1. Give a formula for the Cumulative distribution function of the density function

\[p(t) = \begin{cases} \frac{1}{4} t^4, & 0 \leq t < 2\sqrt{2} \\ 0, & \text{otherwise} \end{cases} \]

and sketch its graph using a window of xmin = -1, xmax = 4, ymin = -1, ymax = 1. Be sure and label your axes.

2. Find the mean and median of \(p(t) \) given above.

\[
\bar{X} = \frac{2\sqrt{2}}{\frac{1}{4} \int_0^{2\sqrt{2}} t^4 \, dt} = \frac{1}{\frac{1}{3} \cdot 2\sqrt{2}^3} \approx 1.8856
\]

Median = \(T \) where

\[
0.5 = \frac{1}{\frac{1}{4}} \int_0^T t \, dt \Rightarrow \frac{1}{8} T^2 = 0.5 \Rightarrow T^2 = 4 \Rightarrow T = 2
\]
3. Let C be the cost of renting a car from a company which charges 25 a day and 20 cents a mile, so $C = f(d,m) = 25d + 0.2m$. Make a table of values for C, using $d = 1, 2, 3, 4$ and $m = 100, 150, 200, 250.$

<table>
<thead>
<tr>
<th>d</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>105</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
</tr>
</tbody>
</table>

4. (a) Find $f(3,150)$ and interpret it. $f(3,150)=105$

The cost of renting a car for 3 days and 150 miles is $105.

(b) Explain the significance of $f(3,m)$ in terms of rental car costs. Graph the function with C as a function of m.

5. For the function $h(c,p) = c^2 + p^2$, sketch a contour diagram with three labelled contours for levels $z = 1, 4, 9$. Make the horizontal axis the c-axis, and the vertical axis the p-axis and use the window $-5 \leq c \leq 5$, $-5 \leq p \leq 5$.

\begin{align*}
C^2 + P^2 &= 1 \\
C &= \sqrt{1-P^2}
\end{align*}