3) Suppose that \(f \) is not constant. Then there exist \(x_1, x_2 \in \mathbb{R} \) such that \(f(x_1) \neq f(x_2) \). Without any loss of generality we may assume that \(x_1 < x_2 \). Since \(f \) is continuous in \([x_1, x_2]\) the Intermediate Value Theorem applies. Take \(\nu \) such that \(\nu \) is between \(f(x_1) \) and \(f(x_2) \) and \(\nu \in \mathbb{R} \setminus \mathbb{Q} \). By the IVT, there exists \(c \in [x_1, x_2] \) such that \(f(c) = \nu \). Contradiction as \(f \) takes only rational values and \(\nu \) is irrational.

4) Consider the function \(g(x) = f(x) - x \), \(x \in [0, 1] \).

If \(f(0) = 0 \), \(x = 0 \) is a fixed point. Suppose \(f(0) \neq 0 \).

Then \(f(0) > 0 \) as \(f \) takes values in \([0, 1]\), thus, \(g(0) > 0 \).

Since \(f(x) \leq 1 \) for all \(x \in [0, 1] \), in particular, \(f(1) \leq 1 \), we obtain \(g(1) \leq 0 \). \(g(x) \) is continuous in \([0, 1]\) as the difference of two continuous functions, and \(g(0) > 0 \), \(g(1) \leq 0 \). Thus

\[
g(1) \leq 0 < g(0).
\]

By the Intermediate Value Theorem, there exists \(x_0 \in [0, 1] \) such that \(g(x_0) = 0 \). But then \(f(x_0) = x_0 \) and \(x_0 \) is a fixed point.

5) Suppose \(L < N \). Take \(\varepsilon = \frac{M - L}{2} \). Since \(\lim_{n \to +\infty} a_n = L \), \(\lim b_n = M \), there exist \(N_1, N_2 \in \mathbb{N} \) such that

\[
|a_n - L| < \varepsilon \quad \text{for} \quad n \geq N_1, \\
|b_n - M| < \varepsilon \quad \text{for} \quad n \geq N_2.
\]
Let \(N = \max \{ N_1, N_2 \} \). The latter inequalities imply that for all \(n \geq N \) we have

\[L - \varepsilon < a_n < L + \varepsilon \quad \text{and} \quad M - \varepsilon < b_n < M + \varepsilon. \]

But \(L + \varepsilon = \frac{L + M}{2} \), \(M - \varepsilon = \frac{L + M}{2} \). Hence, for \(n \geq N \),

\[a_n < b_n. \]

Contradiction. Therefore, \(L \geq M \).

Example: Let \(a_n = \frac{1}{n} \), \(b_n = 0 \) for \(n = 1, 2, \ldots \). We have \(a_n > b_n \) for \(n = 1, 2, \ldots \), yet \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0. \)

6) Let \(f(x) = x^2 \), \(I = (0, 1) \). \(f \) is continuous on \((0, 1)\), yet \(f \) does not attain its minimum or maximum values in \((0, 1)\).

For every \(x \in (0, 1) \), there exist \(y \in (0, 1) \) such that \(y > x \), thus \(f(y) > f(x) \). Hence, the largest value is not attained. Similarly, the smallest value is not attained. Obviously, the effect is due to the fact that the interval \((0, 1)\) is not closed.