Recall the following Theorems, Propositions and definitions:

Definition: Let T be a linear operator on a vector space V. A subspace W of V is called a T-invariant subspace of V if $T(W) \subseteq W$, that is, if $T(v) \in W$ for all $v \in W$.

Definition: Let T be a linear operator on a vector space V and let x be a nonzero vector in V. The subspace

$$W = \text{span}(\{x, T(x), T^2(x), \ldots\})$$

is called the T-cyclic subspace of V generated by x. Recall that another way of describing a T-cyclic subspace is as the smallest T-invariant subspace of V containing x.

Theorem 5.21 Let T be a linear operator on a finite dimensional vector space V, and let W be a T-invariant subspace of V. Then the characteristic polynomial of T_w divides the characteristic polynomial of T.

Theorem 5.22 Let T be a linear operator on a finite dimensional vector space V, and let W denote the T-cyclic subspace of V generated by a nonzero vector $v \in V$. Let $k = \dim(W)$. Then

(a) $\{v, T(v), T^2(v), \ldots, T^{k-1}(v)\}$ is a basis for W.

(b) If $a_0 v + a_1 T(v) + \ldots + a_{k-1} T^{k-1}(v) + T^{k}(v) = 0$ then the characteristic polynomial of T_w is

$$f(t) = (-1)^k (a_0 + a_1 t + \ldots + a_{k-1} t^{k-1} + t^k).$$
For the following Definition and Theorem we refer to Appendix E in the back of our text book.

Definition: Let

\[f(x) = a_0 + a_1(x) + \ldots + a_n x^n \]

be a polynomial with coefficients from a field \(F \). If \(T \) is a linear operator on a vector space \(V \) over \(F \), we define

\[f(T) = a_0 I + a_1 T + \ldots + a_n T^n. \]

Theorem E.3: Let \(f(x) \) be a polynomial with coefficients from a field \(F \), and let \(T \) be a linear operator on a vector space \(V \) over \(F \). then \(f(T) \) is a linear operator on \(V \).

Claim: Let \(T \) be a linear operator on \(V \) then \(T^k \) is linear for all \(k \geq 1 \).

Proof of Claim: Let \(T \) be linear then \(T(cx + y) = cT(x) + T(y) \). For our base case we show that \(T^2 \) is linear.

\[
T^2(cx + y)
= T(T(cx + y))
= T(cT(x) + T(y))
= cT^2(x) + T^2(y)
\]

Which we can see is linear.

Assume that this holds for \(T^k \) where \(k < n \) that is it holds for \(k = 1, 2, \ldots, n - 1 \)

We want to show it holds for \(k = n \).

\[
T^k(cx + y)
= T^{k-1}(T(cx + y))
= T^{k-1}(cT(x) + T(y))
= cT^k(x) + T^{k-1}T(y)
= cT^k(x) + T^{k}(y)
\]

which is linear. Thus we have proved our claim.
Proof of Theorem E.3:
Define a function \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = a_0 + a_1(x) + \ldots + a_n x^n \) and let \(T \) be a linear operator on \(V \). Since \(T \) is linear then
\[
T(cx + y) = cT(x) + T(y).
\]
We need to show that \(f(T) \) is linear.

\[
f(T)(cx + y) = a_0(cx + y) + a_1T(cx + y) + \ldots + a_n T^n(cx + y)
\]

By our claim which we proved above each \(T^k(cx + y) \) is linear so we have that

\[
f(T)(cx + y) = a_0(cI(x) + I(y)) + a_1(cT(x) + T(y)) + \ldots + a_n (cT^n(x) + T^n(y)
= ca_0 I(x) + a_0 I(y) + ca_1T(x) + a_1T(y) + \ldots + ca_n T^n(x) + a_n T(y)
= c(a_0 I(x) + a_1T(x) + \ldots + a_n T^n(x)) + (a_0 I(y) + a_1T(y) + \ldots + a_n T^n(y))
= cf(T)(x) + f(T)(y)
\]

So \(f(T) \) is linear. This completes the proof.
Theorem 5.23 (The Cayley-Hamilton theorem)
Let \(T \) be a linear operator on a finite dimensional vector space \(V \), and let \(f(t) \) be the characteristic polynomial of \(T \). Then \(f(T) = T_0 \) the zero transformation. That is, \(T \) satisfies its characteristic equation.

Proof:

We want to show that \(f(T)(v) = 0 \) for all \(v \in V \). Suppose \(v = 0 \). Of course, \(T(0) = 0 \) since \(T \) is linear. Also by theorem E.3 (appendix E) \(f(T) \) is a linear operator whenever \(f(t) \) is a polynomial with coefficients from a field \(F \). Therefore, since \(f(T) \) is linear we have that \(f(T)(0) = 0 \).

Let \(W \) be a \(T \)-cyclic subspace generated by \(v \) where \(v \) is any nonzero vector and suppose that \(\dim(W) = k \). By theorem 5.22(a), there exists scalars \(a_0, a_1, \ldots, a_{k-1} \) such that

\[
a_0 v + a_1 T(v) + \ldots + a_{k-1} T^{k-1}(v) + T^k(v) = 0
\]

So by theorem 5.22(b) we have that

\[
g(t) = (-1)^k (a_0 + a_1 t + \ldots + a_{k-1} t^{k-1} + t^k)
\]

is the characteristic polynomial of \(T_w \). Combining these two equations will give us

\[
g(T)(v) = (-1)^k (a_0 I + a_1 T + \ldots + a_{k-1} T^{k-1} + T^k)(v) = 0
\]

By theorem 5.21, \(g(t) \) divides \(f(t) \); hence there exists a polynomial \(q(t) \) such that \(f(t) = q(t) \cdot g(t) \). So

\[
f(T)(v) = (q(T)g(T))(v) = q(T)(v)g(T)(v) = q(T)(v) = 0
\]