Name:

For all questions below, use the function

\[f(x) = 3x^4 - 4x^3 + 6 \]

1. Find all critical points of \(y = f(x) \). Identify each one by its \(x \) coordinate.

2. Use the first derivative test to determine for each critical point of \(f(x) \) whether it is a local minimum, local maximum, or neither.

3. When the domain is restricted to \(-2 \leq x \leq 2\), what is the global maximum and global minimum value of \(f(x) \) over this domain? Name both the value of the function and the \(x \) coordinate where the extreme value occurs.

4. Find all the inflection points of \(y = f(x) \) Name both the \(x \) and \(y \) coordinates of the point(s).

5. On the back, using \(\text{Xmin}=-2 \) and \(\text{Xmax}=2 \) and appropriate values of \(\text{Ymin} \) and \(\text{Ymax} \), sketch a useful graph of \(y = f(x) \). Be sure to label with both the \(x \) and \(y \) coordinates all local extrema, global extrema, and inflection points.