1) Proof Th 32.4 (c): Assume that \(f'(c) < 0 \) for all interior points of \(I \). To show that \(f \) is strictly decreasing in \(I \), take \(x, y \in I \), \(y > x \). \(f \) satisfies the assumptions of the NVT in \([x, y] \). Hence, there exists \(c \in (x, y) \) such that
\[
f'(c) = \frac{f(y) - f(x)}{y - x}
\]
Since \(f'(c) < 0 \), \(y - x > 0 \), we have \(f(y) - f(x) < 0 \).
Thus \(f(y) < f(x) \). Since \(x, y \in I \) were arbitrary, we have proved that \(f \) is strictly decreasing.

(d) can be proved similarly.

3) Let \(h = f - g \). Then \(h \) is continuous on \(I \) and for each interior point \(x \) of \(I \) we have
\[
h'(x) = f'(x) - g'(x) = 0.
\]
Thus, by Th. 32.3, \(h \) is constant in \(I \); that is, for some constant \(c \):
\[
h(x) = f(x) - g(x) = c \quad \text{for all} \quad x \in I.
\]
The latter implies
\[
f(x) = g(x) + c \quad \text{for all} \quad x \in I.
\]
2) The converse of (a) is not true. Take, for example,
\(f(x) = x^3 \). \(f \) is strictly increasing in \(I = (-\infty, +\infty) \),
yet \(f'(0) = 0 \).

The converse of (b) is:

"If \(f \) is increasing in \(I \), then \(f'(x) \geq 0 \) for all
interior points \(x \) of \(I \)."

The latter implication is true. Assume \(f \) is increasing
in \(I \). Let \(x \) be an interior point of \(I \). Since \(f \) is
differentiable at \(x \) we have

\[
f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{y \to x^+} \frac{f(y) - f(x)}{y - x}.
\]

Since \(f \) is increasing

\[
\frac{f(y) - f(x)}{y - x} \geq 0 \quad \text{whenever} \quad y \in I, \quad y > x.
\]

Thus

\[
f'(x) = \lim_{y \to x^+} \frac{f(y) - f(x)}{y - x} \geq 0.
\]

4) For the sake of contradiction suppose that \(f \)
has two fixed points \(d_1, d_2 \in \mathbb{R} \). Without any loss
of generality, we may assume \(d_1 < d_2 \). Notice that
\(f \) satisfies the assumptions of the MVT in \(\overline{d_1, d_2} \).
Thus, there exists $c \in (d_1, d_2)$ such that
\[f'(c) = \frac{f(d_2) - f(d_1)}{d_2 - d_1} . \]

Since d_1, d_2 are fixed points $f(d_1) = d_1, f(d_2) = d_2$. Therefore
\[f'(c) = \frac{d_2 - d_1}{d_2 - d_1} = 1. \]

Contradiction as $f'(c) < 1$. We conclude that f has at most one fixed point.

5) (a) Observe that $p(0) = 1$, $p(-1) = -2$. The IVT gives that there exists $c \in (-1, 0)$ such that $p(c) = 0$.

(b) As $p(x) > 0$ for all $x > 0$, all roots of $p(x)$ must be negative. Let r_1, r_2 be two distinct negative roots of p, $r_1 < r_2$. From Rolle's Theorem, there exists $d \in (r_1, r_2)$ such that $p'(d) = 0$. (Indeed, $p(r_1) = p(r_2) = 0$.) But $p'(x) = 7x^6 + 5x^4 + 3x^2 > 0$ for all $x < 0$. Contradiction. Therefore, p has exactly one real root.