Theorem 1.10 (Replacement Theorem). Let \(V \) be a vector space generated by a set \(G \) containing exactly \(n \) vectors, and let \(L \) be a linearly independent subset of \(V \) containing exactly \(m \) vectors. Then \(m \leq n \) and there exists a subset \(H \) of \(G \) containing exactly \(n - m \) vectors such that \(L \cup H \) generates \(V \).

Proof. The proof is by mathematical induction on \(m \). The induction begins with \(m = 0 \); for in this case \(L = \emptyset \), and so taking \(H = G \) gives the desired result.

Now suppose that the theorem is true for some integer \(m \geq 0 \). We prove that the theorem is true for \(m + 1 \).

Suppose \(V \) is a vector space that is generated by a set \(G \) containing exactly \(n \) vectors, and \(L = \{v_1, \ldots, v_m\} \) is a linearly independent subset of \(V \) consisting of \(m + 1 \) vectors.

Moreover, some \(b_i \), say \(b_1 \) is nonzero, for otherwise we obtain the same contradiction. Solving (1) for \(u_1 \) gives
\[
\begin{align*}
 u_1 &= \sum_{i=1}^{m} (-b_i^{-1}b_m) v_i + \sum_{i=m+1}^{n} (-b_i^{-1}b_{m+1}) v_i + \cdots + (-b_i^{-1}b_{n-m}) v_{n-m} \\

 &= \sum_{i=1}^{m} (-b_i^{-1}b_m) v_i + \sum_{i=m+1}^{n} (-b_i^{-1}b_{m+1}) v_i + \cdots + (-b_i^{-1}b_{n-m}) v_{n-m}.
\end{align*}
\]

Let \(H = \{u_2, \ldots, u_{n-m}\} \). Then \(u_1 \in \text{span}(L \cup H) \), and because \(L' \cup H \subseteq \text{span}(L \cup H) \), it follows that \(L' \cup H' \subseteq \text{span}(L \cup H) \). We have \(\text{span}(L' \cup H') = V \) by the induction hypothesis.

Theorem 1.5 implies that \(\text{span}(L' \cup H') \subseteq \text{span}(L \cup H) \). So \(V \subseteq \text{span}(L \cup H) \) so \(V = \text{span}(L \cup H) \).

Since \(H \) is a subset of \(G \) that contains \((n - m) - 1 = n - (m + 1) \) vectors, the theorem is true for \(m + 1 \). This completes the induction.

By the corollary to Theorem 1.6, \(L' = \{v_1, \ldots, v_m\} \) is linearly independent, and so we may apply the induction hypothesis to conclude that \(m \leq n \) and that there is a subset \(H' = \{u_1, \ldots, u_{n-m}\} \) of \(G \) such that \(L' \cup H' \) generates \(V \).

Thus there exist scalars \(a_1, \ldots, a_m, b_1, \ldots, b_{n-m} \) such that
\[
a_1 v_1 + \cdots + a_m v_m + b_1 u_1 + \cdots + b_{n-m} u_{n-m} = v_{m+1}.
\]

Note that \(n - m > 0 \), lest \(v_{m+1} \) be a linear combination of \(v_1, \ldots, v_m \), which by Theorem 1.7, contradicts the assumption that \(L \) is linearly independent. Hence \(n > m \); that is, \(n \geq m + 1 \), which is one of the conclusions we needed to make.

Cor 3 (1, To Theorem 1.10) Let \(V \) be a vector space having a finite basis. Then every basis for \(V \) contains the same number of vectors.

Proof. Let \(\beta \) be a finite basis of \(V \); let \(|\beta| = n \). Let \(\gamma \) be another basis of \(V \). Suppose \(\gamma \) contains \(n + 1 \) (or more) elements. Select subset \(S \subseteq \gamma \) such that \(|S| = n + 1 \). Then \(S \) is linearly independent. If we apply the Replacement Theorem with \(G = \beta \) and \(S = L \), we obtain \(n + 1 \leq n \).

This is a contradiction, so \(|\gamma| \leq |\beta| \).

Then reversing roles of \(\gamma \) and \(\beta \), we get
\[
|\beta| \leq |\gamma|.
\]
Defn 8 A vector space V is called **finite-dimensional** if it has a finite basis. The size of which is called the dimension of V, denoted $\dim V$. A vector space that is not finite-dimensional is called **infinite-dimensional**.

Exercise 15 (Section 1.5) Let $S = \{u_1, u_2, \ldots, u_n\}$ be a finite set of vectors. Prove that S is linearly dependent if and only if $u_1 = 0$ or $u_{k+1} \in \text{span}(\{u_1, u_2, \ldots, u_k\})$ for some k ($1 \leq k \leq n$).

Cor 4 (2, To Theorem 1.10) Let V be a vector space with dimension n.

1. Any finite generating set of V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.

Proof. Suppose S generates V and $|S| = m$. If S is a basis, then $m = n$. If not, it must be linearly dependent. Then some vector $v \in S$ can be written as a linear combination of the other vectors in S. But $\text{span}(S - v) = \text{span}(S)$. We can remove vectors from S until we find a subset $S' \subseteq S$, such that S' is linearly independent and $\text{span}(S') = \text{span}(S)$. We know $|S'| = n$, therefore, $|S| = m \geq n$. □

2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.

Proof. Let L be a linearly independent subset of V with exactly n vectors. We know there is a set G of n vectors that generates V, since $\dim V = n$. By the Replacement Theorem there is a set H of $n - n = 0$ vectors such that $L \cup H = L$ generates V. Thus L generates V and is a basis. □
3. Every linearly independent subset of V can be extended to a basis for V.

Proof. Let G be a basis for V of n vectors and L a linearly independent subset of V. By the Replacement Theorem there is a subset H of V such that $L \cup H$ generates V and $|L \cup H| = n$. So by (1.), $L \cup H$ is a basis for V. \square

Theorem 1.11 Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then $V = W$.

Proof. If $W = \{0\}$ then $\dim(W) = 0$ and we have the result.

If there is a subset $L \subseteq W$, such that L is linearly independent. We know that V has a basis G of n vectors that spans V. By the replacement $|L| \leq n$.

We define a linearly independent subset of W inductively. Assume there is a non-zero $x_1 \in W$. Then $L_1 = \{x_1\}$ is a linearly independent set. Let $i > 1$ and assume L_{i-1} has $i - 1$ linearly independent vectors from W in it. If there is a vector x_i in W such that $L_{i-1} \cup \{x_i\}$ is linearly independent, we set $L_i = L_{i-1} \cup \{x_i\}$. If not, we set $L = L_{i-1}$. So that $L_i = \{x_1, x_2, \ldots, x_k\}$ is a linearly independent set and by Corollary 1.7, it spans W.

We know that L is finite and the process ends be the reasoning above. And we have that $|L| = k = \dim W$. If $m = n$, then by Corollary 2(2.), L must be a basis of V. Thus, $W = V$. \square

Corollary 1 (to Theorem 1.11) If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

Proof. Let L be a basis of W and G be a basis of V. By Theorem 1.11, $|L| \leq |G|$. By Corollary 2(c), L can be extended to a basis of V. \square