1. Solve the IVP and check your answer:

\[(1-x^2)y'' - xy' + y = 0\]
\[y(0) = 0, \ y'(0) = 1\]

Ans: Solution

What does the existence and uniqueness theorem predict for this IVP?

Why?

Find a recurrence formula for the terms of the power series.
2. (a) What does the existence and uniqueness theorem predict for the IVP:

\[xy'' + y' = x \]
\[y(-1) = 0, \ y'(-1) = 1 \]?

Justify your answer.

(b) Solve the above IVP:
3. (a) Solve by Laplace Transforms, the IVP:
\[
\begin{align*}
\dot{y} + 5y + 6y &= 4 \\
y(0) &= -3, \quad \dot{y}(0) = 1
\end{align*}
\]

(b) Compute, by using the definition, the \(\mathcal{L}[-1 + e^{-2t}] \)
NAME:

4. Solve the IVP, by the method of elimination:

\[\begin{align*}
\dot{x} &= -x - y \\
\dot{y} &= x + y
\end{align*} \]

and check your answer.

\(x(0) = 1, \ y(0) = -1 \)
5 (a) State the existence and uniqueness theorem for nonlinear DEs.

(b) What does the above theorem predict for the IVP

\[
\begin{align*}
 y' &= -2x^2 + 1 + y^2 \\
 y(0) &= 0
\end{align*}
\]

(c) Use Euler's Method with \(h = 0.2 \) to solve the above IVP in the interval \(0 \leq x \leq 1 \).
6. In an RLC-series circuit: $R = 6$ ohms, $C = \frac{1}{4}$ farads, $L = 2$ henry and $V(t) = 6 e^t$ volts. Assuming that initially $Q(0) = 0$ and $I(0) = 0$, find the current in the circuit at any time t. Graph your answer. Find the charge in the capacitor after a very long time.

Answers:

Current:

Charge in the capacitor after a very long time:

Graph of Current:

Graph of Current:
7. (a) Solve the BVP \[y'' + y = 1 + A \]
where A is a real number:
\[y(0) = y'(\pi) = 2 \]

(b) For what values of A does there exist a unique solution?
What is the solution?

(c) For what values of A do there exist infinitely many solutions?
What are the solutions?

(d) For what values of A do there exist no solutions?
Why?
8. What does the existence and uniqueness theorem predict for each of the following three IVPs? Why?

Solve the IVP.

(a) \(y' = y^{1/3}, y(0) = 0 \)

(b) \(y' = y^3, y(0) = 0 \)

(c) \((1 + x^2) y'' - xy = 0 \)

\[\begin{align*}
 y(0) &= y'(0) = 0
\end{align*} \]

Solutions:

(a) Sol.

(b) Sol.

(c) Sol.
9. A spring is stretched 2 cm by a force of 8 dynes. A mass of 2 g is attached to the end of the spring. The system is then set into motion by pulling the mass 6 cm above the point of equilibrium and releasing it, at time \(t = 0 \), with an initial velocity of 6 cm/sec. Assume also that air resistance acts upon the mass. This air resistance force equals six times the velocity of the mass at time \(t \).

Find the position of the mass as a function of time. Investigate the behavior of the motion as \(t \to \infty \).

Position of mass:

Behavior of motion as \(t \to \infty \):
10. Find a particular solution of the DE:

\[y'' - 2y' + y = -3e^x + 2e^x \]