Theorem 1. (1.3) Let \(V \) be a vector space and \(W \) a subset of \(V \). Then \(W \) is a subspace of \(V \) if and only if the following three conditions hold for the operations defined in \(V \).

1. \(0 \in W \).
2. \(x + y \in W \) whenever \(x \in W \) and \(y \in W \).
3. \(cs \in W \) whenever \(c \in F \) and \(x \in W \).

Theorem from first set of notes.

1. \(\det A \) can be evaluated by expanding along any row or column, that is, \(\det A \) equals the sum of the products of the entries along any row or column with their cofactors.
 - This part was left as an exercise: For all \(n \in \mathbb{N} \), if \(A \in M_n(F) \) then “expansion along row 1" is equivalent to “expansion along column 1".
2. \(\det A = \det A^t \).
3. If any row or column = 0 then \(\det A = 0 \).
4. For any \(c \) and \(n \times n \) \(A \), \(\det(cA) = c^n \det A \).
5. If \(A \) has two rows that are equal (or columns) then \(\det A = 0 \).
6. If \(A' \) is produced from \(A \) by interchanging two rows (or two columns) then \(\det A' = -\det A \).
7. If \(A' \) is produced from \(A \) by replacing a row (column) or \(A \) with a constant times that row (column) then \(\det A' = c \det A \).
8. If \(A' \) is produced from \(A \) by replacing one row (column) with that row (column) plus some multiple of a different row (column) then \(\det A' = \det A \).

From second set of notes.

Theorem 2. Let \(E_{ij}, E_i(c), \) and \(E_{ij}(c) \) denote the elementary matrices. Then

1. \(\det E_{ij} = -1 \)
2. \(\det E_i(c) = c \)
3. \(\det E_{ij}(c) = 1 \)
4. If \(E \) is any \(n \times n \) elementary matrix and \(A \) is any \(n \times n \) matrix, then

\[
\det(EA) = \det E \det A
\]

and by induction, we obtain for elementary matrices \(E_1, E_2, \ldots, E_r \),

\[
\det(E_1E_2\cdots E_rA) = \det E_1 \det E_2 \cdots \det E_r \det A
\]

Theorem 3. \(A \in M_n(F) \)

1. \(A \) is invertible \(\iff \) \(\det A \neq 0 \)
2. If \(A \) is invertible, then \(\det(A^{-1}) = 1/\det A \)

Theorem 4. \(\det(AB) = \det A \det B \)
From Sections 1.4, 1.5, 1.6.

Theorem 5. (1.5) The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Theorem 6. (1.6) Let V be a vector space, and let $S_1 \subseteq S_2 \subseteq V$. If S_1 is linearly dependent, then S_2 is linearly dependent. Also, if S_2 is linearly independent, then S_1 is linearly independent.

Theorem 7. (1.7) Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.

Theorem 8. (1.8) Let V be a vector space and $\beta = \{u_1, u_2, \ldots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β, that is, can be expressed in the form

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n$$

for unique scalars a_1, a_2, \ldots, a_n.

Theorem 9. (1.9) If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem 10. (1.10) (Replacement Theorem). Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n - m$ vectors such that $L \cup H$ generates V.

Cor 1. (1, To Theorem 1.10) Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Cor 2. (2, To Theorem 1.10) Let V be a vector space with dimension n.

1. Any finite generating set of V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
3. Every linearly independent subset of V can be extended to a basis for V.

Theorem 11. (1.11) Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then $V = W$.

Cor 3. (to Theorem 1.11) If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

From 3rd set of notes:

Theorem 12. Given V and W, vector spaces,

$$T : V \to W$$

is a linear transformation if and only if for all $x, y \in V$, $a, b \in F$,

$$T(ax + by) = aT(x) + bT(y).$$

Theorem 13. Given $A \in M_{m,n}(F)$, V an n dimensional vector space with basis v_1, v_2, \ldots, v_n. W an m dimensional vector space with basis w_1, w_2, \ldots, w_m. There exists a linear transformation T such that A represents T. Conversely, given T, there is an A.
Fact 1. If A is invertible, then the only solution to $Ax = 0$ is $x = 0$.

Claim 1. The set of invertible matrices in M_n is the set
$$\{B_2[I]_{B_1} : B_1, B_2 \text{ are bases of } F^n\}$$

Claim 2. The set of all basis representations of T is
$$\{B[I]_{B[T]_{B_1}}B[I]_{B_1} : B_1 \text{ is a basis of } V\}$$
$$= \{S[T]_{B}S^{-1} : S \text{ is invertible}\}$$

Fact 2. If A is similar to B then $\det(A) = \det(B)$.

Back to the Book:

Theorem 14. (2.3) (Dimension Theorem). Let V and W be vector spaces, and let $T : V \to W$ be linear. If V is finite-dimensional, then $\text{nullity}(T) + \text{rank}(T) = \dim(V)$.

From Class notes.

Fact 3. (A) If S is an invertible $n \times n$ matrix then $R(S) = F^n$.

Fact 4. (B) S, T invertible $\Rightarrow ST$ invertible.

Fact 5. (C) $[a_1x_1 + a_2x_2 + \cdots + a_nx_n]_B = a_1[x_1]_B + a_2[x_2]_B + \cdots + a_n[x_n]_B$

Fact 6. (D) Let V be a vector space with basis B. $\{x_1, x_2, \ldots, x_k\}$ is linearly independent if and only if $\{[x_1]_B, [x_2]_B, \ldots, [x_k]_B\}$ is linearly independent.

Fact 7. (E) Let $P \in M_n(F)$, invertible. W is a subspace of F^n implies $L_P(W)$ is a subspace of F^n and $\dim(L_P(W)) = \dim(W)$.

Back to the Book.

Theorem 15. (2.19) Let V and W be finite-dimensional vector spaces (over the same field). Then V is isomorphic to W if and only if $\dim(V) = \dim(W)$.

Theorem 16. (3.3) Let $T : V \to W$ be a linear transformation between finite-dimensional vector spaces, and let β and γ be ordered bases for V and W, respectively. Then $\text{rank}(T) = \text{rank}(\gamma[T]_{\beta})$.

Theorem 17. (3.4) Let A be an $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

1. $\text{rank}(AQ) = \text{rank}(A)$,
2. $\text{rank}(PA) = \text{rank}(A)$,
3. and $\text{rank}(PAQ) = \text{rank}(A)$.

Cor 4. (To Theorem 3.4) Elementary row and column operations on a matrix are rank-preserving.

Theorem 18. (3.5) The rank of any matrix equals the maximum number of its linearly independent columns; that is, the rank of a matrix is the dimension of the subspace generated by its columns.