual graph contains at least r
2
n −

⌊
4r−3

2
k
⌋
− 1 edges. To end the game, all

edges must be deleted. At that time k ≥ rn−2
4r−3

.

The bound in Proposition 5.3 is not sharp. For r ≥ 5, this bound is weaker than the

one obtained from Theorem 3.4 by using the best-known lower bounds on α′(G). For odd r,

Henning and Yeo [10] proved that α′(G) ≥ (r3
−r2

−2)n−2r+2
2r3

−6r
, and this is sharp. The coefficient

on the linear term tends to 1/2. Multiplied by 2/3 from Theorem 3.4, the lower bound on

α′

g(G) would be asymptotic to n/3, while the lower bound from Proposition 5.3 is asymptotic

only to n/4.

For r = 3, Proposition 5.3 yields α′

g(G) ≥ n
3
− 2

9
, which also is not sharp. It is easy but

tedious to improve the lower bound to n/3 by considering the end of the game. If Min moves

last and kills five remaining edges, then the play by Min is the center of a double star, and

the previous move by Max could not have reduced all four leaves to degree 1. Hence a vertex

of degree 1 was available to Max, and Max would have deleted only three edges instead of

four. This implies that the last two moves delete at most eight edges. Case analysis along

these lines improves the additive constant to 0. We omit this, partly because we also do not

think that the coefficient on the linear term is sharp.

In the other direction, we provide a construction where the coefficient is 7/18. Let K

be the five-vertex graph formed by subdividing one edge of K4. Let Tk denote the complete

cubic tree of height k, the rooted tree in which each non-leaf vertex has degree 3 and each

leaf has distance k from the root. By growing two edges from a leaf, if follows by induction

that in a tree where every vertex has degree 1 or 3, the number of leaves exceeds the number

of non-leaf vertices by 2.
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Theorem 5.4. For k ≥ 1, if Gk is the cubic graph obtained from Tk by making each leaf

adjacent to two copies of K (via their vertices of degree 2), then α′

g(Gk) ≤ (7/18) |V (Gk)|.

Proof. The copy of Tk contains 3 · 2i−1 vertices at distance i from the root, for 1 ≤ i ≤ k.

The number of leaves is 3 · 2k−1, and the number of non-leaves is 3 · 2k−1 − 2. Thus

|V (Gk)| = |V (Tk)| + 10(3 · 2k−1) = 12(3 · 2k−1) − 2 = 18 · 2k − 2.

We give a strategy for Min in the game on Gk. Let B be the graph consisting of K plus

a pendant vertex neighboring the vertex of degree 2 in K. View Gk as the union of Tk and

6 · 2k−1 copies of B. Min plays so that at most two edges are played in each copy of B.

Let uv be the previous move by Max. If uv belongs to some copy of B in which no other

edge has been played, then Min plays in that copy of B to isolate at least one vertex. Min

may not be able to use the edge incident to the pendant vertex, since that vertex lies on

two other edges of Tk, one of which may have been played earlier; nevertheless, it follows by

inspection that Min can always find a move of the desired type.

Suppose uv is otherwise. If possible, Min chooses a copy of B in which no edge has been

played and plays any of the three edges that lies in no perfect matching of B. If already

some edge has been played in every copy of B, then Min plays any legal move.

By construction, Min ensures that at most two edges are played in each copy of B. To

bound the number of edges played in Tk, we bound α′(Tk). Let S be the set of vertices in Tk

whose distance from a nearest leaf is odd. Note that Tk − S has no edges, so α′(Tk) ≤ |S|.

Also, the number of vertices at distance i from the root is at most half the number of vertices

at distance i + 1; hence |S| ≤ (1/3) |V (Tk)|. Thus

α′(Tk) ≤
⌊
(1/3)(3 · 2k−1 + 3 · 2k−1 − 2)

⌋
= 2k − 1.

It now follows that

α′

g(Gk) ≤ 2k − 1 + 6 · 2k−1 · 2 = 7 · 2k − 1 ≤
7

18
(18 · 2k − 2).
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