Theorem 5.23 (Cayley-Hamilton)
Let T be a linear operator on a finite-dimensional vector space V, and let $f(t)$ be the characteristic polynomial of T. Then $f(T)=T_0$, the zero transformation.

Corollary to Theorem 5.23 (Cayley-Hamilton Theorem for Matrices)
Let A be an $n \times n$ matrix, and let $f(x)$ be the characteristic polynomial of A. Then $f(A)=O$, the $n \times n$ zero matrix.

Definition. Let $f(x)=a_0+a_1x+\ldots+a_nx^n$ be a polynomial with coefficients from a field F. If T is a linear operator on a vector space V over F, we define
\[
 f(T) = a_0I_V + a_1T + \ldots + a_nT^n
\]
Similarly, if A is a $n \times n$ matrix with entries from F, we define
\[
 f(A) = a_0I + a_1A + \ldots + a_nA^n
\]

Proof. Since $f(x)$ is the characteristic polynomial of A, by definition, $f(x)$ is also the characteristic polynomial of the linear operator L_A.
Let $f(x)=a_0+a_1x+\ldots+a_nx^n$, then $f(L_A)=a_0I + a_1L_A + \ldots + a_nL_A^n$.

For any $\nu \in F^n$, $f(L_A)(\nu) = (a_0I + a_1L_A + \ldots + a_nL_A^n)(\nu)$
\[
 = a_0\nu + a_1(A+ \ldots + a_nA^n)\nu
 = (a_0I + a_1A + \ldots + a_nA^n)\nu
\]
Notice that $f(L_A)=T_0$ by Theorem 5.23. So
\[
 (a_0I + a_1A + \ldots + a_nA^n)\nu = 0
\]
Since ν is arbitrary, we know $a_0I + a_1A + \ldots + a_nA^n=O$, the $n \times n$ zero matrix.
Exercise 5 in section 5.4
Let T be a linear operator on a vector space V. Prove that the intersection of any collection of T-invariant subspaces of V is a T-invariant subspace of V.

Proof. We only need to show that the intersection of two T-invariant subspaces of V is a T-invariant subspace of V.

Let W_1 and W_2 be two T-invariant subspaces of V, and let W be the intersection of W_1 and W_2.

First we will prove that W is T-invariant.

For any $v \in W$, we also know $v \in W_1$ and $v \in W_2$. Since W_1 and W_2 are T-invariant, $T(v) \in W_1$ and $T(v) \in W_2$. So $T(v) \in W_1 \cap W_2 = W$. This proves that W is T-invariant.

Then we will show that W is a subspace of V.

Since $0 \in W_1$ and $0 \in W_2$, $0 \in W$.

For any $x, y \in W$, since $x, y \in W_1$, $x, y \in W_2$ and W_1 and W_2 are subspaces of V, we know $x + y \in W_1$ and $x + y \in W_2$. So $x + y \in W_1 \cap W_2 = W$.

For any $x \in W$ and scalar c, since $x \in W_1$, $x \in W_2$ and W_1 and W_2 are subspaces of V, we know $cx \in W_1$ and $cx \in W_2$. So $cx \in W_1 \cap W_2 = W$.

By Theorem 1.3, W is a subspace of V. This completes the proof.