Linear Algebra - MTH 215 - Spring 2002

Section 1.6 - Homogeneous Systems, Subspaces, and Bases

Theory

- Solutions to homogeneous systems
- Span of a set of vectors, subspace.
- Column space of a matrix. $A\mathbf{x} = \mathbf{b}$, \mathbf{b} in the column space of A.
- Row space of a matrix.
- Basis, A set of vectors v_1, v_2, \ldots, v_k is a basis for a vector space W if v_1, v_2, \ldots, v_k spans W and is linearly independent. If are looking at a set of vectors v_1, v_2, \ldots, v_k and want to know if they form a basis of the subspace $sp(v_1, v_2, \ldots, v_k)$ then you really just need to know if they are linearly independent.

Theorem 1 (1.16) The following are equivalent for an n by n matrix A.

1. There is a unique solution to $A\mathbf{x} = \mathbf{b}$.
2. A is row equivalent to I.
3. A is invertible.
4. The columns of A for a basis for \mathbb{R}^n. Every vector \mathbf{b} is in the column space of A.

Example

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Theorem 2 (1.17) The following are equivalent for an \(m \) by \(n \) matrix \(A \).

1. Each consistent system \(Ax = b \) has a unique solution.

2. \(A \) is row equivalent to \(I \) with rows of zeros at the bottom.

3. The columns of \(A \) for a basis for the column space of \(A \). In other words, the columns are linearly independent.

Example

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

Corollary 3 If \(m < n \) and \(Ax = b \) is consistent there are an infinite number of solutions.

Example

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\]

Corollary 4

1. If \(Ax = 0 \), \(m < n \) has a nontrivial solution.

2. If \(Ax = 0 \), \(n \) by \(n \) has a nontrivial solution if and only if \(A \) is NOT row equivalent to \(I \).

Example

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]
Example

\[A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix} \]

Theorem 5 (1.18) If \(p \) is a solution of \(Ax = b \) and \(h \) is a solution of \(Ax = 0 \) then \(p + h \) is a solution of \(Ax = b \). In fact, every solution has this form.

Example

\[A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
2 \\
-1 \\
1 \\
\end{bmatrix} \]

Example

\[A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix} \]