1 Chapter

Defn 1 Field Axioms. A set F with operations $+$ and \cdot and distinguished elements 0 and 1 with $0 \neq 1$ is a **field** if the following properties hold for all $x, y, z \in F$.

A0: $x + y \in S$. Closure of addition.

M0: $x \cdot y \in S$. Closure of multiplication.

A1: $(x + y) + z = x + (y + z)$. Associativity of addition.

M1: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$. Associativity of multiplication.

A2: $x + y = y + x$. Commutativity of addition.

M2: $x \cdot y = y \cdot x$. Commutativity of multiplication.

A3: $x + 0 = x$. Additive identity.

M3: $x \cdot 1 = x$. Multiplicative identity.

A4: Given x, there is a $w \in S$ such that $x + w = 0$. Additive inverse.

M4: Given $x \neq 0$, there is a $w \in S$ such that $x \cdot w = 1$. Multiplicative inverse.

DL: $x \cdot (y + z) = x \cdot y + x \cdot z$. Distributive Law.

The operations $+$ and \cdot are called **addition** and **multiplication**. The elements 0 and 1 are the **additive identity element** and the **multiplicative identity element**.

Commonly used in this course: \mathbb{R}, \mathbb{C}.

Rarely used in this course: \mathbb{Q}, \mathbb{Z}.

Not a field: \mathbb{Z}.

Defn 2 A vector space V over a field F consists of a set on which two operations, which are called addition and scalar multiplication are defined so that for each pair of elements x, y in V, there is a unique element $x + y$ in V, and for each element a in F and each element x in V, there is a unique element ax in V, such that the following conditions hold.

(VS 1) For all x, y in V, $x + y = y + x$ commutativity of addition

(VS 2) For all x, y, z in V, $(x + y) + z = x + (y + z)$ associativity of addition

(VS 3) There exists an element in V denoted by 0 such that $x + 0 = x$ for each x in V.

(VS 4) For each element x in V, there exists an element y in V such that $x + y = 0$.

(VS 5) For each $x \in V$, $1x = x$.

(VS 6) For each pair of elements $a, b \in F$ and each element $x \in V$, $(ab)x = a(bx)$.

(VS 7) For each element a in F and each pair of elements x, y in V, $a(x + y) = ax + ay$.

(VS 8) For each pair of elements $a, b \in F$, and each element $x \in V$, $(a + b)x = ax + bx$.
Example 1 Vectors: \(\mathbb{R}^n, \mathbb{C}^n, \) or \(F^n \) for any field \(F \).
Matrices: \(M_{m \times n}(F) \) for any field \(F \).
Function space: \(\mathcal{F}(S, F) \) for nonempty set \(S \) and field \(F \).
Polynomials: \(\mathbf{P}(F) \)

Defn 3 A subset \(W \) of a vector space \(V \) over a field \(F \) is called a subspace of \(V \) if \(W \) is a vector space over \(F \) with the operations of addition and scalar multiplication defined on \(V \).

Theorem 1.3 Let \(V \) be a vector space and \(W \) a subset of \(V \). Then \(W \) is a subspace of \(V \) if and only if the following three conditions hold for the operations defined in \(V \).

1. \(0 \in W \).
2. \(x + y \in W \) whenever \(x \in W \) and \(y \in W \).
3. \(cx \in W \) whenever \(c \in F \) and \(x \in W \).
Defn 4. Let V be a vector space and S a nonempty subset of V. A vector v is called a **linear combination** of vectors of S if there exist a finite number of vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n in F such that $v = a_1 u_1 + a_2 u_2 + \cdots + a_n u_n$. We call a_i for all $i \in \{1, \ldots, n\}$ the **coefficients** of the linear combination.

The **span** of S, denoted $\text{span}(S)$, is the set of all linear combinations of the vectors of S. By convention, $\text{span}(\emptyset) = \{0\}$. Also note that $S \subseteq \text{span}(S)$.

Theorem 1.5. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain the span of S.

Proof. We need to show that $0 \in \text{span}(S)$,

$x, y \in \text{span}(S)$ implies $x + y \in \text{span}(S)$,

and $ax \in \text{span}(S)$ whenever $a \in F$.

First note that $0 \in F$ and S is nonempty so it contains some x. We know $0 \cdot x = \emptyset$, and so 0 is in $\text{span}(S)$.
Now, denote \(x \in \text{span}(S) \) by
\[
x = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n.
\]
and \(y \in \text{span}(S) \) by
\[
y = b_1 u_1 + b_2 u_2 + \cdots + b_m u_m.
\]
Then
\[
x + y = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n + b_1 u_1 + b_2 u_2 + \cdots + b_m u_m.
\]
Some vectors may be repeated in the sum, but by property (VS 8) if \(v_i = u_j = v \), then \(a_i v_i + b_j u_j = a_i v + b_j v = (a_i + b_j) v \) and so \(x + y \in \text{span}(S) \)

\[
ax = a(a_1 v_1 + a_2 v_2 + \cdots + a_n v_n)
\]
By (VS 7), we have
\[
= a \cdot a_1 v_1 + a \cdot a_2 v_2 + \cdots + a \cdot a_n v_n
\]
For each \(i, a \cdot a_i \in F \), by closure of multiplication. Thus, \(ax \in \text{span}(S) \).
Furthermore, let W be a subspace of V and $S \subseteq W$ we wish to prove that $\text{span}(S) \subseteq W$. Let $x \in \text{span}(S)$, then

$x = a_1v_1 + a_2v_2 + \cdots + a_nv_n$, for some vectors v_1, v_2, \ldots, v_n in S. But v_1, v_2, \ldots, v_n are also in W since $S \subseteq W$. By closure of scalar multiplication we have for each i, $a_iv_i \in W$ and by closure of addition of vectors and induction,

$x = a_1v_1 + a_2v_2 + \cdots + a_nv_n$ is in W.

\[\square \]

Cor 1 If S is a subspace of V, then $\text{span}(S) = S$.

Proof. By the previous theorem, with S playing the role of W and using that $S \subseteq S$, we have $\text{span}(S) \subseteq S$. By definition, $S \subseteq \text{span}(S)$. So, $\text{span}(S) = S$.

\[\square \]
Defn 5 A set \(S \) generates a vector space \(V \) if \(\text{span}(S) = V \).

Example 2 \(\mathbb{R}^2 = V \) and \(\{(1,0),(0,1)\} = S \).

Defn 6 A subset \(S \) of a vector space \(V \) is called linearly dependent if there exists a finite number of distinct vectors, and scalars, not all zero, such that
\[
a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0.
\]

Also, we say that \(\{v_1, \ldots, v_n\} \) is linearly dependent. If no such set exists, then \(S \) is called linearly independent.

Theorem 1.6 Let \(V \) be a vector space, and let \(S_1 \subseteq S_2 \subseteq V \).
If \(S_1 \) is linearly dependent, then \(S_2 \) is linearly dependent.
Also, if \(S_2 \) is linearly independent, then \(S_1 \) is linearly independent.

Cor 2 Let \(V \) be a vector space, and let \(S_1 \subseteq S_2 \subseteq V \). If \(S_2 \) is linearly independent, then \(S_1 \) is linearly independent.

One of the presentations.
Theorem 1.7 Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.

Proof. If $S \cup \{v\}$ is linearly dependent, then there are vectors u_1, \ldots, u_n in $S \cup \{v\}$ such that
\[a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0 \]
for some nonzero scalars a_1, \ldots, a_n. Because S is linearly independent, one of the u_i's, say u_1, equals v. Thus $a_1v + a_2u_2 + \cdots + a_nu_n = 0$, and so
\[v = a_1^{-1}(-a_2u_2 - \cdots - a_nu_n) = -(a_1^{-1}a_2)u_2 - \cdots - (a_1^{-1}a_n)u_n. \]
Since v is a linear combination of u_2, \ldots, u_n, which are in S, we have $v \in \text{span}(S)$.

Conversely, let $v \in \text{span}(S)$. Then there exists vectors v_1, v_2, \ldots, v_m in S and scalars b_1, b_2, \ldots, b_m such that
\[v = b_1v_1 + \cdots + b_mv_m. \]
Hence
\[0 = b_1v_1 + \cdots + b_mv_m + (-1)v. \]
Since $v \neq v$, for $i = 1, 2, \ldots, m$, the coefficient of v in this linear combination is nonzero, and so the set $\{v_1, v_2, \ldots, v_m, v\}$ is linearly dependent. Therefore, $S \cup \{v\}$ is linearly dependent by Theorem 1.6. \hfill \Box
Defn 7 A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.

Theorem 1.8 Let V be a vector space and $\beta = \{u_1, u_2, \ldots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β, that is, can be expressed in the form

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n$$

for unique scalars a_1, a_2, \ldots, a_n.

Proof. (\Leftarrow) We know β spans V because each vector can be written as linear combination of vectors in β.

If β is linearly dependent, there exists scalars $\{a_1, \ldots, a_n\}$ not all zero such that $0 = a_1u_1 + \cdots + a_nu_n$. But also, $0 = 0u_1 + \cdots + 0u_n$.

by uniqueness, it must be that $a_i = 0$ for each i. This is a contradiction, so β is linearly independent.
The basis β spans V, so we have that each vector can be written as a linear combination of vectors in β. Suppose there are 2 different ways to express v:

$$v = a_1u_1 + a_2u_2 + \cdots + a_nu_n = b_1u_1 + b_2u_2 + \cdots + b_nu_n$$

Then

$$0 = v - v = (a_1 - b_1)u_1 + (a_2 - b_2)u_2 + \cdots + (a_n - b_n)u_n$$

But since β is linearly independent, we know that for all i, $a_i - b_i = 0$. Thus, $a_i = b_i$. Which gives uniqueness.

\[\square\]

Theorem 1.9 If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Proof. If $S = \emptyset$ or $S = \{\emptyset\}$, then $V = \{\emptyset\}$ and \emptyset is a subset of S that is a basis for V. Otherwise S contains a nonzero vector u_1. Technically, $\{u_1\}$ is a linearly independent set. Continue, if possible, choosing vectors u_2, \ldots, u_k in S such that $\{u_1, \ldots, u_k\}$ is linearly independent. Since S is a finite set, we must eventually reach a stage at which $\beta = \{u_1, \ldots, u_k\}$ is a linearly independent subset of S, but adding any vector v in S to β produces a linearly dependent set. We claim that β is a basis for V. Because β is linearly independent by construction, it suffices to show that β spans V. That is, $\text{span}(\beta) = V$.
Clearly, span(\(\beta\)) \(\subseteq\) \(V\), so we need only show that \(V \subseteq\) span(\(\beta\)).

We know that \(S \subseteq\) span(\(\beta\)). By Theorem 1.5 span(\(\beta\)) is a subspace. By Theorem 1.5 span(\(S\)) \(\subseteq\) span(\(\beta\)). But we know that span(\(S\)) = \(V\). Thus \(V \subseteq\) span(\(\beta\)).