Lesson 11 - Network Flows

v, w-disconnecting set

Edge form of Menger’s Theorem: The maximum number of edge-disjoint paths connecting two distinct vertices u and w of a connected graph is equal to the minimum number of edges in a v, w-disconnecting set.

v, w-separating set

Menger’s Theorem: The maximum number of vertex-disjoint paths connecting two distinct non-adjacent vertices v and w of a graph is equal to the minimum number of vertices in a v, w-separating set.

Network N - weighted digraph, with source vertex v (indegree=0) and sink vertex w (outdeg=0), for arc a, $\psi(a)$ is called the capacity of a and is a function from the arc set to the positive reals. A flow is an assignment to each arc a a non-negative real number $\phi(a)$ so that $\phi(a) \leq \psi(a)$ and so that for all vertices x not equal to v or w, \sum flow into $x = \sum$ flow out of x.

Value of flow = flow out of v = flow into w.

Max Flow Min Cut theorem: In any network, the value of any maximum flow is equal to the capacity of any minimum cut.

Applications: distribution, traffic vehicles per hour, electrical networks.