Th 17.1 (Egoroff) Let \(f, f_n : D \to \mathbb{R}, n = 1, 2, \ldots \) be measurable, \(m(D) < +\infty \). Assume that \(f_n \to f \) a.e. on \(D \). Then for every \(\varepsilon > 0 \) there exists \(E_\varepsilon \subset D \) such that \(E_\varepsilon \in \mathcal{M}, \ m(E_\varepsilon) < \varepsilon \) and \(f_n \Rightarrow f \) on \(D \setminus E_\varepsilon \).

Before we prove the theorem recall the following two propositions:

(P1) If \(f \) is measurable, then \(|f| \) is measurable.

Indeed, \(|f| = f^+ + f^- \), \(f^+, f^- \) are measurable.

(By \(\#5, \PageIndex{7}, \))

(P2) If \(A_1, A_2, \ldots, A_n, \ldots \in \mathcal{M}, A_{n+1} \supseteq A_n \) for \(n = 1, 2, \ldots \)

then

\[m\left(\bigcup_{n=1}^{\infty} A_n \right) = \lim_{n \to +\infty} m(A_n). \]

(By \(\#2, \PageIndex{6}, \))

Proof of Th 17.1: Let \(\varepsilon > 0 \) be fixed. We want to show that there exists \(E_\varepsilon \subset D \) such that

\[m(E_\varepsilon) < \varepsilon \quad \text{and} \]

\[\forall \varepsilon > 0 : \quad \forall N \in \mathbb{N} : \quad \forall n \geq N : x \in D \setminus E_\varepsilon \]

\[|f_n(x) - f(x)| < \varepsilon. \quad (1) \]

In other words, \(f_n \Rightarrow f \) on \(D \setminus E_\varepsilon \).
Let \(D_0 \subseteq D \) be:
\[D_0 = \{ x \in D : f_n(x) \neq f(x) \} \]
Then \(D_0 \in \mathcal{M} \), \(m(D_0) = 0 \). For each pair \(n \in \mathbb{N} \) and \(i \in \mathbb{N} \) define the following set:
\[E_{i,n} = \{ x \in D \setminus D_0 : |f_m(x) - f(x)| < \frac{1}{2^i} \text{ for } m \geq n \} \quad (2) \]
As \(|f_m - f| \) is measurable, \(E_{i,n} \in \mathcal{M} \) for \(i, n \in \mathbb{N} \).

From (2), \(E_{i,n+1} \supseteq E_{i,n} \) for all \(i, n \in \mathbb{N} \). Also for every \(i \in \mathbb{N} \):
\[\bigcup_{n=1}^{\infty} E_{i,n} = D \setminus D_0 \quad (3) \]
To prove (3), fix \(i \) and take \(x \in D \setminus D_0 \). Then
\[f_n(x) \to f(x), \text{ thus, } |f_n(x) - f(x)| < \frac{1}{2^i} \text{ for } n \geq N \]
for some \(N \) (which depends on \(x \) and \(i \)). Hence
\[x \in E_{i,N} \text{ and the inclusion } D \setminus D_0 \subseteq \bigcup_{n=1}^{\infty} E_{i,n} \text{ is proved.} \]

The opposite inclusion follows from (2). Thus, (3) is proved.

By (P2), for every fixed \(i = 1, 2, \ldots, \) we have:
\[\lim_{n \to +\infty} m(E_{i,n}) = m(D \setminus D_0) = m(D) - m(D_0) = m(D) \quad (4) \]
(The second equality follows from Prop 12.3 as \(m(D) < +\infty \).)

From (4), for every fixed \(i \), there exists \(N_i \in \mathbb{N} \) such that
\[m(E_{i,N_i}) > m(D) - \frac{E_i}{2^i}, \quad m(D \setminus E_{i\cap N_i}) < \frac{E_i}{2^i} \quad (5) \]
Define

\[E\varepsilon = D \cup \bigcap_{i=1}^{\infty} E_{i, N_i} = \bigcup_{i=1}^{\infty} (D \cup E_{i, N_i}) \]

By the latter equality and (5), we have

\[m(E\varepsilon) = m\left(\bigcup_{i=1}^{\infty} (D \cup E_{i, N_i}) \right) \leq \sum_{i=1}^{\infty} \frac{\varepsilon_i}{2^i} = \varepsilon. \]

It remains to show that \(f_n \to f \) on \(D \cup E\varepsilon \). Observe that by (6):

\[D \cup E\varepsilon = \bigcap_{i=1}^{\infty} E_{i, N_i}. \]

Therefore, for every \(x \in D \cup E\varepsilon \) we have

\[x \in E_{i, N_i} \quad \text{for } i=1, 2, \ldots. \]

From (2), we obtain that for all \(x \in D \cup E\varepsilon \) and all \(i=1, 2, \ldots \):

\[|f_m(x) - f(x)| < \frac{1}{2^i} \quad \text{for } m \geq N_i. \]

We are ready to show (1). Let \(\eta > 0 \) be given. Let \(i_0 \in \mathbb{N} \) be such that \(\frac{1}{2^{i_0}} < \eta \). (7) implies that

\[|f_n(x) - f(x)| < \frac{1}{2^{i_0}} < \eta \quad \text{for all } n \geq N_{i_0}, x \in D \cup E\varepsilon. \]

Hence, (1) holds with \(N_\varepsilon = N_{i_0} \). The proof is complete.